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Abstract—Missing values present as the most common problem
in real-world data science. Inadequate treatment of missing
values could often result in mass errors. Hence missing values
should be managed conscientiously for classification. Generative
Adversarial Networks (GANs) have been applied for imputing
missing values in most recent years. This paper proposes a
multiple imputation method to estimate missing values for
classification through the integration of GAN and ensemble
learning. Our propose method MIGAN utilises GAN to generate
different training observations which are then used to conduct
ensemble classifiers for classification with missing data. We
conducted our experiments examine MIGAN on various data sets
as well as comparing MIGAN with the state-of-the-art imputation
methods. The experimental results show significant results, which
highlights the accuracy of MIGAN in classifying the missing data.

Index Terms—missing data, incomplete data, imputation, gen-
erative adversarial network, ensemble learning

I. INTRODUCTION

Missing values where the values of some features are
unknown and have presented as one of the common issues
in many real-world datasets. For instance, about 45% of the
UCI machine learning repository [1] often encounters with the
missing values [2]. There are different causes of missing val-
ues. For example, in social surveys, when respondents tended
to deny to reply in specific questions, the collected datasets
will be incomplete [13]. Furthermore, medical datasets usually
contain a huge number of missing values since it is extreme
rare to achieve 100% of task completion on every patient [4].
Missing values are causing significant problems in classifica-
tion. One of the most serious problems occurs when majority
of classification algorithms failed to work on incomplete

datasets [2]. Another issue is that missing values often lead to
mass classification error due to insufficient information during
either the training or application processes [5].

One of the most common approaches for classification
with missing data is via the usage of imputation methods to
transform incomplete data into complete data. For example,
mean imputation fills each missing field with the average of the
complete values [2]. Although imputation is the most common
way of classification with missing data, unable to carefully
imputing missing values could also lead to mass classification
errors. Therefore, it is essential to propose robust imputation
methods of classification with missing data.

A generative adversarial network (GAN) is a machine
learning model in which two neural networks compete with
each other in a zero-sum game. GANs have been successfully
applied in many applications such as human image synthesis,
improving astronomical images and inpainting photographs
[3]. Recently, GANs has also been applied to imputing missing
values such as GAIN [15], MisGan [9], and GAMIN [16].

This paper proposes a key method to accurately impute
missing values for classification. The proposed method uses
GANs to generate multiple complete data sets from an in-
complete data set. After that, a set of classifiers is build on
these complete datasets. We aim to show:

1) The proposed method can be more accurate than the
other existing GANs-based imputation methods;

2) The proposed method can be more accurate than the
other existing traditional imputation methods.

II. RELATED WORK

A. Missing Data

Missing data has been a pervasive topic in the empirical
research. Data science studies have constantly been encounter-978-1-6654-0435-8/21/$31.00 ©2021 IEEE



ing with many types of missing data; they are MCAR, MAR
and MNAR respectively and could be categorized based on
the mechanisms of missing data article. Missing Completely
At Random (MCAR) occur when the missingness is not
associated with its hypothetical value, the values of other
variables or sets of observed records. Missing At Random
(MAR) happens when the propensity of any missing data
points are not related to the specific missing values; where that
specific missing values are expected to be obtained. However
it also depends on few of the observed data. Furthermore,
the ultimate type of Missing Data is called Missing Not At
Random (MNAR), in which the missing data points depend
on both of the hypothetical values and other specific variable’s
values.

To avoid bringing negative effects in the validity of the trials
of our experiments, many methods and approaches have been
provided to manipulate the missing data. One of the common
way is the deletion method and is often utilised by data
scientists, deleting incomplete features or incomplete samples
during the imputation process. By omitting partial or entire
missing records, the remaining data will continue to be utilised
as the original data. However, when the missing rate is not at
its minimal (normally 5% of the whole data), the deletion
method will not be the best approach as it can lead to the
generation of deficient outputs [11]. Furthermore, imputation
methods which substitute missing values with plausible values
are overall a better approach towards missing data.

B. Imputation methods

Imputation method is the most common strategy in handling
missing data [8]. The concept is filled up with a missing
value with a “well-calculated estimate”. By taking advantages
from statistical analysis and mathematical models, varieties
of approaches can be designated as maximum likelihood,
expectation-maximization, regression imputation, multiple im-
putations, sensitivity analysis [8], [10].

