
MINISTRY OF EDUCATION AND TRAINING

LE QUY DON TECHNICAL UNIVERSITY

CHU THI HUONG

SEMANTICS-BASED SELECTION AND CODE BLOAT

REDUCTION TECHNIQUES FOR GENETIC PROGRAMMING

DOCTORAL DISSERTATION: MATHEMATICAL FOUNDATION FOR INFORMATICS

HA NOI - 2020

MINISTRY OF EDUCATION AND TRAINING

LE QUY DON TECHNICAL UNIVERSITY

CHU THI HUONG

SEMANTICS-BASED SELECTION AND CODE BLOAT

REDUCTION TECHNIQUES FOR GENETIC PROGRAMMING

DOCTORAL DISSERTATION

Major: Mathematical Foundations for Informatics

Code: 946 0110

RESEARCH SUPERVISORS:

1. Assoc. Prof.Dr. Nguyen Quang Uy

2. Assoc. Prof. Dr. Nguyen Xuan Hoai

HA NOI - 2020

ASSURANCE

I certify that this dissertation is a research work done by the author

under the guidance of the research supervisors. The dissertation has

used citation information from many different references, and the ci-

tation information is clearly stated. Experimental results presented in

the dissertation are completely honest and not published by any other

author or work.

Author

Chu Thi Huong

ACKNOWLEDGEMENTS

The first person I would like to thank is my supervisor, Dr Nguyen

Quang Uy, the lecturer of Faculty of Information Technology, Le Quy

Don Technical University, for directly guiding me through the PhD

progress. Dr Uy’s enthusiasm is the power source to motivate me to

carry out this research. His guide has inspired much of the research in

this dissertation.

I also wish to thank my co-supervisor, Assoc. Prof. Dr Nguyen Xuan

Hoai at AI Academy. He has given and discussed a lot of new issues with

me. Working with Prof Hoai, I have learnt how to do research systemat-

ically. Particularly, I would like to thank the leaders and lecturers of the

Faculty of Information Technology, Le Quy Don Technical University

for supporting me with favorable conditions and cheerfully helping me

in the study and research process.

Last, but most important, I also would like to thank my family, my

parents for always encouraging me, especially my husband, Nguyen Cong

Minh for sharing a lot of happiness and difficulty in the life with me, my

children, Nguyen Cong Hung and Nguyen Minh Hang for trying to grow

up and study by themselves.

Author

2

Chu Thi Huong

CONTENTS

Contents .

Abbreviations . v

List of figures . vii

List of tables . ix

INTRODUCTION . 1

Chapter 1. BACKGROUNDS . 7

1.1. Genetic Programming . 7

1.1.1. GP Algorithm . 8

1.1.2. Representation of Candidate Solutions 9

1.1.3. Initialising the Population . 10

1.1.4. Fitness Evaluation. 11

1.1.5. GP Selection . 12

1.1.6. Genetic Operators . 14

1.1.7. GP parameters . 16

1.1.8. GP benchmark problems . 18

1.2. Some Variants of GP . 18

1.2.1. Linear Genetic Programming . 20

1.2.2. Cartesian Genetic Programming . 21

1.2.3. Multiple Subpopulations GP. 21

1.3. Semantics in GP . 23

1.3.1. GP Semantics . 23

i

1.3.2. Survey of semantic methods in GP . 27

1.3.3. Semantics in selection and control of code bloat. 35

1.4. Semantic Backpropagation . 37

1.5. Statistical Hypothesis Test . 38

1.6. Conclusion . 40

Chapter 2. TOURNAMENT SELECTION USING

SEMANTICS . 41

2.1. Introduction . 41

2.2. Tournament Selection Strategies . 43

2.2.1. Sampling strategies . 44

2.2.2. Selecting strategies . 45

2.3. Tournament Selection based on Semantics 48

2.3.1. Statistics Tournament Selection with Random 49

2.3.2. Statistics Tournament Selection with Size 50

2.3.3. Statistics Tournament Selection with Probability 51

2.4. Experimental Settings . 54

2.4.1. Symbolic Regression Problems . 54

2.4.2. Parameter Settings . 54

2.5. Results and Discussions . 57

2.5.1. Performance Analysis of Statistics Tournament Selection 58

2.5.2. Combining Semantic Tournament Selection with Semantic Crossover

65

2.5.3. Performance Analysis on The Noisy Data 69

2.6. Conclusion . 77

ii

Chapter 3. SEMANTIC APPROXIMATION FOR

REDUCING CODE BLOAT . 78

3.1. Introduction . 78

3.2. Controlling GP Code Bloat. 81

3.2.1. Constraining Individual Size . 81

3.2.2. Adjusting Selection Techniques . 81

3.2.3. Designing Genetic Operators . 83

3.3. Methods . 85

3.3.1. Semantic Approximation . 85

3.3.2. Subtree Approximation . 87

3.3.3. Desired Approximation . 89

3.4. Experimental Settings . 90

3.5. Performance Analysis . 92

3.5.1. Training Error . 92

3.5.2. Generalization Ability . 96

3.5.3. Solution Size . 98

3.5.4. Computational Time . 99

3.6. Bloat, Overfitting and Complexity Analysis 102

3.6.1. Bloat Analysis . 102

3.6.2. Overfitting Analysis . 103

3.6.3. Function Complexity Analysis . 107

3.7. Comparing with Machine Learning Algorithms 109

3.8. Applying semantic methods for time series forecasting 110

3.8.1. Some other versions . 112

3.8.2. Time series prediction model and parameter settings. . . 113

iii

3.8.3. Results and Discussion . 115

3.9. Conclusion . 123

CONCLUSIONS AND FUTURE WORK 125

PUBLICATIONS . 129

BIBLIOGRAPHY . 131

Appendix . 146

iv

ABBREVIATIONS

Abbreviation Meaning

AGSX Angle-aware Geometric Semantic Crossover

BMOPP Biased Multi-Objective Parsimony Pressure method

CGP Cartesian Genetic Programming

CM Competent Mutation

CTS Competent Tournament Selection

CX Competent Crossover

DA Desired Approximation

EA Evolutionary Algorithm

Flat-OE Flat Target Distribution

GA Genetic Algorithms

GCSC Guaranteed Change Semantic Crossover

GP Genetic Programming

GSGP Geometric Semantic Genetic Programming

GSGP-Red GSGP with Reduced trees

KLX Krawiec and Lichocki Geometric Crossover

LCSC Locality Controlled Semantic Crossover

LGP Linear Genetic Programming

LGX Locally Geometric Semantic Crossover

LPP Lexicographic Parsimony Pressure

MODO Multi-Objective Desired Operator

MORSM Multi-Objective Randomized Similarity Mutation

MS-GP Multiple Subpopulations GP

MSSC Most Semantically Similar Crossover

v

Abbreviation Meaning

OE Operator Equalisation

PC Perpendicular Crossover

PP Prune and Plant

PP-AT Prune and Plant based on Approximate Terminal

RCL Restricted Candidate List

RDO Random Desired Operator

ROBDDs Reduced Ordered Binary Decision Diagrams

RSM Random Segment Mutation

SA Subtree Approximation

SAC Semantics Aware Crossover

SAS-GP Substituting a subtree with an Approximate Subprogram

SAT Semantic Approximation Technique

SAT-GP Substituting a subtree with an Approximate Terminal

SDC Semantically-Driven Crossover

SiS Semantic in Selection

SSC Semantic Similarity based Crossover

SS+LPE Spatial Structure with Lexicographic Parsimonious

Elitism

TS-P Statistics Tournament Selection with Probability

TS-R Statistics Tournament Selection with Random

TS-S Statistics Tournament Selection with Size

vi

LIST OF FIGURES

1 Number of articles about GP 2

2 Number of articles using semantics in GP 4

1.1 GP syntax tree representing max(x+ x, x+ 3 ∗ y). 9

1.2 An example of crossover operator. 14

1.3 An example of mutation operator. 15

1.4 An example of LGP program. 20

1.5 An example of CGP program. 21

1.6 Structure of MS-GP. 22

1.7 Running the program p on all fitness cases 25

1.8 An example of calculating the desired semantics of the

selected node N . 37

2.1 Testing error and Population size over the generations

with tour-size=3. 72

3.1 An example of Semantic Approximation 86

3.2 (a) the original tree with the selected subtree, (b) the

small generated tree, and (c) the new tree obtained by

substituting a branch of tree (a) with an approximate tree

grown from the small tree (b). 88

3.3 Average bloat over generations on four problems F1, F13,

F17 and F25. 104

3.4 Average overfitting over the generations on four problems

F1, F13, F17 and F25. 106

3.5 Average complexity of the best individual over the gener-

ations on four problems F1, F13, F17 and F25. 108

vii

3.6 An example of PP-AT. 113

3.7 Plot of log(unit sale + 1) from 9/1/2016 to 12/31/2016. . . . 114

3.8 Testing error over the generations. 119

3.9 Average size of population over the generations. 121

viii

LIST OF TABLES

1.1 Summary of Evolutionary Parameter Values 17

1.2 GP benchmark regression problems. Variable names are,

in order, x, y, z, v and w. Several benchmark problems in-

tentionally omit variables from the function. In the train-

ing and testing sets, U [a, b] is uniform random samples

drawn from a to b inclusive, and E[a, b] is a grid of points

evenly spaced from a to b inclusive 19

2.1 Problems for testing statistics tournament selection tech-

niques . 55

2.2 Evolutionary Parameter Values. 56

2.3 Mean of best fitness with tour-size=3 (the left) and tour-

size=7 (the right). 59

2.4 Median of testing error with tour-size=3 (the left) and

tour-size=7 (the right) . 60

2.5 Average of solution’s size with tour-size=3 (the left) and

tour-size=7 (the right) . 62

2.6 Average semantic distance with tour size=3. Bold indi-

cates the value of SiS and TS-S is greater than the value

of GP. 63

2.7 Average percentage of rejecting the null hypothesis in

Wilcoxon test of TS-R and TS-S with tour-size=3. 64

2.8 Median of testing error of TS-RDO and four other tech-

niques with tour-size=3 (the left) and tour-size=7 (the

right) . 67

ix

2.9 Average of solutions size of TS-RDO and four other tech-

niques with tour-size=3 (the left) and tour-size=7 (the

right) . 68

2.10 Median of testing error on the noisy data with tour-size=3

(the left) and tour-size=7 (the right) 70

2.11 Average running time in seconds on noisy data with tour-

size=3 (the left) and tour-size=7 (the right) 74

2.12 Average execution time of a run (shorted as Run) and

average execution time of selection step (shorted as Tour)

