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Abstract This work comprehensively describes and extends the results on
asymptotic properties of linear discrete time-varying fractional order systems with
Caputo and Riemann-Liouville forward and backward difference operators. In our
considerations we take into account various definitions from the literature of frac-
tional difference operators andwecompare thedynamic propertiesof the correspond-
ing systems. These equations are studied by converting them to the corresponding
Volterra convolution equations. The main results are: explicit formulas for solutions,
results on asymptotic stability, rates of growth or decay of solutions and solution
separation. The work also formulates a number of open questions that may be the
subject of future research.

1 Introduction

Continuous fractional calculus has a long history and is nearly as old as the integer-
order calculus. Nowadays fractional calculus is studied both for its theoretical interest
aswell as its use in applications. In spite of the existence ofa substantialmathematical
theory of continuous fractionalcalculus, therewas no similar development of discrete
fractional calculus until very recently [16]. Over the past decade, there has been an
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increased interest in developing discrete fractional calculus and dynamical models
described by discrete fractional calculus (see [17, 23] and the reference therein).
In this work we investigate discrete linear fractional systems with variable coef-

ficients. We consider forward and backward equations with Caputo and Riemann-
Liouville operators. For backward equations, we distinguish two types of Caputo
operators and two types of Riemann-Liouville operators depending on whether the
sum of the fractional order that appears in the definition of the operator includes
the initial condition or not. The first works on backward operators were based on
the definition of the sum containing the initial condition (see [18]), however later,
the operator based on the definition of the sum without the initial condition was
introduced, justifying it by the greater similarity of such operators to the case with
continuous time (see [15]).
Themain aim of this work is to collect the existing results on asymptotic properties

of the considered equations, their extension, supplementation, and comparison. The
basic research method used in this work is to transform the fractional order equations
into the appropriate convolution-type Volterra equations. The work is organized as
follows: The next section is devoted to fractional-order differences and the relation-
ships between them. In Sect.3, we define the equations considered in the work, as
well as the initial value problem and the existence and uniqueness of its solution. In
Sect. 4 we present for each of the fractional order equations considered, two Volterra
equations that are equivalent to them. Section5 is devoted to multidimensional sys-
tems with constant coefficients. The main results of this section are explicit formulas
for solutions and conditions for stability. In Sect.6 we present results on the sta-
bility and the rate of growth or decay for one-dimensional equations. The results
of separation of solutions of the Volterra equations are discussed in Sect. 7. Finally,
Sect. 8 contains conclusions, summaries and directions for further research. In the
remainder of this section, we introduce notation and definitions of fractional sums.
Denote by R the set of real numbers, by Z the set of integers, by N the set

{0, 1, 2, . . . } of natural numbers including 0, and byZ≤0 := {0, −1, −2, . . . } the set
of non-positive integers. For a ∈ Rwe denote byNa := a + N the set {a, a + 1, . . . }
and for a function x : Na → Rd we define�x : Na → Rd by (�x)(t) = x(t + 1) −
x(t) and ∇x : Na+1 → Rd by (∇x)(t) = x(t) − x(t − 1).
The Euler Gamma function � : R \ Z≤0 → R is defined by

�(α) := lim
n→∞

nαn!
α(α + 1) · · · (α + n)

For x ∈ Rwewrite as usual �x� := min{k ∈ Z : k ≥ x} and �x� := max{k ∈ Z : k ≤
x}. A reader who is familiar with fractional difference equations may skip the next
definition, see e.g. [17, 27].

Definition 1 (Basic notions of fractional calculus) Let s, ν ∈ R.
(a) Falling factorial power (s)(ν): If s + 1, s + 1− ν /∈ Z≤0

(s)(ν) := �(s + 1)

�(s + 1− ν)
.
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(b) Rising factorial power (s)(ν): If s, s + ν /∈ Z≤0

(s)(ν) := �(s + ν)

�(s)
.

(c) Binomial coefficient
�s

ν

�
: If s + 1, ν + 1, s + 1− ν /∈ Z≤0�

s

ν

�
:= (s)(ν)

�(ν + 1)
= �(s + 1)

�(ν + 1)�(s + 1− ν)
.

We recall notation for fractional sums (see e.g. [17]) and relate it to various notions
from the literature in a remark afterwards.

Definition 2 (Fractional sum)Leta ∈ R, ν ∈ (0, 1) and x : Na → Rd . The function
�−ν
a x : Na+ν → Rd defined by

(�−ν
a x)(t) := 1

�(ν)

t−ν�
k=a

(t − k − 1)(ν−1)x(k)

is called ν-th fractional sum of x .

Remark 1 (a) The ν-th fractional sum of x : Na → Rd satisfies

(�−ν
a x)(t) = 1

�(ν)

t−ν�
k=a

(t − k − ν + 1)(ν−1)

= 1

�(ν)

t−ν�
k=a

�(t − k)

�(t − k − ν + 1)
x(k)

=
t−ν�
k=a

�
t − k − 1

t − k − ν

�
x(k)

=
t−ν�
k=a

(−1)t−k−ν

� −ν

t − k − ν

�
x(k), t ∈ Na+ν,

or equivalently,

(�−ν
a x)(n + a + ν) =

n+a�
k=a

(−1)n+a−k
� −ν

n + a − k

�
x(k), n ∈ Na.

(b) Some authors (see e.g. [10, 18]) define the ν-th fractional sum�
−ν

a x : Na →
Rd of x : Na → Rd as follows
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(�
−ν

a x)(t) := 1

�(ν)

t�
k=a

(t − k + 1)(ν−1)x(k)

= 1

�(ν)

t�
k=a

�(t − k + ν)

�(t − k + 1)
x(k)

=
t�

k=a

�
t − k + ν − 1

t − k

�
x(k)

=
t�

k=a
(−1)t−k

� −ν

t − k

�
x(k), t ∈ Na .

It is easy to check that

(�−ν
a x)(t + ν) = (�

−ν

a x)(t), t ∈ Na . (1)

(c) Some authors (see e.g. [14, 25]) exclude x(a) from the definition of the frac-
tional sum and define the ν-th fractional sum ��−ν

a x : Na+1 → Rd of x : Na → Rd

as follows

(��−ν
a x)(t) := 1

�(ν)

t�
k=a+1

(t − k + 1)(ν−1)x(k)

= 1

�(ν)

t�
k=a+1

�(t − k + ν)

�(t − k + 1)
x(k)

=
t�

k=a+1

�
t − k + ν − 1

t − k

�
x(k)

=
t�

k=a+1
(−1)t−k

� −ν

t − k

�
x(k), t ∈ Na+1.

(d) An extensive discussion about relationships between the fractional sums�
−ν

a
and ��−ν

a is presented in [2], where it has been shown [2, Lemma 3.1] that

(�
−ν

a+1 x |Na+1 )(t) = (��−ν
a x)(t), t ∈ Na+1,

and

(�
−ν

a x)(t) =
�
t − a + α − 1

t − a

�
x(a) + (��−ν

a x)(t), t ∈ Na,

where x |Na+1 is the restriction of x : Na → Rd to the set Na+1.
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2 Fractional Differences

In this section we provide definitions of fractional differences and discuss the rela-
tionships between them.

Definition 3 (Caputo and Riemann-Liouville forward and backward differences)
Let α ∈ (0, 1), a ∈ R and x : Na → Rd .
(a) Caputo forward difference C�

α
a := �−(1−α)

a ◦ �:

C�
α
a x : Na+1−α → Rd , t �→ (C�

α
a x)(t) = (�−(1−α)

a (�x))(t). (2)

(b) Riemann-Liouville forward difference R-L�
α
a := � ◦ �−(1−α)

a :

R-L�
α
a x : Na+1−α → Rd , t �→ (R-L�

α
a x)(t) = (�(�−(1−α)

a x))(t). (3)

(c) Caputo backward difference C∇α
a := �

−(1−α)
a+1 ◦ ∇:

C∇α
a x : Na+2−α → Rd , t �→ (C∇α

a x)(t) = (�
−(1−α)
a+1 (∇x))(t). (4)

(d) Riemann-Liouville backward difference R-L∇α
a := ∇ ◦ �−(1−α)

a :

R-L∇α
a x : Na+2−α → Rd , t �→ (R-L∇α

a x)(t) = (∇(�−(1−α)
a x))(t). (5)

(e) The Caputo and Riemann-Liouville forward and backward differences with the
fractional sum�

−ν

a instead of �−ν
a are defined as

C�
α

a x : Na → Rd, t �→ (C�
α

a x)(t) = (�
−(1−α)

a (�x))(t), (6)

R-L�
α

a x : Na → Rd, t �→ (R-L�
α

a x)(t) = (�(�
−(1−α)

a x))(t), (7)

C∇α

a x : Na+1 → Rd, t �→ (C∇α

a x)(t) = (�
−(1−α)

a+1 (∇x))(t), (8)

R-L∇α

a x : Na+1 → Rd, t �→ (R-L∇α

a x)(t) = (∇(�
−(1−α)

a x))(t). (9)

(f) The Caputo and Riemann-Liouville backward differences with ��−ν
a instead of

�−ν
a are

C
�∇α
a x : Na+2 → Rd , t �→ (C�∇α

a x)(t) = (��−(1−α)
a+1 (∇x))(t),

R-L
�∇α
a x : Na+2 → Rd , t �→ (R-L�∇α

a x)(t) = (∇(��−(1−α)
a x))(t).

If a = 0 we write C�
α , R-L�α , C∇α , R-L∇α , as well as C�

α
, R-L�

α
, C∇α

, R-L∇α
, and C

�∇α ,
R-L

�∇α , respectively.