Machine learning has been applied to impute missing val-
ues. Decision trees and k-nearest neighbors are often used
to impute missing values [6], [11]. With the improvement
of machine learning algorithms, machine learning-based im-
putation methods tended to sustain its accuracy in many
experiments. However, the drawbacks of these methods are
highly calculated on the quality of data. If a dataset is relatively
small or high-dimensional, some of the models are seemingly
less sufficient. Thus, the selective model should be considering
with distinctive datasets [11].

Imputation methods can be categorised into single impu-
tation methods [11] and multiple imputation methods [12].
While a single imputation method just creates one com-
plete data set from an incomplete data set, a multiple im-
putation method is able to generate multiple datasets from
an incomplete dataset. Single imputation tends to rely on
specific assumptions of missing values rather than the type
of missing data [12]. These assumptions are not applicable
or identical, and they often lead to bias results. Multiple
imputation methods are valid general method for reducing the

bias of imputation. In general, multiple imputation methods
improve the validity of process, its procedure adds random
value to restore randomness loss. By reducing randomness,
the statistical analysis on distribution will be more appropriate.
Multiple imputation is also more flexible and is be applied in
a wide variety of scenarios [11].

C. Generative Adversarial Networks for Data Imputation

Generative adversarial networks (GANs) are the subject of
debate in most recent years. GANs are comprised of a gen-
erator and a discriminator, which are trained in an adversarial
way. These two models are usually implemented by the neural
networks. GANs have been successfully applied to various
fields such as image processing and computer vision, natural
language processing, and medicine [3] . Inspire of the success
of GANs in data synthesis, researchers have applied GANs
to data imputation. The GAN-based data imputation methods
firstly proposed to image completion [17], [18]. However,
these models applied in image inpainting only. Recently, there
are some publishes on data imputation in general, such as
GAIN [15], MisGan [9], and GAMIN [16].

In Generative Adversarial Imputation Nets (GAIN) model
[15], the generator is considered as a imputer and the dis-
criminator tries to discriminate whether each components of
an input had already been imputed or not. The algorithm is
accurate in low dimensional datasets with low missing rate.
It also works at MNIST of 50% missing rate. However it
converges to zero imputation or mean imputation at higher
missing rates.

On the other hand, MisGAN model [9] works better for
datasets at highly missing rate. The proposed method consists
of a GAN architecture for missing dataset and an imputer
using it. This GAN architecture is comprised of two generators
pairs for mask and data respectively. The data generator is
responsible for generating fake complete data and the mask
generator is responsible for generating the fake mask which
indicates which component is missed. Then, the fake complete
data is masked with the fake mask to generate the fake missing
data. The data discriminator tries to distinguish real missing
data from fake missing data. Another pair of generator and
discriminator are used for data imputation. The imputation
generator imputes missing data to fool the corresponding
discriminator which distinguishes imputed data from fake
complete data.

The generative adversarial multiple imputation network
(GAMIN) [16] is proposed for multiple imputation for highly
missing data. This model is motivated by the MisGAN but
there are several changes. Firstly, the imputation architecture
is changed to make the data generator be directly included
in imputation process. Secondly, a novel confidence predic-
tion and top-k imputation is introduced. Finally, GAMIN is
trained using new loss functions considering the confidence.
Moreover, the mask generation is replaced by the mask of
missing data. The unconditional data generation is replaced
with the conditional generation using the missing data .



III. THE PROPOSED METHOD

Most of GAN-based imputations are stochastic due to
the presence of random noise which is fed to generator.
Moreover, multiple imputations can be obtained by repeating
the single imputation process. Therefore, in this paper, we
propose a multiple imputation method to estimate missing
values for classification by integrating GAN and ensemble
learning (namely MIGAN). There are two main steps in our
model. Firstly, the GAN-based imputation is trained. Secondly,
the trained generator is used to generate different complete
data sets which are used to build an ensemble classifiers.

A. GAN-based Imputation
Our GAN-based imputation is developed based on GAIN

[15]. While GAIN is a single imputation method, the proposed
method is a multiple imputation method by repeating GAIN
multiple times to conduct multiple complete data sets from an
incomplete data set.