of GP and TS-S in seconds on noisy data with tour size=3. . 75

2.13 Median of testing error and average running time in sec-

onds on noisy data with tour-size=3 when the statistical

test is conducted on 100 fitness cases. The left is the

median of the testing error and the right is the average

running time. 76

3.1 Evolutionary parameter values 91

3.2 Mean of the best fitness . 93

3.3 Average percentage of better offspring 95

3.4 Median of testing error . 97

3.5 Average size of solutions . 100

3.6 Average running time in seconds 101

3.7 Values of the grid search for SVR, DT and RF 109

3.8 Comparison of the testing error of GP and machine learn-

ing systems. The best results are underlined. 111

3.9 Mean of the best fitness . 116

3.10 Median of testing errors . 117

3.11 Average of solution’s size 120

3.12 Average running time in seconds 122

A.1 Mean best fitness on training noise data with tour-size=3

(the left) and tour-size=7 (the right) 147

x

A.2 Average of solutions size on training noise data with tour-

size=3 (the left) and tour-size=7 (the right) 148

A.3 Mean of best fitness with tour size=5. The left is original

data and the right is noise data. 149

A.4 Median of testing error with tour size=5. The left is orig-

inal data and the right is noise data. 150

A.5 Average of solution’s size with tour size=5. The left is

original data and the right is noise data. 151

A.6 Mean of best fitness of TS-RDO and four other techniques

with tour size=5. The left is original data and the right

is noise data. 152

A.7 Median of fittest of TS-RDO and four other techniques

with tour size=5. The left is original data and the right

is noise data. 153

A.8 Average of solutions size of TS-RDO and four other tech-

niques with tour size=5. The left is original data and the

right is noise data. 154

xi

INTRODUCTION

Machine learning is a branch of artificial intelligence that provides the

capability to automatically learn and improve from past experience to

make future decisions. The fundamental goal of machine learning is to

generalize or induce an unknown rule from examples of the rule’s appli-

cation. Machine learning has been studied and applied in many different

fields of science and technology. It can be said that most smart systems

today are the application of one or more machine learning methods.

Genetic Programming (GP) is considered as a machine learning method

that allows computer programs encoded as a set of tree structures to

be evolved using an evolutionary algorithm [50, 97]. A GP system is

started by initializing a population of individuals. The population is

then evolved for a number of generations using genetic operators such

as crossover and mutation. At each generation, the individuals are eval-

uated using a fitness function, and a selection schema is used to choose

better individuals to create the next population. The evolutionary pro-

cess is continued until a desired solution is found or when the maximum

number of generations is reached.

Since first introduced in the 1990s, GP has been successfully applied

in a wide range of problems, especially with applications in classifica-

tion, control and regression. Figure 1 surveys the number of GP articles

1

indexed in Scopus1 over a period of 19 years, from 2000 to 2018. The

figure shows that GP studies have rapidly increased in the 2010s, about

750 articles per year, and remained roughly stable to date.

Figure 1: Number of articles about GP

Comparing to other machine learning methods, GP has some advan-

tages. Firstly, GP has the ability to simultaneously learn models (the

structure of solutions) and parameters of the models while other methods

often have to pre-define models and then find parameters. Secondly, the

solutions found by GP are probably interpretable. Recently, several re-

searches have shown that GP can be used to evolve both the architecture

and the weights of a Deep Learning model effectively [40, 109]. Inter-

estingly, in 2018, GP outperformed neural networks and deep learning

machines at video games [46, 47, 121]2.

However, despite such advantages, GP is not well known in the main-

stream AI and Machine Learning communities. One of the main rea-
1https://db.vista.gov.vn:2088/search/form.uri?display=basic
2https://www.technologyreview.com/s/611568/evolutionary-algorithm-outperforms-deep-learning-machines-at-

video-games/

2

sons is that the evolutionary process is often guided by only syntactic

aspects of GP representation. Consequently, there is complex, rugged

genotype-phenotype mapping, and low similarity of offspring to parents.

An offspring generated by changing syntax may not produce the desired

result, or a small change in syntax can significantly change its output

(behavior). For example, if we replace the structure x ∗ 0.001 in a tree

with the structure x/0.001 that is a small structural change (replacing

‘*’ with ‘/’) but leads to a significant change in behavior. Algorithms

based solely on the structure as that often do not achieve high efficiency

since, from a programmer’s perspective, programs must be correct not

only syntactically, but also semantically. Thus, incorporating semantic

awareness in the GP evolutionary process could potentially improve per-

formance and extend the applicability to problems that are difficult to

deal with using purely syntactic approaches.

The idea of incorporating semantics into GP evolutionary process is

not entirely new. To enhance GP performance, several methods incorpo-

rated semantic information have been proposed. Such approaches often

either modify operators, design new operators or promote locality and

semantic diversity. Figure 2 gives information about the number of ar-

ticles using semantics published on Scopus. It is clear that the number

of studies using semantics in GP has increased rapidly in recent years.

However, there are few researches of using semantics for selection and

bloat control. In GP, selection mechanism plays a very important role

in the performance of GP while standard selection methods only use

fitness values and ignore other finer-grained information such as seman-

3

Figure 2: Number of articles using semantics in GP

tics. Hence, we hypothesize that integrating semantic information into

selection methods probably promotes semantic diversity and improves

GP performance.

Moreover, code bloat is a well-known phenomenon in GP and is one of

the GP major issues that many researchers have attempted to address.

These studies used a variety of strategies such as setting the maximum

depth for the evolved trees, punishing the largest individuals, or adjust-

ing population size distribution at each generation. However, the bloat

control methods are often difficult to fit the training data leading to a

reduction in GP performance. It is reckoned that under the guidance

of semantic information, the bloat control methods will achieve better

performance.

From that, this dissertation focuses on two main objectives, includ-

ing improving selection performance and overcoming code bloat phe-

nomenon in GP. In order to achieve these objectives, the dissertation

4

uses an approach that combines theoretical analysis with experiment,

and utilizes techniques in the fields of statistics, formal semantics, ma-

chine leaning and optimization to improve the performance of GP. The

objectives have been completed by proposing several novel methods. To

evaluate the effectiveness of the proposed methods and compare them

with the best and new methods in the same field, we tested these meth-

ods on benchmarking problems and datasets taken from UCI database.

These methods have improved GP performance, promoted semantic di-

versity and reduced GP code bloat. The main contributions of the dis-

sertation are outlined as follows.

� Three new semantics based tournament selection methods are pro-

posed. A novel comparison between individuals based on a statistical

analysis of their semantics is introduced. From that, three variants

of the selection strategy are proposed. These methods promote se-

mantic diversity and reduce code bloat in GP.

� A semantic approximation technique is proposed. We propose a new

technique that allows to grow a small (sub)tree with the semantics

approximate to a given target semantics.

� New bloat control methods based on semantic approximation are

introduced. Inspired by the semantic approximation technique, a

number of methods for reducing GP code bloat are proposed and

evaluated on a large set of regression problems and a real-world

time series forecasting.

Additionally, we also propose a new variant without losing the basic

5

structure of GP.

The results of the dissertation include 7 papers, of which 5 papers (1

SCI-Q1 journal paper, 3 International Conference papers and 1 domestic

scientific journal paper) were published, and 2 papers (1 SCIE-Q1 journal

paper and 1 domestic scientific journal paper) are under review.

The dissertation includes three chapters, introduction, conclusion and

future work. The remainder of the dissertation is organised as follows.

Chapter 1 gives a more detailed introduction to GP and a brief intro-

duction to some variants of GP, including our new proposed variant.

Semantic concepts and a survey of different ways of using semantics in

GP are also included. Finally, this chapter introduces a semantic back-

propagation algorithm and a statistical hypothesis test.

Chapter 2 presents the proposed forms of tournament selection. We

introduce a novel comparison between individuals by using a statistical

analysis of GP error vectors. Based on that, some variants of tournament

selection are proposed to promote semantic diversity and to explore the

potential of the approach to control program bloat. We evaluate these

methods on a large number of regression problems and their noisy vari-

ants. Experimental results are discussed and evaluated carefully.

Chapter 3 introduces a new proposed technique to grow a (sub)tree

that approximates to a target semantic vector. Using this technique,

several methods for reducing code bloat are introduced. The proposed

methods are extensively evaluated on a large set of regression problems

and a real-world time series forecasting problem. The results and dis-

cussions are presented in detail.