Remark 2 Using (1) in Remark 1(d), we get for α ∈ (0, 1), a ∈ R and x : Na → Rd

the following relationships between the fractional differences (2)–(5) and (6)–(9)
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(C�
α

a x)(t) = (C�
α
a x)(t + 1− α), t ∈ Na,

(R-L�
α

a x)(t) = (R-L�
α
a x)(t + 1− α), t ∈ Na,

(C∇α

a x)(t) = (C∇α
a+1x)(t + 1− α), t ∈ Na+1,

(R-L∇α

a x)(t) = (R-L∇α
a+1x)(t + 1− α), t ∈ Na+1.

The following two lemmas enable us to rewrite fractional difference equations as
Volterra convolution equations in the next section.

Lemma 1 (Sum representations of fractional operators)
Let α ∈ (0,1) and x : Na → Rd . Then

(C�
α

a x)(n) =
n+1�
k=a+1

(−1)n+1−k
�

α

n + 1− k

�
x(k)

− (−1)n−a
�

α − 1

n − a

�
x(a), n ∈ Na,

(10)

(R-L�
α

a x)(n) =
n+1�
k=a

(−1)n+1−k
�

α

n + 1− k

�
x(k), n ∈ Na, (11)

(C∇α

a x)(n) =
n�

k=a+1
(−1)n−k

�
α

n − k

�
x(k)

− (−1)n−a−1
�

α − 1

n − a − 1

�
x(a), n ∈ Na+1,

(12)

(R-L∇α

a x)(n) =
n�
k=a

(−1)n−k
�

α

n − k

�
x(k), n ∈ Na+1, (13)

(C�∇α
a x)(n) =

n�
k=a+2

(−1)n−k
�

α

n − k

�
x(k)

− (−1)n−a−2
�

α − 1

n − a − 2

�
x(a + 1), n ∈ Na+2,

(14)

(R-L�∇α
a x)(n) =

n�
k=a+1

(−1)n−k
�

α

n − k

�
x(k), n ∈ Na+2. (15)
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Proof We prove only (10), the proofs of (11)–(15) are similar. Using the facts (see
[27, pp. 158, 164]) that�
s

�

�
= (−1)�

�
� − s − 1

�

�
and

�
s

�

�
−

�
s − 1

� − 1

�
=

�
s − 1

�

�
, s ∈ R, � ∈ N,

and Definition 3, we get

(C�
α

a x)(n) = (�
−(1−α)

a ◦ �x)(n) =
n�
k=a

�
n − k − α

n − k

�
�x(k)

=
n�
k=a

�
n − k − α

n − k

�
(x(k + 1) − x(k))

=
n�
k=a

�
n − k − α

n − k

�
x(k + 1) −

n�
k=a

�
n − k − α

n − k

�
x(k)

=
n+1�
k=a+1

�
n − k + 1− α

n − k + 1

�
x(k) −

n�
k=a

�
n − k − α

n − k

�
x(k)

=
n�

k=a+1

��
n − k + 1− α

n − k + 1

�
−

�
n − k − α

n − k

��
x(k) + x(n + 1)

−
�
n − a − α

n − a

�
x(a)

=
n�

k=a+1

�
n − k − α

n − k + 1

�
x(k) + x(n + 1) −

�
n − a − α

n − a

�
x(a)

=
n+1�
k=a+1

�
n − k − α

n − k + 1

�
x(k) −

�
n − a − α

n − a

�
x(a)

=
n+1�
k=a+1

(−1)n−k+1
�

α

n − k + 1

�
x(k) − (−1)n−a

�
α − 1

n − a

�
x(a),

which proves (10). �

The following lemma provides fractional forward and backward Taylor difference
formulas.

Lemma 2 (Taylor formula)
Let α ∈ (0,1), a ∈ R and x : Na → Rd . Then for each n ∈ Na
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x(n + 1) = x(a) +
n�
k=a

(−1)n−k
� −α

n − k

�
(C�

α

a x)(n), (16)

x(n) = x(a) +
n�
k=a

(−1)n−k
� −α

n − k

�
(C∇α

a x)(k). (17)

Proof See [4, Theorems 35.8 and 36.4]. �

3 Linear Fractional Forward and Backward Difference
Equations

Let A : N0 → Rd×d , x : N0 → Rd , andα ∈ (0, 1).We investigate linear time-varying

forward (��αx)(n) = A(n)x(n) and backward (�∇αx)(n) = A(n)x(n)

fractionaldifferenceequationswith��α ∈ {C�α
, R-L�

α},�∇α ∈ {C∇α
, R-L∇α

, C�∇α, R-L�∇α}.
According to Definition 3(e)–(f), the equations are defined on N0, N1 or N2. More
precisely,

(C�
α
x)(n) = A(n)x(n), n ∈ N0, (18)

(R-L�
α
x)(n) = A(n)x(n), n ∈ N0, (19)

(C∇α
x)(n) = A(n)x(n), n ∈ N1, (20)

(R-L∇α
x)(n) = A(n)x(n), n ∈ N1, (21)

(C�∇αx)(n) = A(n)x(n), n ∈ N2, (22)

(R-L�∇αx)(n) = A(n)x(n), n ∈ N2. (23)

In order to define initial value problems, note that by Lemma 1,

(C�
α
x)(0) = x(1) − x(0), (R-L�

α
x)(0) = x(1) − αx(0),

(C∇α
x)(1) = x(1) − x(0), (R-L∇α

x)(1) = x(1) − αx(0),

(C�∇αx)(2) = x(2) − x(1), (R-L�∇αx)(2) = x(2) − αx(1),

and hence for the forward fractional difference equations (18)–(19) an initial value
x(0) ∈ Rd determines x(1) (and also x(n) for n ∈ N). However for the backward
fractional difference equations (20)–(21) and (22)–(23)
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(C∇α
x)(1) = A(1)x(1) ⇔ (I − A(1))x(1) = x(0),

(R-L∇α
x)(1) = A(1)x(1) ⇔ (I − A(1))x(1) = αx(0),

(C�∇αx)(2) = A(2)x(2) ⇔ (I − A(2))x(2) = x(1),

(R-L�∇αx)(2) = A(2)x(2) ⇔ (I − A(2))x(2) = αx(1).

As can be seen, Im(I − A(n)) plays a role for the existence of solutions x : N0 → R.
Wenow define initial value problems and remark on initial conditions beforewe show
the unique existence of solutions to initial value problems under a sufficient condition
on A.

Definition 4 (Initial value problem)
Let x0 ∈ Rd . Then x : N0 → R with x(0) = x0 is called solution of the initial value
problem (18), (19), (20), (21), (22) or (23) with initial value x0, if it satisfies the
corresponding equation and in case of Eq. (22) it additionally satisfies x(1) = x(0)
and in case of (23) it additionally satisfies (I − A(1))x(1) = x(0).

Remark 3 (Initial value problems)
Formally the initial value problems for (22)–(23) may be defined onN1 as a problem
of finding, for a given x1 ∈ Rd , a sequence x : N1 → Rd such that x(1) = x1 and the
corresponding equations are satisfied for all n ∈ N2. We choose the formulation of
the initial value problem as in Definition 4 because this way all solutions of equations
(22)–(23) are defined on the same setN0 and also in earlier papers on these equations
(see [15, 22]) initial value problems are defined as in Definition 4.

In this paperwe assume for the backward fractional difference equations (20)–(21)
and (22)–(23) the condition

det(I − A(n)) �= 0 for each n ∈ N0, (24)

which is sufficient for unique existence of solutions.

Theorem 1 (Existence and uniqueness of solutions to initial value problems)
Let A : N0 → Rd×d , α ∈ (0, 1) and x0 ∈ Rd.
(a) For each of the forward fractional difference equations (18)–(19) there exists

a unique solution x : N0 → Rd with initial value x0, denoted by ϕ�
C (·, x0) and

ϕ�
R−L(·, x0), respectively.
(b) Assume (24). Then for each of the backward fractional difference equations

(20)–(21) and (22)–(23) there exists a unique solution x : N0 → Rd with initial value
x0, denoted by ϕ∇

C (·, x0), ϕ∇
R−L(·, x0) and ϕ

�∇
C (·, x0), ϕ�∇

R−L(·, x0), respectively.
Proof (a) Using (10) and (11) of Lemma 1, it follows that x(n + 1) in Eqs. (18) and
(19) is recursively defined from x(0), . . . , x(n) for n ∈ N0.
(b) Under the assumption (24) and using (12)–(13), it follows that x(n + 1) in

Eqs. (20)–(21) is recursively defined from x(0), . . . , x(n) for n ∈ N0. Similarly,
using (14)–(15), x(n + 1) in (22)–(23) is recursively defined from x(1), . . . , x(n)

for n ∈ N1 and defining x(0) according to Definition 4 shows unique existence. �
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4 Solution Representation with Volterra Convolution Sums

In this section we show that every solution of each of the forward equations (18)–(19)
can be equivalently rewritten as a Volterra convolution equation

x(n + 1) =
n�
k=0

a(n − k)x(k) + g(k)

with appropriate sequences a : N0 → Rd×d and g : N0 → Rd . The backward equa-
tions (20)–(23) can be written as

(I − A(n))x(n + 1) =
n�
k=0

a(n − k)x(k) + g(k).

We use the convention
q�

k=p
s(k) = 0 for q < p.