1) Generator: Suppose that X = (X1, X2, ..., Xd) is a
missing data in d-dimensional space, M = (M1,M2, ...,Md)
is a mask vector indicating which components of X are
observed, that is:

Mi =

{
1 if Xi is observed
0 if Xi is unobserved

The generator G take X, M and a d-dimension noise variable
Z as input and outputs a vector of imputations X̄:

X̄ = G(X,M, (1−M)� Z)

where Z is sampled from a known distribution such as normal
distribution, and � is element-wise multiplication.

G outputs a value for every component as long as its value is
observed. Therefore the final completed data vector is obtained
by replacing missing value in X with the corresponding value
of X̄, that is:

X̂ = M �X + (1−M)� X̄

With one pair of X and M, we can repeat sampling Z multiple
times to obtain multiple imputations of missing data X̂.

2) Discriminator: The discriminator attempts to distinguish
which components of completed vector X̂ are real (observed)
or fake (imputed). That is, it try to predicting the mask vector
M. In [15], authors showed that if the discriminator D is not
provided ”enough” information about M, G could reproduce
several populations that would all be optimal with respect to
D. Thus it is necessary to introduce a hint mechanism. A
hint mechanism is a random variable H and contains some
information about M to guarantee that the generator learns
the desired distribution. H is defined as below:

H = B�M + 0.5(1−B) (1)

where B = (B1, B2, ..., Bd) ∈ {0, 1}d is defined by first
sampling k from {1, ..., d} uniformly at random and then
setting:

Bj =

{
1 if j 6= k

0 if j = k

X̂ and H are fed to D to predict which components are real
or imputed.

3) Training objective: D is trained to maximize the proba-
bility of correctly predicting M while G is trained to minimize
the probability of D predicting M. Moreover, in training
G, we not only ensure that estimate successfully missing
components to fool D but also ensure that the values outputted
by G for observed components are close to those actually
observed. Then the training objective is defined as below:

min
G

max
D

E
[
L(M, D(X̂,H),B) + LM(X, X̄)

]
(2)

where

L(M, M̂,B) =
∑

i:Bi=0

[
Milog(M̂i) + (1−Mi)log(1− M̂i)

]
and

LM(X, X̄) =

d∑
i=1

(Xi − X̄i)
2

B. GAN-based Multiple Imputation and Ensemble Learning

This step consists of two phases: the training phase and the
application phase. In the training phase, the generator, which is
used as a multiple imputer, integrates with ensemble learning
to build a set of classifiers. Subsequently, in the application
process, the multiple imputer and the set of classifiers are used
together to classify a new incomplete sample.

In the training phase, a training incomplete dataset is fed
to G together with multiple set of random noises Z to build
a set of imputed datasets. Then, each imputed dataset is
independently used to train a classifier. Consequently, a set
of classifiers are obtained.

In the application phase, if a sample which needs to be
classified has missing values, it is firstly fed to G together with
a set of random vectors z to generate a set of imputed samples.
Then, the average of these imputed samples is calculated to
get an unique imputed sample. After that, this average sample
is fed to each classifier to obtain a set of predicted classes.
The predicted class is a class with the highest majority of
votes, that is the class which had the highest probability of
being predicted by each of the classifiers. On the other hand,
if a sample which needs to be classified is complete, the
imputation step can be omitted.

Our model exploits the stochastic characteristic of GAN-
based imputation to build multiple imputation and uses it to
build a set of diverse imputed datasets. As a result, diverse
classifiers are able to be constructed, which makes the ensem-
ble classifier efficient.

IV. EXPERIMENT DESIGN

A. Experiment methodology

A series of experiments are conducted to validate the perfor-
mance of the Multiple Imputation by Generative Adversarial
Networks for Classification (MIGAN). Quantitatively, UCI
datasets [14], which include the Spam, Breast, Banknote and
Parkinsons, are used to evaluate the performance of all the



tested methods following by the comparisons between basic
and advanced methods of missing data imputation. These
are all complete datasets, though to make missing datasets
we randomly remove some of the data points (MCAR). The
missing rate is the percentage of data points removed.

Additionally, a comparison between MIGAN at different
missing rates is included to test the stability of MIGAN.
In our last experiments, the comparisons between MIGAN
against other imputation algorithms are also conducted. Each
experiment is run for 30 times to maintain the robustness of
all tested methods. And the performance metrics are reported
with accuracy depending based on the structure of datasets
[7]. Mean and standard deviations are shown to identify the
qualitative results across all of the imputation methods.