6

Chapter 1

BACKGROUNDS

This chapter introduces Genetic Programming (GP) including the al-

gorithm and the basic components of the algorithm. After that, some

variants of GP including our proposed variant of GP structure [C4] are

briefly shown. The concepts related to semantics in GP are then pre-

sented. Next, the chapter reviews the previous semantic methods. Fi-

nally, a semantic backpropagation algorithm and a statistical hypothesis

test are introduced.

1.1. Genetic Programming

Genetic Programming (GP) is an Evolutionary Algorithm (EA) that

automatically finds the solutions of unknown structure for a problem [50,

97]. It is also considered as a metaheuristic-based machine learning

method which finds solutions in form of computer programs for a given

problem through an evolutionary process. GP has been successfully

used as an automatic programming tool, a machine learning tool and an

automatic problem-solving engine [97]. Several applications of GP are

curve fitting, data modeling, symbolic regression, feature selection and

classification. GP applications are applied to a number of problems in

many fields such as pattern recognition, software engineering, computer

vision, medical and cyber security [30, 57, 61, 62, 118, 128]. Particularly,

7

there are some typical results that are competitive with human-produced

results presented in the annual “Humies” competition at “Genetic and

Evolutionary Computation Conference (GECCO)”1. The algorithm of

GP and its components are thoroughly introduced in the next subsection.

1.1.1. GP Algorithm

Technically, GP is considered as an evolutionary algorithm, so it shares

a number of common characteristics with other EAs. The GP algorithm

and its basic steps are shown in Algorithm 1 [97].

Algorithm 1: GP algorithm

Input: The training set of fitness cases.

Output: a solution of the problem.

1. Randomly create an initial population of programs from the available

primitives;

repeat

2. Execute each program and evaluate its fitness;

3. Select one or two program(s) from the population with a probability

based on fitness to participate in genetic operators;

4. Create new individual program(s) by applying genetic operators with

specified probabilities;

until an acceptable solution is found or some other stopping condition is met ;

return the best-so-far individual;

The first step in running a GP system is to create an initial population

of computer programs. Normally, this population is randomly generated

with respect to some constraints in terms of syntax and used as a starting

point of a GP algorithm. GP then finds out how well a program works

by running it, and then comparing its behaviour to some objectives of
1http://www.human-competitive.org/awards

8

the problem (step 2). This comparison is quantified to give a numeric

value called fitness. Those programs that do well are chosen to breed

(step 3) and produce new programs for the next generation (step 4).

Generation by generation, GP transforms populations of programs into

new, hopefully better, populations of programs by repeating steps 2-4

until a termination condition is met. Commonly, the termination condi-

tion is met when either a acceptable solution is found, or the maximum

number of evolutionary generations is reached.

1.1.2. Representation of Candidate Solutions

For evolutionary algorithms, practitioners need to select an appropri-

ate representation of candidate solutions before they use them to solve

a problem. In GP, there are several representation formats that can

be used such as tree-based representation [50, 81, 97], linear representa-

tion [87], grammar-based representation [66] and graph-based represen-

tation [69]. Tree-based representation is the most popular form in GP.

Thus, this dissertation mainly focuses on tree-based representation.

A tree-based representation of an individual in a GP population is

Figure 1.1: GP syntax tree representing max(x+ x, x+ 3 ∗ y).

9

constructed from two primitive sets: a function set and a terminal

set. The internal nodes of the tree (including the root node) are taken

from the function set, and the leaf nodes are taken from the terminal

set. Figure 1.1 shows the tree representation of the computer program

max(x+x,x+3*y). The variables and constants in the program (x,y and

3) are the leaves of the tree, while the arithmetic operations (+,* and

max) are internal nodes.

The function set, F = {f1, f2, ..., fn}, used in GP is typically driven

by the nature of the problem domain. It might include arithmetic

functions (+,-,*,/), mathematical functions (sin, cos, exp), boolean

functions (and, or, not), conditional functions (such as if-then-else),

and other functions that can be defined to fit the specific problem. Each

function in F has a fixed number of arguments that is considered as its

arity. For instance, function + has 2-arity, and function sin has 1-arity.

The terminal set, T = {t1, t2, ..., tm}, that often consists of a number

input variables and several constants is comprised of the inputs to a

GP program. All terminals have an arity of zero. Similarly to any

other machine learning systems, input variables are the features of the

observations of a given problem, so these inputs becomes part of GP

training and test sets.

1.1.3. Initialising the Population

To start a GP evolutionary process, individuals in an initial population

are typically randomly generated. For a tree-based GP system, there are

three popular approaches to generate an initial population, including the

10

grow method, the full method and the ramped half-and-half method [50,

97].

The grow method starts to generate an individual by randomly

selecting a function fi in F. This function becomes the root node of

the tree. Let n be the arity of the selected function, then n nodes are

randomly chosen from the set of F∪T as the children of the root node. If

a terminal is chosen, this branch of the tree is terminated. Otherwise, a

function is selected, the process is recursively applied for that function.

The maximal depth of a tree is usually used to limit the size of an initial

individual. If the depth of the tree reaches the maximal depth, the

children nodes are only selected in T.

The full method constructs a tree by selecting only functions from F

until the tree reaches the maximal depth. At this depth, only primitives

from T are chosen.

The ramped half-and-half method is the most popular method

that is widely used by GP practitioners nowadays. The ramped half-

and-half initialisation of the population is in fact the combination of the

grow and full initialisation, in which half of the population is created by

the grow method, and the remaining half is generated by the full method.

The method is done using a range of depth limits to help ensure that we

generate trees having a variety of sizes and shapes.

1.1.4. Fitness Evaluation

Each individual in the population is assigned a numerical value called

fitness. The fitness of an individual demonstrates its ability to solve the

11

problem. Fitness can be measured in many different ways. For example,

it may be the amount of error between its output and the desired output,

the amount of time required to bring a system to a desired target state or

the accuracy of a program in recognising patterns or classifying objects.

Fitness that directly reflects the ability of an individual to solve the

problem as above is also called raw fitness. In many situations, raw

fitness can be standardised (it is called standardised fitness) to provide

some conveniences.

Fitness is often evaluated based on the training set of a problem that

is called fitness cases. For example, let a set of n pairs (input-output)

values, {(x1, y1), (x2, y2), . . . , (xn, yn)}, be the fitness cases of a regression

symbolic problem, then the fitness of an individual i can be defined as

Mean Square Error (fMSE(i) in Equation 1.1) or Mean Absolute Error

(fMAE(i) in Equation 1.2).

fMSE(i) =
1

n

n∑
j=1

(ŷj − yj)
2 (1.1)

fMAE(i) =
1

n

n∑
j=1

|ŷj − yj| (1.2)

where ŷj is the output of the individual i with the input is xj.

1.1.5. GP Selection

The selection mechanism plays a very important role in the perfor-

mance of GP. Selection is a process whereby certain individuals are se-

lected from the current generation that would serve as parents for the

next generation. The individuals are selected probabilistically such that

12

the better performing individuals have a higher chance of getting se-

lected. The most commonly used selection method in GP is Tournament

selection [26].

Algorithm 2: Tournament Selection

Input: Tournament size: TourSize.

Output: The winner individual.

A←− Randomly select a individual from the population;

for i← 1 to TourSize do

B ←− Randomly select a individual from the population;

if B is better than A then

A←− B;

end

end

The winner individual ←−A ;

Algorithm 2 presents the algorithm of standard tournament selection.

In tournament selection, a number of individuals (tournament size) are

randomly selected from the population. These individuals are compared

with each other, and the winner (in terms of better fitness) is selected

to be the parent. This process is then repeated n times where n is the

population size. Note that tournament selection only looks at which an

individual is better than another. It does not require a comparison of

the fitness between all individuals and need to know how much better.

This may help to save a large amount of processing time and provide

an easy way to parallelize the algorithms. Tournament selection based

methods are reviewed in Section 2.2.

Additionally, there are some other popular selection mechanisms, such

as Fitness Proportionate Selection and Ranking Selection [10]. In Fit-

13

ness Proportionate Selection, every individual can become a parent with

a probability which is proportional to its fitness. Differently, Ranking

Selection removes the concept of a fitness value while selecting a parent.

However, every individual in the population is ranked according to their

fitness. The selection of the parents depends on the rank of each indi-

vidual and not the fitness. The higher ranked individuals are preferred

to the lower ranked ones.

1.1.6. Genetic Operators

Like in most other EAs, individuals in the new population are formed

by using genetic operators. There are three main operators, including

crossover, mutation and reproduction.

Crossover operator uses two individuals selected from the current

generation through the selection process to produce two different indi-

(a) Parent 1 (b) Parent 2

(c) Child 1 (d) Child 2

Figure 1.2: An example of crossover operator.

14

viduals for the next generation. In this technique, genetic material from

two individuals is mixed to form offspring. In the tree-based representa-

tion, two parents are selected by a selection method, then one subtree is

randomly selected in each parent. The crossover is executed by simply

swapping the two chosen subtrees, and the resultant offspring are added

to the next generation. Figure 1.2 describes the crossover process.

Mutation operator becomes an important operator which provides

diversity to the population. It is an asexual operator with only one par-

ent. Figure 1.3 illustrates the mutation process. The mutation operator

selects a random mutation node in a parent tree and replaces this subtree

at that node by a newly generated subtree.

(a) Parent (b) A randomly gener-
ated subtree

(c) Child

Figure 1.3: An example of mutation operator.

Reproduction operator, the other main operator, is performed by

simply copying a selected individual from the current generation to the

next generation.