Theorem 2 (Volterra sum representation of solutions)
Let A : N0 → Rd×d , α ∈ (0, 1), x0 ∈ Rd and x : N0 → Rd with x(0) = x0. Then
(a) ϕ�

C (·, x0) = x is equivalent to each of the two statements (25) or (26)

x(n) =
n−1�
k=0

(−1)n−1−k
� −α

n − 1− k

�
A(k)x(k) + x(0), n ∈ N1, (25)

x(n) = A(n − 1)x(n − 1) −
n−1�
k=1

(−1)n−k
�

α

n − k

�
x(k)

+ (−1)n−1
�

α − 1

n − 1

�
x(0), n ∈ N1.

(26)

(b) ϕ�
R−L(·, x0) = x is equivalent to each of the two statements (27) or (28)

x(n) =
n−1�
k=0

(−1)n−1−k
� −α

n − 1− k

�
A(k)x(k) + (−1)n

�−α

n

�
x(0), n ∈ N1,

(27)

x(n) = A(n − 1)x(n − 1) −
n−1�
k=0

(−1)n−k
�

α

n − k

�
x(k), n ∈ N1. (28)

We additionally assume (24). Then also
(c) ϕ∇

C (·, x0) = x is equivalent to each of the two statements (29) or (30)
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x(n) = (I − A(n))−1
�
n−1�
k=1

(−1)n−k
� −α

n − k

�
A(k)x(k) + x(0)

�
, n ∈ N1, (29)

x(n) = (I − A(n))−1

·
�

−
n−1�
k=1

(−1)n−k
�

α

n − k

�
x(k) + (−1)n−1

�
α − 1

n − 1

�
x(0)

�
, n ∈ N1.

(30)

(d) ϕ∇
R−L(·, x0) = x is equivalent to each of the two statements (31) or (32)

x(n) = (I − A(n))−1

·
�
n−1�
k=1

(−1)n−k
� −α

n − k

�
A(k)x(k) + (−1)n

�−α

n

�
x(0)

�
, n ∈ N1,

(31)

x(n) = − (I − A(n))−1
n−1�
k=0

(−1)n−k
�

α

n − k

�
x(k), n ∈ N1. (32)

(e) ϕ
�∇
C (·, x0) = x is equivalent to x(1) = x(0) and each of the two statements (33)

or (34)

x(n) = (I − A(n))−1
�
x(1) +

n−1�
k=2

(−1)n−k
� −α

n − k

�
A(k)x(k)

�
, n ∈ N2, (33)

x(n) = (I − A(n))−1

·
�

(−1)n−2
�

α − 1

n − 2

�
x(1) −

n−1�
k=2

(−1)n−k
�

α

n − k

�
x(k)

�
, n ∈ N2.

(34)

(f) ϕ
�∇
R−L(·, x0) = x is equivalent to x(1) = (I − A(1))−1x(0) and each of the two

statements (35) or (36)

x(n) = (I − A(n))−1

·
�

(−1)n−1
� −α

n − 1

�
x(1) +

n−1�
k=2

(−1)n−k
� −α

n − k

�
A(k)x(k)

�
, n ∈ N2,

(35)
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x(n) = −(I − A(n))−1
�
n−1�
k=1

(−1)n−k
�

α

n − k

�
x(k)

�
, n ∈ N2. (36)

Proof (a) Using (16) in Lemma 2, Eq. (25) is equivalent to (18), i.e. ϕ�
C (·, x0) = x .

Assuming ϕ�
C (·, x0) = x , Eq. (18) follows and with (10) in Lemma 1 for a = 0 we

get

n+1�
k=1

(−1)n−k+1
�

α

n − k + 1

�
x(k) − (−1)n

�
α − 1

n

�
x(0) = A(n)x(n), n ∈ N0,

and therefore

x(n + 1) +
n�
k=1

(−1)n−k+1
�

α

n − k + 1

�
x(k) − (−1)n

�
α − 1

n

�
x(0) = A(n)x(n)

or equivalently

x(n + 1) = A(n)x(n) −
n�
k=1

(−1)n−k+1
�

α

n − k + 1

�
x(k) + (−1)n

�
α − 1

n

�
x(0), n ∈ N0,

which proves (26). Similarly (26) implies ϕ�
C (·, x0) = x .

(b)–(f) As in (a), the equivalences to (28), (30), (32), (34) and (36) follow with
(11)–(15). Similarly as in (a), the equivalence to (27) is obtained from (17) and (20).
The equivalence to (29) follows from [11, (Eq. (2.4)]. The equivalence to (31) is
proved in [9, Eq. (3.4)]. Finally the equivalences to (33) and (35) are proved in [2,
Eq. (5.9)] and [22, Eq. (2.6)]. �

Remark 4 (Relation between ϕ∇
C (·, x0) and ϕ

�∇
C (·, x0) and between ϕ∇

R−L(·, x0) and
ϕ

�∇
R−L(·, x0))
Comparing (c) with (e) and (d) with (f) in Theorem 2, we observe the following
relations.
(a) If x : N0 → Rd satisfies (29) (or equivalently (30)), then

�x : N1 → Rd , n �→ �x(n) := x(n − 1)

satisfies (33) (or equivalently (34)) with A replaced by

�A : N2 → Rd×d , n �→ �A(n) := A(n − 1).

Similarly, if x : N0 → Rd satisfies (31) (or equivalently (32)), then �x : N1 → Rd ,�x(n) := x(n − 1), satisfies (35) (or equivalently (36)) with A replaced by �A : N2 →
Rd×d , �A(n) := A(n − 1).
(b) Conversely, if x : N1 → Rd satisfies (33) (or equivalently (34)) then
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x : N0 → Rd , n �→ x(n) := x(n + 1)

satisfies (29) (or equivalently (30)) with A replaced by

A : N1 → Rd×d , n �→ A(n) := A(n + 1).

Similarly, if x : N1 → Rd satisfies (35) (or equivalently (36)), then x : N1 → Rd ,
x(n) := x(n + 1) satisfies (31) (or equivalently (32)) with A replaced by A : N1 →
Rd×d , A(n) := A(n + 1).
(c) From (a), (b) and Definition 4, it follows that for each x0 ∈ Rd

ϕ
�∇
C (n, x0) = ϕ∇

C (n − 1, x0), n ∈ N1,

and
ϕ

�∇
R−L(n, (I − A(1))x0) = ϕ∇

R−L(n − 1, x0), n ∈ N1.

5 Linear Time-Invariant Fractional Systems

In this section we consider linear time-invariant fractional systems (18)–(23) with
constant linear part A(n) = A ∈ Rd×d for n ∈ N0.Weprove and cite explicit solution
formulas. For another formulation of the stability problem, see [12, 24, 26, 29, 30].

Theorem 3 (Solution representation for linear time-invariant fractional systems)
Let x0 ∈ Rd, A ∈ Rd×d and α ∈ (0, 1).
(a) The solutions of (18)–(19) with time-invariant A satisfy

ϕ�
C (n, x0) =

n�
k=0

Ak
�
n − k + kα

n − k

�
x0 =

n�
k=0

Ak (−1)n−k
�−kα − 1

n − k

�
x0, n ∈ N0,

ϕ�
R−L(n, x0) =

n�
k=0

Ak
�
n − k + (k + 1)α − 1

n − k

�
x0

=
n�
k=0

Ak (−1)n−k
�−(k + 1)α

n − k

�
x0, n ∈ N0.

(b) If all eigenvalues of A lie inside the unit circle, then the solutions of (20)–(21)
and (22)–(23) with time-invariant A satisfy

ϕ∇
C (n, x0) =

�
I + (−1)n−1

∞�
k=1

Ak
�−kα − 1

n − 1

��
x0, n ∈ N1, (37)

ϕ∇
R−L(n, x0) =

∞�
k=0

Ak
�−kα − α

n

�
(I − A)x0, n ∈ N1, (38)
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and

ϕ
�∇
C (n, x0) =

�
I + (−1)n

∞�
k=1

Ak
�−kα − 1

n − 2

��
x0, n ∈ N2, (39)

ϕ
�∇
R−L(n, x0) =

∞�
k=0

Ak
�−kα − α

n − 1

�
(I − A)x0, n ∈ N2. (40)

Proof (a) The solution formulas forϕ�
C (·, x0) andϕ�

R−L(·, x0) are proved in [7,Remark
1].
(b) The solution representations forϕ∇

R−L(·, x0) andϕ
�∇
R−L(·, x0) follow fromRemark

4(c) and [15, Theorem 18] or [8, Theorem 1], see also [10, Theorem 4.4] for an
alternative proofusing the Z-transform.Using Remark 4(c), the formula forϕ�∇

C (·, x0)
follows from the formula (37) for ϕ∇

C (·, x0). To show (37) we follow the line of
reasoning from Example 48 in [1] and show that the solution ϕ∇

C (·, x0) of the initial
value problem for

(C∇α
x)(n) = Ax(n), x ∈ N1, (41)

under the assumption that all the eigenvalues of A lie inside the unit circle, is given
by

ϕ∇
C (0, x0) = x0

and

ϕ∇
C (n, x0) = (I − A)−1

�
I + (−1)n−1

∞�
k=1

Ak
�−kα − 1

n − 1

��
x0, n ∈ N1. (42)

For each x0 ∈ Rd let us define a sequence x = (xm)m∈N0 , of sequences xm : N1 →
Rd recursively by

x0(n) = x0, n ∈ N1,

xm(n) = x0 + A
n�
k=1

(−1)n−k
� −α

n − k

�
xm−1(k), m, n ∈ N1. (43)

In our further consideration we will use the following identities:

n�
k=1

(−1)n−k
� −α

n − k

�
= (−1)n−1

�−α − 1

n − 1

�
, n ∈ N0, (44)

and the Chu–Vandermonde identity
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n�
k=0

�
s

n − k

��
ν

k

�
=

�
s + ν

n

�
, s, ν ∈ R, n ∈ N0, (45)

(see [27, p. 165, (5.16)] and [27, Table174]). For m = 1 we get

x1(n) = x0 + A
n�
k=1

(−1)n−k
� −α

n − k

�
x0(k)

=
�
I + A

n�
k=1

(−1)n−k
� −α

n − k

��
x0

(44)=
�
I + A(−1)n−1

�−α − 1

n − 1

��
x0.