B. Experiment Settings

Several imputaion methods are used to compare with MI-
GAN. Traditional imputation methods included mean impu-
tation and kNN imputation. MICE represented for Multiple
imputation. In MICE, the estimator variate is decision tree
regressor. With regards to classification task, the imputed
data is divided to 70% for training and 30% for testing.
Decision tree (DT) and multi-layer perceptron (MLP) are used
to classify imputed datasets.

V. RESULTS AND DISCUSSION

A. Comparison of MIGAN and GAIN

In this testing section, we would like to validate the
performance of MIGAN using all mentioned UCI datasets.
This comparison is made with the purpose of comparing
MIGAN with GAIN. The settings of all imputation methods
are designed to follow the experiment setting section. The
missing rate is changing from 10% to 50% for every datasets
and every classifiers. Furthermore, we conducted each test for
30 times to calculate the mean and standard variation of the
output.

Table I shows the results of all run-time. In which the
MIGAN outperforms GAIN in majority of the run-time from
1% to 5%. This is probably due to its more advanced analytic
process and imputation process, which brings better results in
predicting the label in classification tasks.

B. Missing Rate Experiment

To better evaluate MIGAN, several testings in varying the
missing rate of data are conducted, ranging from 10% to
50% for all datasets (UCI datasets). Figure 1 and 2 shows
the performance (accuracy metrics) of MIGAN with the other
methods. Figure 2 shows the outputs of the imputed data from
experiments aligned with MLP classifier. The accuracy metric
is recruited in this method.

Figure 1 and 2 affirm that the MIGAN tends to be more
robust than other methods when improving the missing rate.
Figure 1a, 1c, 1d, 2b, 2c, 2d highlight that the quality of
imputed data against the high level of missing rate. MIGAN
outperforms than the others in Decision Tree tests, which are

shown in Figure 1a, 1c, 1d. As information from observed data
decreases, the imputation methods are able to demonstrate the
ability of learning the remaining information when imputing
the missing data points. Similar results for MLP tests can
also be seen in Figure 2a, 2b, 2c, 2d. Thus MIGAN had
significantly pinpointed its imputation quality in dealing with
a remarkable missing datasets comparing to the rest of the
other tested methods.

C. Comparison of MIGAN and Others

In this experiment, we used all imputation methods includ-
ing MIGAN, GAIN, Mean, KNN, and MICE in the testing
of both Decision Tree and MLP classifications. The missing
rate is set from 10% to 50% for these datasets aligning with
other similar settings. The result with missing rate 20% had
been illustrated in Table II. The visualisation of other results
are revealed in Figure 1 from the missing rate varying from
10%, 20%, 30% , 40% and 50%. This experiment aimed to
portray the differences between all imputation methods with
the same input data.

In this run, MIGAN have shown significant performance
with respect to the accuracy of post-imputation prediction.
The standard variations of MIGAN from Table II are however
relatively smaller than other methods in all the testings. The
gap between MIGAN and others is wider in Decision Tree
task, but smaller in MLP due to the adaptive learning of MLP,
which yield the required decision function directly via training.
MICE in Figure 1d had shown with better result in some
specific dataset like Parkinsons dataset, however MIGAN still
performed more advanced comprehensively towards the rest
of the testings.

VI. CONCLUSION

In this paper, we proposed a new approach called the
“Multiple Imputation by Generative Adversarial Networks for
Classification (MIGAN)” to perform multiple imputation to
estimate the missing values in incomplete data sets. This
novel framework is advanced by integrating GAN frameworks,
multiple imputation concepts and ensemble learning paradigm
in significant errors and bias reduction during the process of
imputation of missing data. Our experiments highlighted mul-
tiple positive performance of MIGAN against other imputation
methods with higher accuracy.

In the coming future, we could focus on reinforcing the
stability of MIGAN and to improve the quality and efficacy
of imputing incomplete data.
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(a) Spam Dataset with Decision Tree Classifier (b) Breast Dataset with Decision Tree Classifier

(c) Banknote Dataset with Decision Tree Classifier (d) Parkinsons Dataset with Decision Tree Classifier
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(a) Spam Dataset with MLP Classifier (b) Breast Dataset with MLP Classifier

(c) Banknote Dataset with MLP Classifier (d) Parkinsons Dataset with MLP Classifier

Fig. 2: UCI Datasets over missing rates using MLP
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