Practically, probabilities are used to select which of operators should

be utilized to generate an offspring. In GP, operators are normally mu-

tually exclusive [97]. Typically, crossover is applied with the highest

probability, often around 0.9. Conversely, mutation is used a much

15

smaller probability, about around 0.1. When the probabilistic choice

of crossover and mutation add up to a value p, reproduction is also used,

with a probability of 1− p.

1.1.7. GP parameters

To begin a GP system, users must specify a number of control pa-

rameters. The decisions are critically important as they have a limiting

effect on the search space of possible programs. Too great a limit may

remove all chance of evolving an acceptable individual. However, not

restricting the search-space sufficiently has its own issues.

The most important control parameter is the population size. A larger

population allows for a greater exploration of the problem space at each

generation and increases the chance of evolving a solution. In general,

the more complex a problem is, the greater population size is needed.

Other control parameters include the probabilities of performing the ge-

netic operators, the maximum size for programs, the maximum number

of generations and other details of the run. The setting of these pa-

rameter impacts to the ability to learn of the GP system. The decision

to choose these parameters often depends on the experiments and the

experience of GP practitioners. The following list shows the common

parameters that GP practitioners often specify before running GP.

� Population size.

� The maximal number of generations.

� The maximal depth of tree in the initial population.

� The maximal depth of tree for the whole evolutionary process.

16

� Method used to generate the initial population.

� Selection algorithm.

� Crossover type and its probability.

� Mutation type and its probability.

� The maximal depth of tree in the mutation.

� The probability of reproduction.

In previous researches, the researchers have selected several GP pa-

rameter sets to investigate the effectiveness of algorithms. Koza [49]

recommended setting values for GP parameters: The population size is

500, the maximum number of generations is 50, the selection method is

Fitness proportionate, the probability of crossover is 0.9, the probability

of mutation is 0, the probability of reproduction is 0.1, the initialization

method is ramped half-and-half, the initial max depth is 6, the max

depth is 17 and elitist strategy is not used. Other researches set up ex-

Table 1.1: Summary of Evolutionary Parameter Values

Parameters
Papers

[49, 38] [79, 78] [54, 53] [124] [93] [82] [112] [14] [15]

Population size 500 500 1024 500 1024 500 500 512 100

Generations 50 50 250 100 100 100 100 100 100

Crossover probability 0.9 0.9 0.9 0.85 0.9 0.9 0.7 0.9 0.9

Mutation probability 0.0 0.05 0.1 0.1 0.1 0.1 0.3 0.1 0.1

Initial Max depth 6 6 6 4 6 6 6 6 6

Max depth (nodes) 17 15 17 50 nodes 17 15 20 17 17

Trials per treatment 30 100 100 500 30 30 30 100 50

Elitism Not use 1 - 1 - - 1 10 -

17

perimental GP parameters often followed this parameter set. Table 1.1

summarizes the parameter sets of several recent researches. However, in

most of these researches, Tournament selection is utilized instead of us-

ing Fitness proportionate for the selection method. In the dissertation,

GP parameters are set with typical values that are the most common

values set to GP parameters in recent researches.

1.1.8. GP benchmark problems

In GP researches, the selection of benchmark problems for evaluating

the effectiveness of algorithms is also an important issue. Good, stan-

dardized benchmark problems allow direct comparisons of best results

among GP methods, and between GP and non-GP techniques. More-

over, benchmark problems would help to identify the state of the art,

the strengths and weaknesses of different approaches [120].

Previous researches often apply GP on regression problems. There

are many benchmark regression problems that have been proposed. Ta-

ble 1.2 gives information of several benchmark regression problems [120].

In the experiments of the dissertation, we selected a larger set of regres-

sion problems that are GP benchmark problems recommended in the

literature [120] and regression problems taken from UCI machine learn-

ing repository [4].

1.2. Some Variants of GP

The GP community has developed many different approaches to evolve

computer programs. Interestingly, these variants do not lose the basic

mechanism of GP. This section briefly introduces some popular variants,

18

Table 1.2: GP benchmark regression problems. Variable names are, in order, x, y, z,
v and w. Several benchmark problems intentionally omit variables from
the function. In the training and testing sets, U [a, b] is uniform random
samples drawn from a to b inclusive, and E[a, b] is a grid of points evenly
spaced from a to b inclusive

Name Variables Objective function Training set Testing set

Koza-1 1 x4 + x3 + x2 + x U[-1, 1] None

Koza-2 1 x5 − 2x3 + x U[-1, 1] None

Koza-3 1 x6 − 2x4 + x2 U[-1, 1] None

Nguyen-1 1 x3 + x2 + x U[-1, 1] None

Nguyen-3 1 x5 + x4 + x3 + x2 + x U[-1, 1] None

Nguyen-4 1 x6 + x5 + x4 + x3 + x2 + x U[-1, 1] None

Nguyen-9 2 sin(x) + sin(y2) U[0, 1] None

Nguyen-10 2 2sin(x)cos(y) U[0, 1] None

Korns-1 5 1.57 + 24.3v U[-50, 50] U[-50, 50]

Korns-2 5 0.23 + 14.2y+v
3w U[-50, 50] U[-50, 50]

Korns-3 5 −5.41 + 4.9
v−x+ y

w

3w U[-50,50] U[-50, 50]

Korns-4 5 −2.3 + 1.3sin(z) U[-50, 50] U[-50, 50]

Korns-11 5 6.87 + 11cos(7.23x3) U[-50, 50] U[-50, 50]

Korns-12 5 2− 2.1cos(9.8x)sin(1.3w) U[-50, 50] U[-50, 50]

Korns-13 5 32− 3 tan(x)tan(z)tan(y)tan(v) U[-50, 50] U[-50, 50]

Korns-14 5 22− 4.2(cos(x)− tan(y)) tanh(z)
sin(v)

U[-50, 50] U[-50, 50]

Korns-15 5 12− 6 tan(x)ey (ln(z)− tan(v)) U[-50, 50] U[-50, 50]

Keijzer-11 2 xy + sin((x− 1)(y − 1)) U[-3, 3] E[-3, 3]

Keijzer-13 2 6sin(x)cos(y) U[-3, 3] E[-3, 3]

Keijzer-14 2 8
2+x2+y2 U[-3, 3] E[-3, 3]

Keijzer-15 2 x3

5 + y3

2 − y − x U[-3, 3] E[-3, 3]

Vladislavleva-2 1 e−xx3cos(x)sin(x)(cos(x)sin2(x)− 1) E[0.5, 10] E[-0.5, 10.5]

Vladislavleva-4 5 10
5+(x−3)2+(y−3)2+(z−3)2+(v−3)2+(w−3)2 U[0.05, 6.05] U[-0.25, 6.35]

Vladislavleva-6 2 6sin(x)cos(y) U[0.1, 5.9] E[-0.05,6.05]

Vladislavleva-7 2 (x− 3)(y − 3) + 2sin((x− 4)(y − 4)) U[0.05,6.05] E[-0.25,6.35]

Vladislavleva-8 2 (x−3)4−(y−3)3−(y−3)
(y−2)4+10 U[0.05,6.05] E[-0.25,6.35]

19

including Linear Genetic Programming and Cartesian Genetic Program-

ming. Moreover, our proposed GP variant calledMultiple Subpopulations

GP (shortened as MS-GP) is also presented briefly in this section.

1.2.1. Linear Genetic Programming

Linear Genetic Programming (LGP) is a variant of genetic program-

ming wherein computer programs in a population are represented as a

variable-length sequence of instructions from imperative programming

language or machine language [87, 97]. Instructions operate on one or

two indexed variables v (also called registers) or on constants c from pre-

defined sets. The result is assigned to a destination register. The size

of the effective code varies from 0 to the number of instructions in the

LGP program. Figure 1.4 demonstrates an example of LGP program.

Figure 1.4: An example of LGP program.

LGP allows to evolve programs in a low-level language, so these pro-

grams run directly on the computer processor. Hence, the programs can

avoid the need of an interpreter and be evolved very quickly in this way.

In addition, LGP can be used to solve problems with multiple outputs.

20

1.2.2. Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is a GP technique in which

a program is symbolized as an indexed graph [67, 70, 87]. In CGP,

the graph nodes are represented in a Cartesian coordinate system. A

CGP node contains a function and pointers toward nodes representing

function parameters. Each node has an output that may be used as an

Figure 1.5: An example of CGP program.

input for another node in the graph. Nodes in the same column are

not allow to be connected to each other, and any node may be either

connected or disconnected. Figure 1.5 illustrates an example of CGP

program with 3×4 architecture. The program has three inputs (0,1,2),

one output (13) and five functions (+, -, *, /, sin).

Similarly to LGP, CGP is possible to have as many outputs as neces-

sary whereas in standard GP, the evolved program has only one output.

1.2.3. Multiple Subpopulations GP

Recently, we have proposed a variant of GP that is calledMultiple Sub-

populations GP and shortened as MS-GP. While LGP and CGP change

the representation of individuals, MS-GP adjusts the framework of the

21

evolution process without losing the basic structure of GP. MS-GP di-

vides the whole evolutionary process into two phases (Figure 1.6). In the

first phase, the subdatasets are sampled from the training (full) dataset,

and these subdatasets are then used to evolve the subpopulations. The

individuals in the subpopulations are trained to fit a part of the train-

ing data and then combined to form the full population for the next

Figure 1.6: Structure of MS-GP.

22

phase. In the second phase, the combined population is evolved on the

full dataset as standard GP until the last generation.