Next, we show by the induction that

xm(n) =
�
I + (−1)n−1

m�
k=1

Ak
�−kα − 1

n − 1

��
x0. (46)

As we have checked this formula is true for m ∈ {0, 1}. Assume that it is true for
each m ∈ {0, 1, . . . , l} for an l ∈ N1. For m = l + 1 we get

xl+1(n) = x0 + A
n�
k=1

(−1)n−k
� −α

n − k

�
xl(k)

= x0 + A
n�
k=1

(−1)n−k
� −α

n − k

� I + (−1)k−1
l�
j=1

A j
�− jα − 1

k − 1

� x0


=

�
I + A

n�
k=1

(−1)n−k
� −α

n − k

�

+ A
n�
k=1

(−1)n−k
� −α

n − k

� (−1)k−1
l�
j=1

A j
�− jα − 1

k − 1

� x0

(44)=
�
I + A(−1)n−1

�−α − 1

n − 1

�

+ (−1)n−1
l�
j=1

A j+1
�
n−1�
t=0

� −α

n − 1− t

��− jα − 1

t

�� x0

(45)=
�
I + (−1)n−1

l+1�
k=1

Ak
�−kα − 1

n − 1

��
x0.
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The proof of (46) for m ∈ N0 is completed.
We now show that for each n ∈ N1 the limit limm→∞ xm(n) exists. According

to Lemma 5.6.10 in [19], the assumption that all the eigenvalues of A lie inside
the unit circle is equivalent to the fact that there exists a matrix norm �·�∗ such
that �A�∗ < 1. Therefore, according to the Cauchy-Hadamard theorem, to prove the
existence of the limit limm→∞ xm(n) or equivalently to prove the convergence of the
series

�∞
k=1 A

k
�−kα−1
n−1

�
, it is enough to show that

lim
k→∞

�����−kα − 1

n − 1

����� 1k = 1 for each n ∈ N1. (47)

Since �−kα − 1

n − 1

�
= (−1)n−1

�
n − 1+ kα

n − 1

�
= (−1)n−1 � (n + kα)

� (n) � (kα + 1)
,

we have to show that

lim
k→∞

�
� (n + kα)

� (kα + 1)

� 1
k

= 1.

To compute the last limit we use the following well-known property of the Euler
Gamma function [28, p. 415]

� (1+ z) = z�(z),

from which it follows that

� (n + z) = (n − 1+ z) (n − 2+ z) · · · z�(z), n ∈ N1.

Let us take z = kα in the last identity, then we have

lim
k→∞

����� (n + kα)

� (kα + 1)

���� 1k = lim
k→∞

����� (n − 1+ 1+ kα)

� (kα + 1)

���� 1k
= lim

k→∞

���� (n − 1+ kα) (n − 2+ kα) · · · (kα + 1) � (kα + 1)

� (kα + 1)

���� 1k
= lim

k→∞
|(n − 1+ kα) (n − 2+ kα) · · · (kα + 1)| 1k .

Each of the factors in the last limit has the form |kα + b| ,where b ∈ {1, . . . ,n − 1},
in particular, b ≥ 0. Let us notice that

lim
k→∞

|kα + b| 1k = lim
k→∞

k
1
k

����α + b

k

���� 1k = 1.
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The proof of (47) is completed.
Observe that the sequence x = (x(n))n∈N0

is given by

x(n) =
�
I + (−1)n−1

∞�
k=1

Ak
�−kα − 1

n − 1

��
x0

and satisfies the equation

x(n) = x0 + A
n�
k=1

(−1)n−k
� −α

n − k

�
x(k), n ∈ N1. (48)

In fact, we have

lim
m→∞

n�
k=1

(−1)n−k
� −α

n − k

�
Axm(k) =

n�
k=1

(−1)n−k
� −α

n − k

�
A lim
m→∞ xm(k)

=
n�
k=1

(−1)n−k
� −α

n − k

�
Ax(k).

Using the last equality and passing to the limit for m → ∞ in (43), we get (48).
From (48) we have

x(n) = (I − A)−1
�
x(0) +

n−1�
k=1

(−1)n−k
� −α

n − k

�
Ax(k)

�

and this is the Volterra convolution equation (25) which is equivalent to (41). This
completes the proof of (42). �

Remark 4 leads us to the following useful analog observations for linear time-
invariant systems.

Remark 5 (Relation between solutions of backward time-invariant systems)
Assume that I − A is invertible.
(a) If x : N0 → Rd satisfies

x(n) = (I − A)−1A
n−1�
k=1

(−1)n−k
� −α

n − k

�
x(k) + (I − A)−1x(0), n ∈ N1, (49)

or equivalently
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x(n) = −(I − A)−1
n−1�
k=1

(−1)n−k
�

α

n − k

�
x(k)

+ (I − A)−1(−1)n−1
�

α − 1

n − 1

�
x(0), n ∈ N1,

(50)

then�x : N1 → Rd ,�x(n) = x(n − 1), satisfies

�x(n) = (I − A)−1A
n−1�
k=2

(−1)n−k
� −α

n − k

��x(k) + (I − A)−1�x(1), n ∈ N2, (51)

or equivalently

�x(n) = −(I − A)−1
n−1�
k=2

(−1)n−k
�

α

n − k

��x(k)

+ (I − A)−1(−1)n−2
�

α − 1

n − 2

��x(1), n ∈ N2.

(52)

Similarly if x : N0 → Rd satisfies

x(n) = (I − A)−1A
n−1�
k=1

(−1)n−k
� −α

n − k

�
x(k)

+ (I − A)−1(−1)n
�−α

n

�
x(0), n ∈ N1

(53)

or equivalently

x(n) = −(I − A)−1
n−1�
k=0

(−1)n−k
�

α

n − k

�
x(k), n ∈ N1, (54)

then�x : N1 → Rd ,�x(n) = x(n − 1), satisfies

�x(n) = (I − A)−1A
n−1�
k=2

(−1)n−k
� −α

n − k

��x(k)

+ (I − A)−1(−1)n−1
� −α

n − 1

��x(1), n ∈ N2,

(55)

or equivalently
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�x(n) = −(I − A)−1
n−1�
k=1

(−1)n−k
�

α

n − k

��x(k), n ∈ N2. (56)

(b) Conversely, if x : N1 → Rd satisfies (51) (or equivalently (52)), then x : N0 →
Rd , x(n) := x(n + 1), satisfies (49) (or equivalently (50)). Similarly if x : N1 → Rd

satisfies (55) (or equivalently (56)) then x : N1 → Rd , x(n) := x(n + 1), satisfies
(53) (or equivalently (54)).
(c) For x0 ∈ Rd

ϕ
�∇
C (n, x0) = ϕ∇

C (n − 1, x0) and ϕ
�∇
R−L(n, (I − A)x0) = ϕ∇

R−L(n − 1, x0), n ∈ N1.

In the next lemma we rewrite solutions of Volterra convolution equations as sums
with recursively defined coefficients.

Lemma 3 (Volterra convolution representation)
Let B, C ∈ Rd×d, a ∈ R, c : N1 → R, g : Na+1 → R and x : Na → Rd . If

x(n + a) = B
n−1�
k=1

c(n − k)x(k + a) + Cg(n)x(a), n ∈ N1,

then

x(n + a) =
n−1�
k=0

BkCb(n, k)x(a), n ∈ N1, (57)

where b(n, k) for n ∈ N1, k ∈ {0, 1, . . . ,n − 1}, aredefinedrecursively byb(n, 0) :=
g(n + a) and

b(n + 1, k) :=
n−1�
j=k−1

c(n − j)b( j + 1, k − 1), n ∈ N1, k ∈ {1, 2, . . . ,n}.

Proof We show the statement by induction over n ∈ N1. For n = 1 the statement is
true. Suppose that (57) holds for n ∈ {1, . . . ,m} for an m ∈ N1. Then

x(m + 1+ a) = B
m�
k=1

c(m + 1− k)x(k + a) + Cg(m + 1+ a)x(a)

= B
m�
k=1

c(m + 1− k)

k−1�
j=0

B jCb(k, j)x(a) + Cg(m + 1+ a)x(a)

=
 m�
k=1

k−1�
j=0

c(m + 1− k)B j+1Cb (k, j) + Cg(m + 1+ a)

 x(a)

=
m−1�
i=0

Bi+1C
m−1�
j=i

c(m − j)b ( j + 1, i) + Cg(m + 1 + a)

 x(a)
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=
 m�
k=1

BkC
m−1�
j=k−1

c(m − j)b ( j + 1, k − 1) + Cg(m + 1+ a)

 x(a).

The last equality completes the proof. �

Applying the recursive representation ofVolterra convolutionequations inLemma
3 to the time-invariant equations (49)–(56) of Remark 5, leads to the following result.