A detailed description of MS-GP is given in [C4]. We tested MS-GP

on a number of regression problems and compared its performance to

standard GP and some recently sampling techniques. The experimen-

tal results show that MS-GP achieved better performance compared to

other tested methods. Particularly, the training error and the size of

the solutions found by MS-GP are often significantly better than those

found by others.

1.3. Semantics in GP

Over the last few years, semantics has been an intensively studied

topic in GP. These researches applied semantic, also called phenotypic

or behavioral, information for all stages of the GP evolution in a vari-

ety of ways, such as modifying or designing new genetic operators, and

proposing new selection methods. This section presents the definition

of program semantics in GP, and a survey of studies on semantics-based

GP.

1.3.1. GP Semantics

Semantics is a broad concept used in different research fields. Gener-

ally, semantics refers to the meaning of language constructs. In ontology,

semantics provides the rules for interpreting the syntax which do not pro-

vide the meaning directly but constrains the possible interpretations of

what is declared [25]. In programming languages, semantics refers to

the execution of the programs, i.e., what would happen each time such

23

a program is fed into an appropriate computer [22, 36]. This means that

semantics can be shown by describing the relationship between the input

and output of a program, or an explanation of how the program will be

executed on a certain platform.

In the context of GP, we are mostly interested in the behavior of the

individuals (what they ‘do’). To specify what individual behavior is, re-

searchers have recently introduced several concepts related to semantics

in GP [67, 82, 92, 93]. This subsection provides the formal concepts for

program semantics in GP.

Let p ∈ P be a program from a set P of all possible programs. When

applied to an input in ∈ I, a program p produces certain output p(in).

In this way, a program realizes certain mapping from the set of inputs I

into the set of outputs O, which we denote as p : I −→ O.

Definition 1.1. A semantic space of a program set P is a set S such

that a semantic mapping exists for it, i.e., there exists a function s :

P → S that maps every program p ∈ P into its semantics s(p) ∈ S and

has the following property:

s(p1) = s(p2)⇔ ∀in ∈ I : p1(in) = p2(in)

Definition 1.1 indicates that each program in P has thus exactly one

semantics, but two different programs can have the same semantics. For

example, two programs (sin(2*x)) and (2*sin(x)*cos(x)) have the

same semantics. Moreover, programs that behave differently (i.e., pro-

duce different outputs for one or more inputs) have different semantics.

The semantic space S enumerates all behaviors of programs for all

24

possible input data. That means semantics is complete in capturing the

entire information on program behavior. In GP, semantics is typically

contextualized within a specific programming task that is to be solved

in a given program set P. As a machine learning technique, GP evolves

programs based on a finite training set of fitness cases [54, 71, 116].

Assuming that this set is the only available data that specifies the desired

outcome of the sought program, naturally, an instance of the semantics

of a program is the vector of outputs that the program produces for these

fitness cases as Definition 1.2.

Definition 1.2. Let K = {k1, k2, ...kn} be the fitness cases of the problem.

The semantics s(p) of a program p is the vector of output values obtained

by running p on all fitness cases.

s(p) = (p(k1), p(k2), . . . , p(kn)), for i = 1, 2, . . . , n.

For example, the semantics of the program x1(1+x2) in Figure 1.7 with

the fitness cases as {(0, 0;0); (0.1, 0.5;0.1); (0.2, 1;0.4); (0.3, 1.5;0.7); (0.4,

2;1.2); (0.5, 2.5;1.7); (0.6, 3;2.4); (0.7, 3.5;3.2); (0.8, 4;4); (0.9, 4.5;5)} is

the vector (0, 0.15, 0.4, 0.75, 1.2, 1.75, 2.4, 3.15, 4, 4.95).

x1 x2 y p

0 0 0 0
0.1 0.5 0.1 0.15
0.2 1 0.4 0.4
0.3 1.5 0.7 0.75
0.4 2 1.2 1.2
0.5 2.5 1.7 1.75
0.6 3 2.4 2.4
0.7 3.5 3.2 3.15
0.8 4 4 4
0.9 4.5 5 4.95

Figure 1.7: Running the program p on all fitness cases

25

In Definition 1.2, semantics may be viewed as a point in n−dimensional

semantic space, where n is the number of fitness cases. The semantics of

a program consists of a finite sample of outputs with respect to a set of

training values. Hence, this definition is not a complete description of the

behavior of programs, and it is also called sampling semantics [78, 79].

Moreover, the definition is only valid for programs whose output is a

single real-valued number, as in symbolic regression. However, this def-

inition is widely accepted and extensively used for designing many new

techniques in GP [54, 67, 73, 79, 82, 93, 110]. The studies in the disser-

tation use this definition.

Formally, a semantic distance between two points in a semantic space

is defined as Definition 1.3.

Definition 1.3. A semantic distance between two points in the se-

mantic space S is any function:

d : S× S→ R+

that is non-negative, symmetric, and fulfills the properties of the identity

of indiscernibles and triangle inequality.

Interestingly, the fitness function is some kind of distance measure.

Thus, semantics can be computed every time a program is evaluated,

and it is essentially free to obtain. Moreover, a part of tree program is

also a program, so semantics can be calculated in (almost) every node

of the tree. Based on Definition 1.2, the semantic distance may be

calculated by Euclidean or Manhattan distance. Let s(p) = (p1, p2, ..., pn)

and s(q) = (q1, q2, ..., qn) be the semantics of the individual (program)

26

p and of the individual q then Euclidean distance is calculated as in

Equation 1.3, and Manhattan distance is calculated as in Equation 1.4.

d(p, q) =
√
(p1 − q1)2 + (p2 − q2)2 + ...+ (pn − qn)2 (1.3)

d(p, q) = |p1 − q1|+ |p2 − q2|+ ...+ |pn − qn| (1.4)

Also based on Definition 1.2, the error vector of an individual is cal-

culated by comparing the semantic vector with the target output of the

problem. More precisely, the error vector of an individual is defined as:

Definition 1.4. Let s(p) = (s1, s2, ...sn) be the semantics of an individual

p and y = (y1, y2, ...yn) be the target output of the problem on n fitness

cases. The error vector e(p) of a program p is a vector of n elements

calculated as follows.

e(p) = (|s1 − y1|, |s2 − y2|, . . . , |sn − yn|)

Overall, semantics indicates the behavior of a program (individual)

and can be represented by program outputs with all possible inputs.

1.3.2. Survey of semantic methods in GP

A number of methods that incorporate semantic information into GP

have been proposed in recent years. According to Leonardo Vanneschi et

al. [116] these methods can be classified into two categories: indirect and

direct. Indirect semantic methods achieve desired semantic criteria by

sampling and rejecting individuals. Some of these methods use genetic

operators to create new individuals. These individuals are then accepted

and put into the new population only if the survival criteria are met [8, 7,

27

51, 76, 77, 78, 79, 93]. Other methods rely on semantic criteria which is

applied in selection methods to select individuals as in [29, 37, 38, 55, 83].

Conversely, direct semantic methods directly act on the semantics of

individuals to achieve the desired semantics. In these methods, new

semantic operators are usually proposed to generate offspring. The off-

spring are created by a convex combination of their parents [73, 82] or

by replacing subtrees in their parents with subprograms taken from a

pre-defined library [52, 53, 92].

a) Indirect semantic methods:

Indirect semantic methods operate on the syntax of the individuals

and rely on survival criteria to indirectly promote a semantic behavior.

These survival criteria often focus on one of three aspects of the evolu-

tion: semantic diversity, locality and geometry of the landscape [116].

McPhee et al. [67] are probably the first researchers to define the se-

mantics of an individual as its outputs with respect to a set of inputs.

The semantics of a boolean expression tree is extracted into truth ta-

bles by enumerating all possible inputs. The truth tables are then used

to analyze the behavioral changes of the two components (the subtrees

and the context) on each tree during the evolutionary process. Spe-

cial attention was paid to fixed-semantic contexts: contexts such that

the semantics of the entire tree does not change when subtrees are re-

placed by other subtrees. For example, the context AND(false,subtr)

returns a stable value of false with every replacement subtree, subtr.

It emerges that there may be many such fixed semantic contexts in a

28

boolean domain problem, especially when the size of the tree increases

during evolution. At that point, it is difficult to change the semantics of

trees with crossover and mutation. Therefore, the distribution of context

semantics is key to the success (or failure) of runs.

In the same boolean problems, Beadle and Johnson [6] proposed a new

crossover operator called Semantically-Driven Crossover (SDC). SDC

uses an efficient technique called Reduced Ordered Binary Decision Di-

agrams (ROBDDs) to measure behavioral difference between two in-

dividuals. Any two individuals that reduce to the same ROBDD are

semantically equivalent. SDC checks the semantic equivalence of the

offspring with their parents and discards the offspring if equivalent to

their parents. The operator increases semantic diversity in the evolu-

tionary population and thus leads to improved performance of GP. This

technique was also applied in [8] to drive behavior of individuals at mu-

tation and in [7] to guide the initialization population in GP, with a

positive effect on performance.

Next, Nguyen et al. [77] investigated the role of semantic diversity and

locality of crossover operators for boolean problems. Two crossover op-

erators were proposed: Guaranteed Change Semantic Crossover (GCSC)

to promote semantic diversity and Locality Controlled Semantic Crossover

(LCSC) to improve semantic locality. GCSC guarantees a change in the

semantics of children in the new population by aborting children with

the same semantics as their parents. LCSC is an extension of GCSC

that is aborted not only if the offspring has the same semantics, but also

if it is too different from their parents.

29

For real-valued problems, it is not easy to exactly calculate the seman-

tics or equivalent semantics of two tree representations by reducing them

to a common structure, since this is a problem of NP-hard class [33, 116].