Theorem 4 (Recursive solution representation for backward time-invariant frac-
tional systems)
Let x0 ∈ Rd, A ∈ Rd×d and α ∈ (0, 1). Assume that I − A is invertible.
(a) The solutions of (20) with time-invariant linear part A satisfy

ϕ∇
C (n, x0) =

n−1�
k=0

(I − A)−k−1Akb1(n, k)x0

=
n−1�
k=0

(−1)k(I − A)−k−1b2(n, k)x0, n ∈ N1,

where b1(n, k) for n ∈ N1, k ∈ {0, 1, . . . , n − 1}, are defined recursively by
b1(n, 0) := 1 and

b1(n + 1, k) :=
n−1�
j=k−1

(−1)n− j
� −α

n − j

�
b1( j + 1, k − 1), n ∈ N1, k ∈ {1, 2, . . . ,n},

and b2(n, k) for n ∈ N1, k ∈ {0, 1, . . . , n − 1}, are defined by b2(n, 0) := (−1)n−1�
α−1
n−1

�
and

b2(n + 1, k) :=
n−1�
j=k−1

(−1)n− j
�

α

n − j

�
b2( j + 1, k − 1), n ∈ N1, k ∈ {1, 2, . . . , n}.

(b) The solutions of (21) with time-invariant linear part A satisfy

ϕ∇
R−L(n, x0) =

n−1�
k=0

(I − A)−k−1Akb3(n, k)x0

=
n−1�
k=0

(I − A)−k−1b4(n, k)x0, n ∈ N1,



Asymptotic Behavior of Discrete Fractional Systems 155

where b3(n, k) for n ∈ N1, k ∈ {0,1, . . . , n − 1}, are defined by b3(n, 0) := (−1)n�−α

n

�
and

b3(n + 1, k) :=
n−1�
j=k−1

(−1)n− j
� −α

n − j

�
b3( j + 1, k − 1), n ∈ N1, k ∈ {1, 2, . . . , n},

and b4(n, k) for n ∈ N1, k ∈ {0, 1, . . . , n − 1}, are defined by b4(n, 0) := (−1)n�α

n

�
and

b4(n + 1, k) :=
n−1�
j=k−1

(−1)n− j
�

α

n − j

�
b4( j + 1, k − 1), n ∈ N1, k ∈ {1, 2, . . . , n}.

(c) The solutions of (22) with time-invariant linear part A satisfy

ϕ
�∇
C (n, x0) =

n−2�
k=0

(I − A)−k−1Akb1(n − 1, k)x0

=
n−2�
k=0

(−1)k(I − A)−k−1b2(n − 1, k)x0, n ∈ N2.

(d) The solutions of (23) with time-invariant linear part A satisfy

ϕ
�∇
R−L(n, x0) =

n−2�
k=0

(I − A)−k−1Akb3(n − 1, k)x0

=
n−2�
k=0

(I − A)−k−1b4(n − 1, k)x0, n ∈ N2.

Proof (a) Applying Lemma 3 with B := (I − A)−1A, C := (I − A)−1, c(n) :=
(−1)n�−α

n

�
and g(n) := 1 for n ∈ N1 to (49) yields ϕ∇

C (n, x0) = �n−1
k=0(I − A)−k−1

Akb1(n, k)x0, and the second formula for ϕ∇
C (n, x0) follows from Eq. (50) and again

Lemma 3 with B := −(I − A)−1, C := (I − A)−1, c(n) := (−1)n�α

n

�
and g(n) :=

(−1)n−1�α−1
n−1

�
for n ∈ N1.

(b) As in (a), applying Lemma 3 to Eqs. (53) and (54) yields the result.
(c)–(d) This follows from Remark 5(c). �

We cite two results on asymptotic stability of (18) in the time-invariant case.

Theorem 5 (Characterization of asymptotic stability for time-invariant Caputo for-
ward equations [3, Theorem 3.2])
Let A ∈ Rd×d , α ∈ (0, 1). Then the following two statements are equivalent.
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(i) (C�
α
x)(n) = Ax(n) is asymptotically stable, i.e. limn→∞ ϕ�

C (n, x0) = 0 for
all x0 ∈ Rd .
(ii) The isolated zeros, off the non-negative real axis, of z �→ det(I − z−1(1−

z−1)−αA) lie inside the unit circle.

To present another sufficient condition for asymptotic stability of (18) in the
time-invariant case, let us denote

Sα
1 =

�
z ∈ C : |z| <

�
2 cos

| arg z| − π

2− α

�α

and | arg z| >
απ

2

�
.

Theorem 6 (Asymptotic stability of time-invariant Caputo forward
equations [13, Theorem 1.4])
Let A ∈ Rd×d .
(a) If λ ∈ Sα

1 for all eigenvalues λ of A, then (C�
α
x)(n) = Ax(n) is asymptot-

ically stable. In this case, the solutions decay towards zero algebraically (and not
exponentially), more precisely, for x0 ∈ Rd

�ϕ�
C (n, x0)� = O(n−α) as n → ∞.

(b) If λ ∈ C \ cl Sα
1 for an eigenvalue λ of A, then (C�

α
x)(n) = Ax(n) is not stable

and there exist x0 ∈ Rd , C > 0 and r > 1 with

�ϕ�
C (n, x0)� ≥ Crn, n ∈ N0.

The next result provides a sufficient condition for asymptotic stability of (19) in
the time-invariant case.

Theorem 7 (Asymptotic stability of time-invariant Riemann-Liouville forward
equations)
Let A ∈ Rd×d and α ∈ (0, 1).
(a) If λ ∈ Sα

1 for all eigenvalues λ of A, then ϕ�
R−L(·, x0) ∈ l1 for each x0 ∈ Rd ,

hence (R-L�
α
x)(n) = Ax(n) is asymptotically stable.

(b) If λ ∈ C \ cl Sα
1 for an eigenvalue λ of A, then (R-L�

α
x)(n) = Ax(n) is not

stable and there exist x0 ∈ Rd , C > 0 and r > 1 with

�ϕ�
R−L(n, x0)� ≥ Crn, n ∈ N0. (58)

Proof (a) The fact that the condition λ ∈ Sα
1 for all eigenvalues λ of A implies

stability of (R-L�
α
x)(n) = Ax(n) is proved in the first step of the proof of Theorem

1.4 in [13].
(b) Suppose that there exists an eigenvalue λ ∈ C \ cl Sα

1 of A. As it has been
shown in steps 1 and 2 of the proof of Theorem 1.4 in [13], this implies that the
equation

det
�
A − z(1− z−1)α

� = 0
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has a solution z0 ∈ C with |z0| > 1. The Z-transform y(z) of ϕ�
R−L(n, x0) is given by

y(z) = − �
A − z(1− z−1)α

�
zx0,

and has a non-removable singularity at z0. Hence the radius of convergence r of at
least one of the coordinates yi(z) of y(z) satisfies r > 1.Using theCauchy-Hadamard
theorem we get

r = lim sup
n→∞

n
�|yi(n)| > 1

and consequently we get (58). �
To present stability results of the Riemann-Liouville backward equation (23) in

the time-invariant case, let us denote

Sα
2 =

�
z ∈ C : |z| >

�
2 cos

| arg z|
α

�α

or | arg z| >
απ

2

�
and the interior of its complement in C

U α =
�
z ∈ C : |z| <

�
2 cos

| arg z| − π

2− α

�α

and | arg z| <
απ

2

�
.

Theorem 8 (Asymptotic stability of time-invariant Riemann-Liouville backward
equations [15, Theorem 6])
Let A ∈ Rd×d , α ∈ (0, 1). Assume that I − A is invertible.
(a) If all eigenvalues of A lie in Sα

2 , then ϕ
�∇
R−L(·, x0) ∈ l1, hence (R-L�∇αx)(n) =

A(n)x(n) is asymptotically stable.Moreover, if all eigenvalues of (I − A)−1 lie inside
the open unit disc, then �ϕ

�∇
R−L(n, x0)� = O(n−α−1) as n → ∞ for all x0 ∈ Rd.

(b) If there exists an eigenvalue λ of A such that λ ∈ U α, then (R-L�∇αx)(n) =
A(n)x(n) is not stable and there exist x0 ∈ Rd , C > 0 and r > 1 with

�ϕ
�∇
R−L(n, x0)� ≥ Crn, n ∈ N0.

Theorem 8 does not answer the stability problem if some of the eigenvalues of A
lie on the boundary of Sα

2 . The following assertion from [15] demonstrates that all
stability variants are possible in such a case.

Theorem 9 (Asymptotic behavior on the stability boundary of time-invariant
Riemann-Liouville backward equations [15, Theorem 9])
Let A ∈ Rd×d, α ∈ (0, 1). Assume that I − A is invertible, that zero is an eigenvalue
of A and that all nonzero eigenvalues of A belong to Sα

2 . Denote by r ∈ N1 the
maximal size of the Jordan blocks corresponding to the zero eigenvalue.
(a) If r < α−1, then (R-L�∇αx)(n) = A(n)x(n) is asymptotically stable and �ϕ

�∇
R−L

(n, x0)� = O(nrα−1) as n → ∞.

(b) If r = α−1, then (R-L�∇αx)(n) = A(n)x(n) is stable but not asymptotically sta-
ble.
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(c) If r > α−1, then (R-L�∇αx)(n) = A(n)x(n) is not stable.

Remark 6 Remark 5(c) implies that Theorems 8 and 9 are also valid for (R-L∇α
x)

(n) = A(n)x(n).

To discuss stability of the Caputo backward equation (52) in Remark 4 we rewrite
it, using the fact [27] that

�
α

n−1
� = �

α−1
n−1

� + �
α−1
n−2

�
, to get

x(n) = −(I − A)−1
n−1�
k=1

(−1)n−k
�

α

n − k

�
x(k)

+ (I − A)−1(−1)n−1
�

α − 1

n − 1

�
x(1), n ∈ N2.

(59)

Wewill also use the following solution representation of inhomogeneous Volterra
equations.

Theorem 10 (Inhomogeneous Volterra equation)
Let C ∈ Rd×d , a : N1 → R, g : N2 → Rd and R : N1 → Rd×d. If

R(n) = C
n−1�
k=1

a(n − k)R(k), n ∈ N2

with initial condition R(1) = I , then the unique solution x : N → Rd of the equation

x(n) = C
n−1�
k=1

a(n − k)x(k) + g(n), n ∈ N2

with the initial condition x(1) = x1 ∈ Rd , is given by

x(n) = R(n)x1 +
n−1�
k=1

R(k)g(n − k + 1), n ∈ N1. (60)

Proof For n = 1 the statement is true. Let m ∈ N2. Suppose that (60) holds for all
n ∈ {1, . . . ,m}. Then it also holds for m + 1, since

x(m + 1) = C
m�
k=1

a(m + 1− k)x(k) + g(m + 1)

= C
m�
k=1

a(m + 1− k)
�
R(k)x1 +

k−1�
j=1

R( j)g(k − j + 1)
�

+ g(m + 1)
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= C
m�
k=1

a(m + 1− k)R(k)x1

+ C
m�
k=1

a(m + 1− k)

k−1�
j=1

R( j)g(k − j + 1) + g(m + 1)

= R(m + 1)x1 +
m�
k=1

R(k)g(m + 1− k + 1).

When we compare the Caputo backward equation (52) in its equivalent form (59)
to the Riemann-Liouville backward equation (56) and use Theorem 10, we obtain
the following relation between Caputo and Riemann-Liouville equations.

Lemma 4 (Relation between backward Caputo and Riemann Liouville equations)
Let A ∈ Rd×d , α ∈ (0, 1). If X : N1 → Rd×d is the solution of the Riemann-Liouville
matrix equation

X (n) = −(I − A)−1
n−1�
k=1

(−1)n−k
�

α

n − k

�
X (k), n ∈ N2, (61)

with initial condition X (1) = I , then the solution x : N → R of the Caputo equation
(59) with initial condition x(1) = x1 ∈ Rd , is given by

x(n) = X (n)x1 +
n−1�
k=1

X (k)g(n − k + 1), n ∈ N2, (62)

where

g(n) = (I − A)−1(−1)n−1
�

α − 1

n − 1

�
x(1), n ∈ N2.

Using the representation (62) we show the following stability result for (22) in
the time-invariant case.

Theorem 11 (Asymptotic stability of time-invariant Caputo backward equations)
Let A ∈ Rd×d . Assume that I − A is invertible. If all eigenvalues of A lie in Sα

2 , then

(C�∇αx)(n) = A(n)x(n)

is asymptotically stable and �ϕ
�∇
C (n, x0)� = O(n−α) as n → ∞ for all x0 ∈ Rd .

Proof Suppose that all the eigenvalues of A lie in Sα
2 and consider the sequence

X (n), given by (61) and X (1) = I . Since ϕ
�∇
R−L(n, x0) = X (n)x0, by Theorem 8 we

know that X (n) ∈ l1 and therefore there exists a constant C > 0 such that

�X (n)� ≤ C

n
, n ∈ N1. (63)
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It is also known [27] that for the binomial coefficients we have�����α − 1

n

����� ≤ C

(n + 1)α , n ∈ N1, (64)

for certain C > 0 (without loss of generality we may assume that the constants C
are the same in the last two inequalities (63) and (64)). From (62) we have

�ϕ
�∇
C (n, x0)� =

���X (n)x0 + (I − A)−1
n−1�
k=1

(−1)n−k X (k)

�
α − 1

n − k

�
x0

���
≤ C1

n�
k=1

�X (k)�
�����α − 1

n − k

����� = C1

n−1�
j=0

�X (n − j)�
�����α − 1

j

����� ,

where C1 = �x0�max
�
1, �(I − A)−1��

. Using (64) and dividing the sum into two
parts, we get

�ϕ
�∇
C (n, x0)� ≤ C1C

n−1�
j=0

�X (n − j)�
( j + 1)α

= C1C
�n−1��
j=0

�X (n − j)�
( j + 1)α + C1C

n−1�
j=�n−1�+1

�X (n − j)�
( j + 1)α . (65)

To estimate the first term we use (63) and the inequality

l�
i=1

1

iα
≤

� l+1

1
x−αdx = (l + 1)−α+1

−α + 1
− 1

−α + 1
, l ∈ N1,

as follows

�n−1��
j=0

�X (n − j)�
( j + 1)α ≤ C

n − �n − 1�
�n−1��
j=0

1

( j + 1)α

= C

n − �n − 1�
�n−1�+1�
j=1

1

jα

≤ C

n − �n − 1�
�

(�n − 1� + 2)−α+1

−α + 1
− 1

−α + 1

�
.

From the last inequality it is clear that
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�n−1��
j=0

�X (n − j)�
( j + 1)α ≤ C2

nα
, (66)

for certain C2 > 0 and all n ∈ N1. To estimate the second term in (65) we proceed
as follows

n−1�
j=�n−1�+1

�X (n − j)�
( j + 1)α ≤ C3

nα

n−1�
j=�n−1�+1

�X (n − j)� ≤ C4
nα

, (67)

for certain C3, C4 > 0 and all n ∈ N1. Applying (66) and (67) to (65), we obtain the
statement of the theorem. �

6 Asymptotic Properties of Scalar Linear Fractional
Equations

In this section we investigate one-dimensional linear fractional equations and discuss
their asymptotic behavior in the time-invariant case in the first subsection. In the sec-
ond subsection we study asymptotic behavior of time-varying backward equations.

6.1 Scalar Time-Invariant Equations

We consider one-dimensional systems (18)–(23) in the time-invariant case, i.e. we
assume that A(n) = λ ∈ R, n ∈ N0. For multi-dimensional time-invariant systems
the picture of stability is not complete and the theorems from the previous section
leave some cases unsolved. For one-dimensional equations the problem of stabil-
ity and asymptotic stability is much more exhaustively described but even in this
relatively simple situation it is not completely solved.

Theorem 12 (Asymptotic behavior of scalar time-invariant fractional equations)
Let λ ∈ R and α ∈ (0, 1).
(a) (C�

α
x)(n) = λx(n) is asymptotically stable if and only if λ ∈ (−2α, 0), and

(C�
α
x)(n) = λx(n) is stable, but not asymptotically stable if λ = 0 or λ = −2α .

(b) (R-L�
α
x)(n) = λx(n) is asymptotically stable if and only if λ ∈ (−2α, 0], and

(R-L�
α
x)(n) = λx(n) is stable, but not asymptotically stable if λ = −2α .

(c) (C∇α
x)(n) = λx(n) with λ �= 1 is asymptotically stable if

λ ∈ (−∞, 0] ∪ (2α, ∞).

(d) (R-L∇α
x)(n) = λx(n) with λ �= 1 is asymptotically stable if and only if

λ ∈ (−∞, 0] ∪ (2α, ∞),
(R-L∇α

x)(n) = λx(n) with λ �= 1 is not stable if λ ∈ (0, 2α).
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(e) (C�∇αx)(n) = λx(n) with λ �= 1 is asymptotically stable if
λ ∈ (−∞, 0] ∪ (2α, ∞).

(f) (R-L�∇αx)(n) = λx(n) with λ �= 1 is asymptotically stable if and only if
λ ∈ (−∞, 0] ∪ (2α, ∞),
(R-L∇α

x)(n) = λx(n) with λ �= 1 is not stable if λ ∈ (0, 2α).

Proof (a) and (b) have been proved in [13] (see also [6, Example 29]). (c) follows
from Theorem 11. (f) has been proved in [14]. (d) and (e) follow from Remark 5(c)
together with (c) and (f), respectively. �

Theorem 12 leaves the following questions for (20)–(23) with λ �= 1 open:

Scalar linear fractional difference equation Open question
(C∇α

x)(n) = λx(n) and (C�∇αx)(n) = λx(n) asymptotic behavior for λ ∈ (0, 2α]
(R-L∇α

x)(n) = λx(n) and (R-L�∇αx)(n) = λx(n) stability for λ = 2α

For scalar time-invariant fractional equations, also some results about the conver-
gence and divergence rates of solutions are known. These results are collected in the
next two theorems.

Theorem 13 (Growth and decay rates for scalar linear time-invariant fractional
equations)
Consider (20)–(23) with linear part λ ∈ R. Let α ∈ (0, 1) and x0 ∈ R. Then
(a) limn→∞ ϕ�

C (n, x0)nα = −x0
λ�(1−α)

if λ ∈ (−2α, 0),

(b) limn→∞ ϕ�
R−L(n, x0)nα+1 = −x0

λ2�(−α)
if λ ∈ (−2α,0),

(c) limn→∞ ϕ
�∇
C (n, x0)nα = −x0

λ�(1−α)
if λ ∈ (−∞, 0) ∪ (2, ∞),

(d) limn→∞ ϕ
�∇
R−L(n, x0)nα+1 = α(1−λ)x0

λ2�(1−α)
if λ ∈ (−∞,0) ∪ (2, ∞), and

limn→∞ ϕ
�∇
R−L(n, x0)nα+1 = x0

�(α)
if λ = 0,

(e) limn→∞ ϕ∇
C (n, x0)nα = −x0

λ�(1−α)
if λ ∈ (−∞, 0) ∪ (2, ∞),

(f) limn→∞ ϕ∇
R−L(n, x0)nα+1 = α(1−λ)2x0

λ2�(1−α)
if λ ∈ (−∞, 0) ∪ (2, ∞), and

limn→∞ ϕ∇
R−L(n, x0)nα+1 = x0

�(α)
if λ = 0,

(g) If 0 < λ < 1 and x0 > 0, then ϕ
�∇
R−L(·, x0) grows geometrically. More precisely,

λ1/αx0
(1− λ1/α)n

< ϕ
�∇
R−L(n, x0) <

x0
(1− λ1/α)n

, n ∈ N2.