Instead, semantics is evaluated on a set of sampling fitness cases in the

domain of the problem. Nguyen et al. [76] proposed a crossover opera-

tor called Semantics Aware Crossover (SAC). The approach of SAC can

apply to both boolean and real-valued domain problems. This crossover

operator also aims to encourage semantic diversity. SAC prevents an ex-

change between two subtrees with the semantic distance between them

smaller than a given threshold when doing crossover. SAC was then

extended to Semantic Similarity based Crossover (SSC) [79] and Most

Semantically Similar Crossover (MSSC) [78]. SSC performs crossover

when two subtrees are semantic similarity, which means the semantic

distance between these subtrees within the interval [α, β]. Addition-

ally, if a pair of semantically similar trees could not be found after the

maximum number of trials, SSD uses standard crossover. In MSSC, it

selects randomly n pair of subtrees from two parents and calculates the

semantic distance between each pair. Pairs with semantic equivalence

are excluded. In the remaining pairs, the pair with the smallest semantic

distance is selected and used for crossover. The results illustrated that

this approach increases semantic diversity in the evolutionary popula-

tion, and thus it leads to the improvement in the GP performance.

Based on the geometry of landscape, Krawiec et al. [51, 93] proposed a

new crossover operator for GP, namely Krawiec and Lichocki Geometric

Crossover (KLX). KLX uses standard crossover to generate a number of

30

candidate offspring. The offspring with the smallest total distance from

their parents calculating by Equation 1.5 are added to the next gener-

ation. This operator is characterized by high probability of producing

offspring semantically equal to one of their parents [92].

d(s(p), s(p1)) + d(s(p), s(p2))︸ ︷︷ ︸
distance sum

+ |d(s(p), s(p1))− d(s(p), s(p2))|︸ ︷︷ ︸
penalty

(1.5)

where p1 and p2 are parents, p is an offspring and d(.) is a function

distance.

Semantic information is also incorporated into the selection mech-

anism of GP. These methods are based on semantic criteria to select

parents, and they are surveyed in detail in Subsection 1.3.3.

Overall, the indirect methods often lead to the promotion of semantic

diversity and local semantics of a GP population, thereby improving GP

performance. However, these methods involving the process of rejecting

a number of individuals during the GP evolution are slow in the GP

evolution [51, 76, 78, 79].

b) Direct semantic methods:

Direct semantic methods act directly on the semantics of individuals

to effectively achieve the desired semantic goal [116]. Moraglio et al.[73]

proposed a new approach based on semantics to design geometric seman-

tic operators, called Geometric Semantic Genetic Programming(GSGP).

The geometric semantic operators generate offspring by a convex com-

bination of its parents. Two operators were introduced, including SGX

and SGM. SGX is a crossover operator that generates a offspring t from

31

two parents p1 and p2 by Equation 1.6 for a boolean domain problem

and Equation 1.7 for a real domain problem.

t = (p1 ∧ tr) ∨ (t̄r ∧ p2) (1.6)

where tr is a randomly generated Boolean function.

t = (p1.tr) + ((1− tr).p2) (1.7)

where tr is a constant or a function randomly generated with codomain

in the interval [0, 1].

Experimental results showed that these operators achieved a good

performance with the experimental problems. However, the geometric

semantic operators can be very time- and memory-consuming since they

keep all parents in memory, accumulate their complexity (number of

nodes) via the convex combination.

In order to address the limitations of GSGP, many studies have been

recently proposed [11, 35, 72, 82, 84, 85, 86, 114, 117]. Nguyen et al. [82]

proposed a new semantic crossover called SSGX which is very similar to

the SGX operator except that is installed on the subtree level. SSGX

finds a subtree with the most semantic similarity with its parent, and the

subtree is then used instead of its parent in the convex combination to

generate offspring. Martins et al. [64] solved the exponential growth of

GSGP by a proposed method called GSGP with Reduced trees (GSGP-

Red). GSGP-Red expands the functions representing the individuals

into linear combinations, and then aggregates the repeated structures.

Experimental results indicated that these operators reduced code growth

phenomenon and increased GP performance. Next, Oliveira et al. [86]

32

proposed the Geometric Dispersion operator (GD) with the goal of dis-

persing semantics of individuals in the population around the target

output point. GD operator is utilized before using other operators in

GSGP. Experimental results indicated these operators help improve the

efficiency of GSGP.

Krawiec et al. [52, 54] proposed a new geometric crossover called Lo-

cally Geometric Semantic Crossover (LGX). The idea of LGX is to in-

troduce a semantic combinatorial geometry. LGX randomly takes two

subtrees in the common shape from their parents, and calculates the

desired semantics of offspring as the midpoint of the semantics of these

subtrees. LGX then searches for a subprogram in a pre-defined library

such that its semantics is the closest to this desired semantics, and the

selected subtrees are replaced by this subprogram to generate offspring.

Continually, Krawiec et al. [53] proposed a semantic backpropaga-

tion algorithm that calculates the desired semantics of an intermediate

node. The algorithm assigns the desired semantics of a program to the

root node, and then propagates this value reversely down the program

tree to determine the desired semantics of intermediate node. Based on

this algorithm, two new genetic operators, AGX and RDO, were pro-

posed [92]. The main idea of AGX is to replace subtrees on their par-

ents with subprograms taken from a pre-defined library such that the

offspring are semantically intermediate to their parents. AGX calculates

the midpoint of the semantics of their parents and randomly selects two

crossover points in the parents. The semantic backpropagation algorithm

is then used to determine desired semantics at the crossover points. Af-

33

ter obtaining the desired semantics, AGX finds in a pre-defined library

a subprogram which is the semantically closest to the desired semantics

to substitute the subtrees. RDO is the form of a mutation operator. It

uses the semantic backpropagation algorithm as AGX, but the desired

semantics is the target semantics of the problem.

Recently, Pawlak and Krawiec [91], in turn, analysed a wide range of

mutation and crossover operators under different metrics and proposed

some competent operators, including Competent Mutation (CM) and

Competent Crossover (CX). CM operator is similar to RDO [92] except

for the condition of finding an alternative subtree in the pre-defined li-

brary in addition to ensuring the closest to the desired semantics must

also change the semantics of the parent. CX is an extension of AGX

with the additional condition that finds the replacement subtree to cre-

ate a semantic change of parents. Experimental results indicated that

these operators achieved the good performance in comparison to stan-

dard crossover except for high computational costs.

More recently, Chen et al. [14, 15, 16] incorporated the angle-awareness

into GSGP and proposed some new methods such as Angle-aware Geo-

metric Semantic Crossover (AGSX), Perpendicular Crossover (PC) and

Random Segment Mutation (RSM). AGSX [14] first selects randomly

the first parent and then finds the second parent from the candidate

set so that it maximizes the angle between the relative semantics of the

two parents to the target output. After that, two parents are used to

create offspring as LGX [54]. Combining the angle-awareness and the

semantic backpropagation algorithm, PC and RSM [15, 16] first deter-

34

mine the desired semantic of offspring. The desired semantics of the

offspring in PC is the perpendicular projection of the target output to

the semantics of two parents, and the desired semantics of the offspring

in RSM is the midpoint between the semantics of the parent and the

target output. After that, the remaining process of these operators is

similar to that in RDO. Experimental results show that these operators

improve the performance of GP. Nevertheless, the methods using the

semantic backpropagation algorithm often calculate the desired seman-

tics and then compare it with that of the subprograms in a pre-defined

library to find a semantic approximation tree. This leads to the slow GP

evolution [14, 53, 92, 110].

Overall, this subsection has reviewed semantic methods and showed

that these methods have resulted in the increase in semantic diversity,

local semantics of the population and GP performance.

1.3.3. Semantics in selection and control of code bloat

The works using semantic information in the selection process and

bloat control in GP are few as reported in Figure 2. Galvan-Lopez

et al.[29] proposed a technique called Semantic in Selection (SiS) for

selecting semantically different parents. SiS selects two parents. The

first parent is selected normally by using standard tournament selection.

The second parent is then selected by applying standard tournament

selection on only individuals whose semantics is different from that of the

first parent. In other words, only individuals with the semantic distance

to the first parent greater than a given threshold can participate in the

35

tournament to select the second parent.

Next, Pawlak and Krawiec [91] proposed a new selection method for

GSGP called Competent Tournament Selection (CTS) to select two par-

ents. As SiS, CTS chooses the first parent also using standard tour-

nament selection, and the second parent is selected by minimizing the

custom distance of individual candidates.

For controlling bloat in GP, Fracasso and Zuben [28] recently pro-

posed two mutation operators, Multi-Objective Randomized Similarity

Mutation (MORSM) and Multi-Objective Desired Operator(MODO), to

avoid the bloating effect. In MORSM operator, a random subtree of a

parent is selected and replaced by a random subprogram chosen in a

Restricted Candidate List (RCL). RCL consists of subprograms that are

taken from a pre-defined library and are non-dominated for two objec-

tives. The first objective is minimum the semantic distance between

the selected subtree and the subprograms, and the second objective is

minimum the size of the subprograms.

MODO is an extension of RDO operator [92], aiming at controlling

code bloat. In MODO, after randomly selecting a subtree in the par-

ent, the desired semantics of this subtree is calculated by using the se-

mantic backpropagation algorithm. Then, the restricted list with non-

dominated subprograms, RCL is built. RCL aims at minimizing the

distance between the desired semantics of the selected subtree and the

semantics of the subprograms, and minimizing the size of the subpro-

grams. Finally, a subprogram of RCL is chosen randomly and utilized

to replace the selected subtree.