In the proof of Theorem 13 we use the following Lemma from [5].

Lemma 5 ([5, Lemma 6])
Let α ∈ (0, 1) and r, f : N1 → R. If

sup
n∈N1

��� r(n)

n−α−1
��� < ∞ and lim

n→∞
f (n)

n−α
=: d exists, (68)
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then the convolution r ∗ f : N1 → R, (r ∗ f )(n) = �n
i=0 r(n − i) f (i), satisfies

lim
n→∞

(r ∗ f ) (n)

n−α
= d

∞�
i=1

r(i).

Proof (of Theorem 13) (a) is proved in [5, Theorem 4].
(b) is shown in [13, Corollary 4.2].
(d) and (g) are proved in [14, Theorem 4.7].
(f) follows from (d) by Remark 5(c).
(e) is a consequence of (c) and Remark 5(c). It remains to prove (c).
(c) Let x : N → R be a solution of (R-L�∇αx)(n) = λx(n). Then by (36) in Lemma2,

x(n) = − 1

1− λ

n−1�
k=1

(−1)n−k
�

α

n − k

�
x(k), n ∈ N2, (69)

and by Theorem 8, if λ ∈ (−∞, 0] ∪ (2α, ∞) then x ∈ l1 (N1) .We will calculate

S :=
∞�
n=1

x(n).

Summing up the Eqs. (69) for n from 2 to∞ we get

S − x(1) = − 1

1− λ

∞�
n=2

n−1�
k=1

(−1)n−k
�

α

n − k

�
x(k). (70)

Since the series
�∞

i=1 (−1)i �
α

i

�
and

�∞
i=1 x(i) are absolutely convergent, their

Cauchy product
∞�
n=2

n−1�
k=1

(−1)n−k
�

α

n − k

�
x(k)

is also absolutely convergent and its sum is

∞�
i=1

(−1)i
�

α

i

� ∞�
i=1

x(i) = −S. (71)

In the last step we use the well known formula

∞�
i=0

�
α

i

�
wi = (1+ w)α , w ∈ [−1, 1] ,

with w = −1. Combining (70) with (71) we get
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S = λ − 1

λ
x(1). (72)

From Lemma 4we know that the solution y(n), n ∈ N1, of the Caputo time-invariant
one-dimensional equation (22) is given by

y(n) = (x ∗ g) (n) =
n�
j=1

x(n + 1− j)g( j), (73)

where x(n), n ∈ N1, is the solution of (69) with x(1) = 1 and g(n), n ∈ N1, is given
by

g(n) =
�
y(1) for n = 1,

(1− λ)−1 (−1)n−1�α−1
n−1

�
y(1) for n ∈ N2.

Using formula (6) in [5]

lim
n→∞(−1)n−1

�
α − 1

n − 1

�
nα = 1

� (1− α)
,

we get

lim
n→∞g(n)nα = y(1)

(1− λ) � (1− α)
.

Moreover, from Theorem 8we know that the sequence r(n) = x(n), n ∈ N1 satisfies
condition (68) and therefore we may apply Lemma 5 to the sequences r(n) = x(n)

and f (n) = g(n), n ∈ N1. This leads, in light of (72) and (73) to

lim
n→∞

y(n)

n−α
= − x(1)

λ� (1− α)
.

The last equality completes the proof of (c). �

6.2 Scalar Time-Varying Backward Equations

In this subsection we consider one dimensional time-varying fractional backward
equations (20)–(23) with linear part λ : N0 → R, i.e.

(C∇α
x)(n) = λ(n)x(n) and (R-L∇α

x)(n) = λ(n)x(n), n ∈ N1, (74)

(C�∇αx)(n) = λ(n)x(n) and (R-L�∇αx)(n) = λ(n)x(n), n ∈ N2. (75)

We first provide conditions under which an order relation between two linear parts
and initial conditions implies an order of the two corresponding solutions.
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Theorem 14 (Comparison theorem for scalar backward equations)
Let x1, x2 ∈ R, λ1, λ2 : N0 → R, α ∈ (0, 1), and assume the order relations

x1 ≥ x2 > 0 and λ1(n) ≥ λ2(n) for each n ∈ N0.

For �∇α ∈ {C∇α
, R-L∇α

, C�∇α, R-L�∇α} let ϕ
�∇
1 (·, x1) and ϕ

�∇
2 (·, x2) denote the solutions of

(�∇αx)(n) = λ1(n)x(n) and (�∇αx)(n) = λ2(n)x(n)

with initial condition x1 and x2, respectively.
If either λ1(n) < 1 for each n ∈ N0, or λ2(n) > 1 for each n ∈ N0, then

ϕ
�∇
1 (n, x1) ≥ ϕ

�∇
2 (n, x2), n ∈ N0. (76)

Proof Under the assumption that λ1(n) < 1 for each n ∈ N0, the statement has been
proved for �∇α = C∇α

in [21, Theorem 2.4] and for �∇α = R-L∇α
in [20, Theorem 2.5].

Remark 4(c) implies the statement also for �∇α = C
�∇α and �∇α = R-L

�∇α.
Assume now that λ2(n) > 1 for each n ∈ N0. We consider first the case �∇α =

R-L∇α
. For n = 1 the statement is true, since a direct calculation shows that for i = 1, 2

ϕ
�∇
i (n, xi ) = αxi

−λi (1) + 1
.

Suppose that (76) holds for n ∈ {0, 1, . . . ,m} for anm ∈ N1, then according to (32)
we have

(1− λ1(m + 1))ϕ�∇
1 (m + 1, x1) = −

m�
k=0

(−1)m+1−k
�

α

m + 1− k

�
ϕ

�∇
1 (k, x1)

≥ −
m�
k=0

(−1)m+1−k
�

α

m + 1− k

�
ϕ

�∇
2 (k, x1)

= (1− λ2(m + 1))ϕ�∇
2 (m + 1, x1),

i.e. (76) holds for n = m + 1 and the proof is completed. In the same way, using the
representation (30), the statement follows for �∇α = C∇α

. Finally using Remark 4(c)
again, the statement follows also for �∇α = C

�∇α and �∇α = R-L
�∇α . �

The next theorem presents sufficient conditions for asymptotic stability of the
Eqs. (74) and (75).

Theorem 15 (Asymptotic stability of scalar backward equations)
Let λ : N0 → R, α ∈ (0, 1).
(a) If supn∈N0

λ(n) < 0 then

(C∇α
x)(n) = λ(n)x(n) and (C�∇αx)(n) = λ(n)x(n)
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are asymptotically stable.
(b) If infn∈N0 |1− λ(n)| ≥ 1 then

(R-L∇α
x)(n) = λ(n)x(n) and (R-L�∇αx)(n) = λ(n)x(n)

are asymptotically stable.

Proof (a) The asymptotic stability of (C∇α
x)(n) = λ(n)x(n) was proved in [21,

Theorem B and D]. Remark 4(c) implies the asymptotic stability of (C�∇αx)(n) =
λ(n)x(n).
(b) [20, Theorem�B] implies the asymptotic stability of (R-L∇α

x)(n) = λ(n)x(n).
Applying again Remark 4(c) completes the proof. �
Finally we present a result about divergence of solutions of (74) and (75).

Theorem 16 (Divergence of solutions of scalar backward equations)
Letλ : N0 → R,α ∈ (0, 1). For�∇α ∈ {C∇α

, R-L∇α
, C�∇α, R-L�∇α}and x0 ∈ R, letϕ�∇(·, x0)

denote the solution of
(�∇αx)(n) = λ(n)x(n)

with initial condition x0. If there exists a λ0 > 0 such that

1 > λ(n) ≥ λ0 > 0, n ∈ N0,

then for each x0 ∈ R
lim
n→∞ |ϕ�∇(n, x0)| = ∞.

Proof For�∇α ∈ {C∇α
, R-L∇α} the result is proved in [21, Theorems A and C] and [20,

Theorems A and�A], respectively. Using Remark 4(c), we get the conclusion also for�∇α ∈ {C�∇α, R-L�∇α}. �

7 Separation of Solutions

The next theorem contains the main result of this paragraph.

Theorem 17 (Separation of solutions of Caputo equations)
Let α ∈ (0, 1), A : N0 → Rd×d with supn∈N0 �A(n)� < ∞, λ ∈ R with λ > α

1−α
,

x, y ∈ Rd with x �= y, and x0 ∈ Rd \ {0}.
(a) Forward equation (C�

α
x)(n) = A(n)x(n):

lim sup
n→∞

nλ�ϕ�
C (n, x) − ϕ�

C (n, y)� = ∞ and lim sup
n→∞

1

n
ln �ϕ�

C (n, x0)� = ∞.

(b) Backward equations (C∇α
x)(n) = A(n)x(n) and (C�∇αx)(n) = A(n)x(n):
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lim sup
n→∞

nλ�ϕ∇
C �(n, x) − ϕ∇

C (n, y)� = ∞ and lim sup
n→∞

1

n
ln �ϕ∇

C (n, x0)� = ∞,

if (I − A(n))−1 exists for each n ∈ N0. The same holds for ϕ
�∇
C .

In the proof of this theorem we use the following fact.