36

1.4. Semantic Backpropagation

The semantic backpropagation algorithm was proposed by Krawiec

and Pawlak [53, 93] to determine the desired semantics for an intermedi-

ate node of an individual. The algorithm starts by assigning the target

of the problem (the output of the training set) to the semantics of the

root node and then propagates the semantic target backwards through

the program tree. At each node, the algorithm calculates the desired

semantics of the node so that when we replace the subtree at this node

by a new tree that has semantics equally to the desired semantics, the

semantics of entire individual will match the target semantics.

Figure 1.8 illustrates the process of using the semantic backpropaga-

tion algorithm to calculate the desired semantics for the blue node N .

In this figure, {(1,5);(2,8);(3,16)} is the fitness cases, and the semantic

vector of each node is calculated and displayed in the solid box. The

Figure 1.8: An example of calculating the desired semantics of the selected node N .

37

target semantic vector is (5,8,16) and the desired semantics of the blue

node N and its parents are calculated and presented in the dashed box.

The semantic backpropagation technique is then used for designing

several genetic operators in GP [53, 93]. Among these, Random Desired

Operator (RDO) is the most effective operator [82, 93]. A parent is se-

lected by a selection scheme, and a random subtree subTree is chosen.

The semantic backpropagation algorithm is used to identify the desired

semantics of subTree. After that, a procedure is called to search in

a pre-defined library of trees for a newTree that is the most semanti-

cally closest to the desired semantics. Finally, newTree is replaced for

subTree to create a new individual. This operator performs very well

on both real-valued and Boolean problems as reported in [82, 93].

1.5. Statistical Hypothesis Test

In Chapter 2, we propose the use of a statistic hypothesis test to anal-

yse the error vectors of individuals competing in a tournament. Prac-

tically, a Wilcoxon signed-rank test is employed the experiments. The

Wilcoxon signed-rank test is a non-parametric statistical hypothesis test

used when comparing two related samples to assess whether their pop-

ulation mean ranks differ [43]. This test is often used as an alternative

to the paired Student’s t-test when the population cannot be assumed

to be normally distributed.

Let n be the sample size of the test and x1,i and x2,i denote the ith

pair sample. Let H0: be the hypothesis that difference between the pairs

follows a symmetric distribution around zero and H1: be the hypothesis

38

that difference between the pairs does not follow a symmetric distribu-

tion around zero. The test is performed as follows:

1. For i = 1, ..., n, calculate |x2,i − x1,i|, and sgn(x2,i − x1,i), where sgn

is the sign function:

sgn(x) :=


−1 if x < 0,

0 if x = 0,

1 if x > 0.

(1.8)

2. Exclude pairs with |x2,i − x1,i| = 0. Let nr be the reduced sample

size.

3. Order the remaining nr pairs from smallest absolute difference to

largest absolute difference, |x2,i − x1,i|.

4. Rank the pairs, starting with the smallest as 1. Ties receive a rank

equal to the average of the ranks they span. Let Ri denote the rank.

5. Calculate the test statistic W , the sum of the signed ranks:

W =
nr∑
i=1

[sgn(x2,i − x1,i) ·Ri] (1.9)

6. The value of W is compared to a threshold to decide if the null

hypothesis H0 is rejected.

In practice, the p value is often calculated from the test. The p value

is defined as the probability of obtaining a result equal to or more ex-

treme than what was actually observed, when the null hypothesis is

true [100]. If p value is smaller than a threshold (called the critical

value), the null hypothesis is rejected and two data set are significantly

39

different. Otherwise, we can not reject the null hypothesis. In statistics,

two popular critical values of p value (0.01 and 0.05) are often used.

These values correspond to the confident level of 99% and 95% to reject

the null hypothesis, respectively.

1.6. Conclusion

This chapter presents the backgrounds of GP. Firstly, a more detailed

introduction has been given. The discussion of GP includes algorithm,

initialisation, fitness evaluation, selection, operators and parameters.

Secondly, the dissertation presents some variants of GP and a new pro-

posed variant for GP. Next, some foundation concepts of the dissertation

including the semantics of a program, semantic distance and error vec-

tors of the program as well as the survey of semantic methods in GP

are also presented. Then, the semantic backpropagation algorithm is

introduced. Finally, the chapter presents a statistical hypothesis test.

The survey has shown the effectiveness and limitations of semantic

integration methods in GP. In order to continue promoting the effective-

ness and to soften the drawbacks when incorporating semantic informa-

tion into GP, the dissertation presents several proposed techniques that

incorporate semantics into GP, including both indirect and direct meth-

ods. Chapter 2 introduces the new indirect methods that use a statistical

test on semantic information from the individual’s error vector into the

GP tournament selection. Chapter 3 presents the direct methods that

integrate semantic information to reduce code bloat in GP.

40

Chapter 2

TOURNAMENT SELECTION USING
SEMANTICS

The chapter introduces the use of a statistical test into GP tournament

selection that utilizes information from the individual’s error vector, and

three variants of the selection strategy are proposed. These methods are

tested on a larger number of regression problems and their noisy vari-

ants. The experimental results demonstrate the benefit of the proposed

methods in reducing GP code growth and improving the generalisation

behaviour of GP solutions when compared to standard tournament se-

lection, a similar selection technique and a state of the art bloat control

approach. The results in this chapter have been published in [C1, C3].

2.1. Introduction

There are several factors that can effect the performance of GP for a

given problem. These factors include the size of the population, the fit-

ness evaluation of individuals, the selection mechanisms for reproduction

and the genetic operators for modifying individuals. Amongst these, se-

lection plays a critical role in GP performance [10]. To date, there have

been many selection schemes proposed [48] and the most widely used

selection in GP is tournament selection [26].

Tournament selection compares the fitness value of sampled individu-

41

als. The individual with the best fitness is then selected as the winner.

This implementation is simple, and its effectiveness has been widely evi-

denced [26]. However, the standard approach only uses the fitness value

while ignoring finer-grained semantics which can be collected during GP

program execution. Consequently, some information that is potentially

useful for GP search may be lost. Recent research has shown that sig-

nificant benefit could be gained by using semantic information of GP

individuals (e.g., [44, 45, 74, 79, 93]). The genetic search operators of

crossover and mutation can be modified to improve the semantic lo-

cality of search [23, 78, 90]. In addition, the preservation of semantic

diversity is a desirable feature of an evolving GP population to avoid

local optima [12, 27], thus, it is also attractive to examine whether using

the error vector of individuals on the fitness cases during selection can

improve GP performance.

This chapter presents to use statistical testing techniques with indi-

vidual error vectors to improve the effectiveness and efficiency of GP.

The main contributions of this chapter are:

� The chapter introduces the use of statistical analysis of GP error

vectors to create novel forms of tournament selection. Based on a

Wilcoxon signed rank test, three variants of tournament selection are

proposed to exploit semantic diversity and to explore the potential

of the approach to control program bloat.

� The performance of the selection strategies are examined on a large

set of regression problems employing the original problems and noisy

42

variants. We observe that the new selection techniques help to re-

duce the code growth and improve the generalization ability of the

evolved solutions when compared to standard tournament selection

and a state of the art method for controlling code bloat in GP.

� The simplicity of the design of the proposed selection strategies al-

lows for further improvements. In this chapter, the addition of a

state of the art crossover operator is observed to further enhance

performance.

The rest of this chapter is organised as follows. The next section re-

views the related work on improving tournament selection in GP. Three

proposed tournament selection strategies are presented in Section 2.3.

Section 2.4 presents the experimental settings adopted in the chapter.

Section 2.5 analyses, compares and improves the performance of the pro-

posed selection strategies. Finally, Section 2.6 concludes the chapter.

2.2. Tournament Selection Strategies

Selection is a key factor that affects the performance of Evolutionary

Algorithms (EAs) [1, 24]. Commonly used parent selection strategies

in EAs include fitness proportionate selection, rank selection, and tour-

nament selection [10]. The most popular selection method in GP is

tournament selection [123]. In standard tournament selection, a number

of individuals (tournament size) are randomly selected from the popu-

lation. These individuals are compared with each other and the winner

(in terms of better fitness) is selected to go to the mating pool. This

process is then repeated n times where n is the population size [10].

43

The advantage of tournament selection is that it allows the adjustment

of the selection pressure by tuning the tournament size. A small value

of the tournament size leads to a low selection pressure while a large

one results in a high selection pressure. Moreover, this method does not

require a comparison of the fitness between all individuals leading to

saving a large amount of the processing time [125].

Since tournament selection is the most popular selection method in

GP, there have been many studies to analyse its behaviour and improve

its effectiveness. As the selection process of standard tournament selec-

tion consists of sampling and selecting, the majority of the early studies

have focused on sampling and selecting [26].

2.2.1. Sampling strategies

Gathercole et al. [32] analysed the selection frequency of each in-

dividual and the likelihood of not-selected and not-sampled individ-

uals in tournament selection with different values of the tournament

size. Sokolov and Whitley proposed unbiased tournament selection [108]

where all individuals have a fair chance to participate in a tournament.

Later, Xie and his colleagues conducted a series of studies to investi-

gate tournament selection in GP. In [122], Xie indicated that standard

tournament selection can lead to the result in which the individuals with

bad fitness could be selected multiple times while the individuals with

good fitness not selected any time. Thus, he proposed the fully covered

tournament selection method [122] which excludes the sampled individ-

uals in the next tournament to ensure that each individual has an equal

44

chance to participate into tournaments. Next, Xie et al. [123, 126] anal-

ysed the performance of no-replacement tournament selection in GP.