Lemma 6 ([5, Lemma 1])
Let α > 0 and the sequence (u−α(k))k∈N0 be defined by

u−α(k) = (−1)k
�−α

k

�
, k ∈ N0. (77)

Then the following statements hold:

(a) u−α(k) > 0 for k ∈ N0.
(b) If 0 < α < 1, then (u−α(k))k∈N0 is a decreasing sequence.

(c)
n�
k=0

u−α(k) = u−α−1(n) for n ∈ N0.

(d) There exist m, M > 0 such that

m

n1−α
< u−α(n) <

M

n1−α
, n ∈ N1.

Proof (of Theorem 17) (a) This is proved in [5, Theorem 5].
(b) Assume that I − A(n) is invertible for each n ∈ N0. We show the claim for

(C∇α
x)(n) = A(n)x(n). The result for the solution ϕ

�∇
C of (C�∇αx)(n) = A(n)x(n)

follows then by Remark 4(c). To this end let x, y ∈ Rd with x �= y and λ > α
1−α
.

Suppose the contrary, i.e. there exists K ∈ R such that

lim sup
n→∞

nλ�ϕ∇
C (n, x) − ϕ∇

C (n, y)� < K,

which implies that
lim
n→∞ �ϕ∇

C (n, x) − ϕ∇
C (n, y)� = 0 (78)

and therefore by the boundedness of A that

lim
n→∞ �(I − A(n))ϕ∇

C (n, x) − ϕ∇
C (n, y)� = 0.

Let us denote
L := sup

n∈N0

�ϕ∇
C (n, x) − ϕ∇

C (n, y)� < ∞. (79)

Furthermore, there exists N ∈ N0 such that
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�ϕ∇
C

(n, x) − ϕ∇
C

(n, y)� ≤ Kn−λ, n ≥ N . (80)

Considering the Caputo equation in the form given by (29), we have

(I − A(n))(ϕ∇
C (n, x) − ϕ∇

C (n, y))

= x − y +
n�
k=1

u−α(n − k)A(k)(ϕ∇
C (k, x) − ϕ∇

C (k, y))

= x − y +
n�
k=1

B(n, k)(ϕ∇
C (k, x) − ϕ∇

C (k, y)),

where
B(n, k) := u−α(n − k)A(k),

with u−α(·) given by (77). Thus,

�x − y� ≤ �(I − A(n))(ϕ∇
C (n, x) − ϕ∇

C (n, y))� +
��� n�
k=1

B(n, k)(ϕ∇
C (k, x) − ϕ∇

C (k, y))
���.

Letting n → ∞ and using (78), we obtain that

lim sup
n→∞

��� n�
k=1

B(n, k)(ϕ∇
C (k, x) − ϕ∇

C (k, y))
��� > 0. (81)

Since λ > α
1−α

, there exists δ ∈ ( α
λ
, 1− α). Thus, to get a contradiction to inequality

(81), it is sufficient to show that

lim sup
n→∞

�nδ�−1�
k=1

B(n, k)(ϕ∇
C (k, x) − ϕ∇

C (k, y)) = 0 (82)

and

lim sup
n→∞

n�
k=�nδ�

B(n, k)(ϕ∇
C (k, x) − ϕ∇

C (k, y)) = 0. (83)

By definition of B(n, k) and non-negativity of the sequence (u−α(n)) by Lemma
6(a), we have

��� �nδ�−1�
k=1

B(n, k)(ϕ∇
C (k, x) − ϕ∇

C (k, y))
���
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≤
�nδ�−1�
k=1

�B(n, k)��(ϕ∇
C (k, x) − ϕ∇

C (k, y))�

≤
�nδ�−1�
k=1

Mu−α(n − k)�(ϕ∇
C (k, x) − ϕ∇

C (k, y))�

≤ ML
�nδ�−1�
k=1

u−α(n − k),

where we used (79) to obtain the last inequality. By Lemma 6(b), the sequence
(u−α(n)) is decreasing. Thus,

��� �nδ�−1�
k=1

B(n, k)(ϕ∇
C (k, x) − ϕ∇

C (k, y))
��� ≤ ML�nδ�u−α(n − �nδ�).

Using Lemma 6(d), we obtain that

��� �nδ�−1�
k=1

B(n, k)(ϕ∇
C (k, x) − ϕ∇

C (k, y))
��� ≤ ML(nδ + 1)

M

(n − nδ)1−α
,

which, together with the fact that δ < 1− α, proves (82). To conclude the proof we
show (83). For this purpose, we use the estimate

��� n�
k=�nδ�

B(n, k)(ϕ�
c (k, x) − ϕ�

c (k, y))
���

≤
n�

k=�nδ�
�B(n, k)��(ϕ∇

C (k, x) − ϕ∇
C (k, y))�

≤ M
n�

k=�nδ�
u−α(n − k)�(ϕ∇

C (k, x) − ϕ∇
C (k, y))�.

Let n ∈ N such that nδ ≥ N . Using (80), we obtain that

��� n�
k=�nδ�

B(n, k)(ϕ∇
C (k, x) − ϕ∇

C (k, y))
��� ≤ MK �nδ�−λ

n�
k=�nδ�

u−α(n − k).

By Lemma 6(a) and the fact that

n�
k=1

(−1)k
�

α

k

�
= (−1)n

�
α − 1

n

�
, n ∈ N0,
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we have
n�

k=�nδ�
u−α(n − k) ≤

n�
k=1

u−α(n − k) = u−(α+1)(n).

Thus,

��� n�
k=�nδ�

B(n, k)(ϕ∇
C (k, x) − ϕ∇

C (k, y))
��� ≤ MK �nδ�−λu−(α+1)(n).

In light of Lemma 6(d) for α + 1, we have

��� n�
k=�nδ�

B(n, k)(ϕ∇
C (k, x) − ϕ∇

C (k, y))
��� ≤ MKn−δλ M

n−α
.

Note that δλ > α, (83) is proved and the proof is complete. �

Our hypothesis is that a similar result holds true for theRiemann-Liouville forward
equation (R-L�

α
x)(n) = A(n)x(n) and backward equations (R-L∇α

x)(n) = A(n)x(n)

and (R-L�∇αx)(n) = A(n)x(n) but we cannot provide a proof.

8 Conclusions

In this work we considered the asymptotic properties of six types of linear fractional
equations in discrete time described by the equations (18)–(23). The first two are the
Caputo and Riemann-Liouville forward equations in which the difference operator
is defined as the composition of the classical forward difference with the fractional
order sum. In the case of the Caputo equation, the order of these operators is such that
the difference operator acts first and the fractional sumoperator acts second and in the
case of the Riemann-Liouville equation, the order of these operators is reversed. The
next four equations, i.e. (20)–(23) are the Caputo and Riemann-Liouville backwards
equation, in which the difference operator is defined as composing the classical
backward difference with the sum of the fractional order. Additionally, in the case
of these equations, we distinguish between two sum definitions, which include and
do not include the initial condition.
For each of the equations under consideration we have given a precise formulation

of the initial value problem (see Definition 4 and Remark 3) and discussed the
existence and uniqueness of solutions to initial value problems (see Theorem 1). In
Theorem 2 we show that each of the equations considered can be represented in two
different ways as a convolution-typeVolterra equation. These preparations play a key
role in obtaining the further results of our work. One of them is included in Remark
5, which shows that the solutions of the Caputo backwards equations defined with a
sum that takes into account the initial conditions and a sum that does not take it into
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account are closely related and in particular, have the same asymptotic properties.
The same is true for the backwards Riemann-Liouville equations.
In Theorem 3, we present explicit formulas for solutions to stationary equations.

It should be noted that the first two points of this theorem provide the formula for the
solution in the form of a polynomial of the variable A, where A is the coefficient of
the equation under consideration without additional assumptions about the matrix A.
The remaining points present the formula for the solution in the form of a series and
require an additional assumption about thematrix A: that it has all eigenvalues inside
the unit circle, although a solution also exists when A has eigenvalues outside the unit
circle. The formulas for solutions of the backward equations in the general case are
an open problem.A step towards its solutionmay be Theorem4, where such formulas
are given in the form of polynomials of the variable (I − A)−1, unfortunately the
coefficients of these polynomials are given in recursive form and therefore these
formulas cannot be considered as satisfactory, explicit formulas.
Theorems 5, 6, 7, 8, 9 and 11 provide sufficient conditions for the stability and

instability of the equations (18)–(23). They have the following form: if the eigen-
values of the matrix A belong to an open set S, then the equation is asymptotically
stable (the form of the set S depends on the equation) and if at least one eigen-
value of A belongs to the set C \ cl S, the equation is unstable. The problem of the
asymptotic behavior of these equations when certain eigenvalues of the matrix A
lie on the boundary of the stability region S remains an open problem. Moreover,
these theorems say that in the case of stable Caputo equations, the rate of decay to
zero as n → ∞ is not greater than n−α and in the case of the Riemann-Liouville
equations, not greater than n−α−1, and that the rate of growth to infinity in the case
of unstable equations is not less than rn , r > 1. The problem of giving the exact
growth and decay rates is also an open problem. In a special case when the system is
one-dimensional, the stability problem is completely solved and its solution is given
by Theorem 12. However even in the one-dimensional case, the problem of the exact
rate of convergence to zero is a problem that is not completely solved. Its solution
for some subsets of the stability set is given by Theorem 13. Finally, Theorems 14,
15 and 16 provide some conditions that are sufficient for the asymptotic stability and
instability of one-dimensional equations with variable coefficients.
Theorem 17 is a complement of the picture of rate of convergence of solutions.

It says that for the considered Caputo time-varying equations, this rate is not faster
than n−λ with a certain λ > 0. Our hypothesis is that a similar result holds true for
the Riemann-Liouville equations but we cannot provide a proof.
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