In the no-replacement strategy, no individual can be sampled multiple

times into the same tournament. Another problem in tournament selec-

tion is that some individuals are not sampled at all when using small

values of the tournament size. However, Xie at al. [127] showed that the

not-sampled issue does not seriously affect the selection performance in

standard tournament selection.

Overall, previous research has shown that sampling strategies have a

minor impact on GP performance. Consequently, researchers have paid

more attention to the second step in tournament selection: selection.

2.2.2. Selecting strategies

Goldberg and Deb [34] introduced binary tournament selection in

which two individuals are selected at random, and the individual with

better fitness could be selected with probability p, 0.5 < p ≤ 1.0.

Back [5] ranked the individuals in the population in which the best

individual was ranked 1st. After that, the selection probability of an

individual of rank j is calculated by:

n−k((n− j + 1)k − (n− j)k) (2.1)

where k is size of tournament and n is size of population. Conversely,

Blickle and Thiele [10] defined the worst individuals to be ranked 1st

and introduced the cumulative fitness distribution, s(fj), which denotes

the number of individuals with fitness value fj or worse. Finally, the

45

selection probability of individuals with rank j is calculated as:

(
s(fj)

n
)k − (

s(fj−1)

n
)k. (2.2)

Next, Julstrom and Robinson proposed weighted k-tournaments method [42]

in which a parameter w between 0 and 1 is chosen, and the probability

that the ith worst contestant is selected is proportional to wk−i. More

precisely, the selection probability of individuals with rank j is calculated

by the formula:

k(1− w)

nk(1− wk)
((j − 1) + w(n− j))k−1 (2.3)

Later, Hingee and Hutter [39] introduced the polynomial rank scheme

of degree d for calculating the probability of an individual with rank j

as follows:

P (I = j) =
d+1∑
t=1

atj
t−1 (2.4)

They also showed that every probabilistic tournament is equivalent to a

unique polynomial rank scheme.

Recently, some researchers have focused on adapting the selection

pressure. Xie and Zhang [124] proposed a method for automatically

tuning the selection pressure during evolution based on the fitness rank

distribution of the population. In each generation, they cluster the pop-

ulation into s clusters. Next, they sample k clusters from s clusters with

replacement and selected the winner among k sampled clusters. Finally,

a random individual is returned from the winning cluster. Their experi-

mental results showed that the proposed approach is able to tune parent

selection pressure automatically and dynamically along the evolution.

46

In an approach to control semantic locality and preserve semantic

diversity during selection in grammatical evolution, Forstenlechner et

al. [27] introduced semantic clustering selection. First, the individu-

als in a GP population are clustered based on the similarity of their

error vectors. Then, parents are drawn from within the same cluster

to improve semantic locality. Moreover, semantic diversity is managed

through the preservation of the existence of multiple clusters.

Another method proposed by Trujillo et al. [112] that allows to elim-

inate the concept of tournament size is neatGP. In fact, neatGP was a

recent method with the main objective is to reduce code bloat in GP.

This method was inspired by neuro evolution of augmenting topologies

algorithm in neural networks [113] and the flat operator equalization

bloat control method in GP [21]. The detailed description of neatGP

could be found in [112].

More recently, Lexicase Selection was proposed for solving uncompro-

mising problems [38, 68]. The idea is to evaluate the goodness of an

individual based on part of fitness cases instead of all fitness cases. Each

time a parent must be selected, Lexicase Selection first shuffles the list of

fitness cases into a random order. Next it removes any individual that

did not achieve the best error value on the first fitness case. If more

than one individual remains in the population, the first fitness case is

removed and this process is repeated with the next fitness case. This

technique was then extended to the real-valued regression problem by La

Cava et al. [56] and was proved to maintain better diversity compared

to standard tournament selection [37, 55, 83].

47

In this chapter, the dissertation introduces a new proposed method

for selecting the winner in tournament selection that is based on the

statistical analysis of the semantics of GP programs. Specifically, we

focus our attention on the error vectors produced in symbolic regression

problems. The most similar approach in the literature was Semantic in

Selection (SiS) technique proposed by Galvan-Lopez et al [29] which cal-

culates the semantic similarity of parents and selects parents which are

semantically dissimilar (i.e., have large differences between their seman-

tic vectors). Rather than computing differences in semantic vectors, we

perform a statistical analysis based on error vectors to ascertain seman-

tic diversity of the individuals competing in a tournament. A detailed

description of our method will be presented in the next section.

2.3. Tournament Selection based on Semantics

In this section, we present the usage of statistical analysis of error

vectors in the form of a statistical hypothesis test during tournament

selection. The objective is to select breeding parents based on the sta-

tistical test instead of on their fitness values. It is difficult to assess

whether the values of error vectors follow a normal distribution; thus, a

non-parametric statistical hypothesis test is appropriate, and Wilcoxon

Signed Rank Test is selected in our experiments. Three new selection

strategies are proposed, including Statistics Tournament Selection with

Random (TS-R), Statistics Tournament Selection with Size (TS-S) and

Statistics Tournament Selection with Probability (TS-P).

48

2.3.1. Statistics Tournament Selection with Random

The first proposed method is called Statistics Tournament Selection

with Random and shortened as TS-R. The main objective of TS-R is

to promote the semantic diversity of GP population compared to stan-

dard tournament selection. The process of TS-R is similar to standard

tournament selection. However, instead of using the fitness value for

comparing between individuals in the tournament, a statistical test is

applied to the error vector of these individuals. For a pair of individu-

als, if the test shows that the individuals are different, then the individual

with better fitness value is considered as the winner. Conversely, if the

test confirms that two individuals are not different, a random individual

is selected from the pair.

Algorithm 3: Statistics Tournament Selection with Random

Input: Tournament size: TourSize, Critical value: alpha.

Output: The winner individual.

A←− RandomIndividual();

for i← 1 to TourSize do

B ←− RandomIndividual();

sample1←− Error(A);

sample2←− Error(B);

p value←− Testing(sample1, sample2);

if p value <alpha then

A←− GetBetterF itness(A,B);

else

A←− GetRandom(A,B);

end

end

The winner individual ←−A ;

49

After that, the winner is tested against other individuals in the tourna-

ment size. This process is repeated for all individuals in the tournament

size. The detailed description of TS-R is presented in Algorithm 3.

In Algorithm 3, function RandomIndividual() returns a random in-

dividual from the GP population. Function Error(A) assigns the error

vector of individualA to sample1 1, and function Testing(sample1, sample2)

performs the Wilcoxon signed rank test. Two last functions, GetBetter-

Fitness(A,B) and GetRandom(A,B) aims to find the better fitness in-

dividual among A and B or return a random individual between two,

respectively. Finally, alpha is the critical value used to decide if the null

hypothesis is rejected or accepted. If the output of the test (p value)

is smaller than alpha, then the null hypothesis is rejected. This means

that two individuals are significantly different and the better fitness in-

dividual is selected as the winner. If the test can not reject the null

hypothesis, then a random individual is selected from the pair.

2.3.2. Statistics Tournament Selection with Size

The second proposed tournament selection is called Statistics Tour-

nament Selection with Size and shortened as TS-S. TS-S is similar to

TS-R in the objective of promoting diversity. Moreover, TS-S also aims

at reducing the code growth in GP population. In TS-S, if the statistical

test can not reject the null hypothesis, then the individual with smaller

size is selected from the pair. In other words, if two individuals involved

in the test are not statistically different, then the smaller individual will
1In order to reduce the computational time of this method, the error vectors of all individuals are calculated at

the beginning of each generation. These error vectors are then stored for using in every statistical test in the same
generation.

50

be the winner. The detailed description of TS-S is presented in Algo-

rithm 4. In this algorithm, function GetSmallerSize(A,B) returns the

individual with smaller size among A and B. If the size of A and B are

tie, then the first individual will be returned.

Algorithm 4: Statistics Tournament Selection with Size

Input: Tournament size: TourSize, Critical value: alpha.

Output: The winner individual.

A←− RandomIndividual();

for i← 1 to TourSize do

B ←− RandomIndividual();

sample1←− Error(A);

sample2←− Error(B);

p value←− Testing(sample1, sample2);

if p value <alpha then

A←− GetBetterF itness(A,B);

else

A←− GetSmallerSize(A,B);

end

end

The winner individual ←−A ;

2.3.3. Statistics Tournament Selection with Probability

The third tournament selection method is called Statistics Tourna-

ment Selection with Probability and shorted as TS-P. This technique is

different from TS-R and TS-S in which it does not rely on the critical

value to decide the winner. Instead, TS-P uses the p value as the prob-

ability to select the winner. In other words, the better fitness individual

is selected with the probability of 1− p value while the worse fitness

individual has the probability of p value to be selected. The detailed

51

description of TS-P is presented in Algorithm 5.

Algorithm 5: Statistics Tournament Selection with Probability

Input: Tournament size: TourSize.

Output: The winner individual.

A←− RandomIndividual();

for i← 1 to TourSize do

B ←− RandomIndividual();

sample1←− Error(A);

sample2←− Error(B);

p value←− Testing(sample1, sample2);

A←− GetBetterWithProbability(A,B, p value);

end

The winner individual ←−A ;

In this algorithm, after conducting the statistical test between A and

B, function GetBetterWithProbability(A,B, p value) return the better

fitness individual between A and B with the probability of 1− p value

and return the worse fitness individual with the probability of p value.

Overall, in the Statistics Tournament Selection methods, by using a

statistical test, an individual is only considered as a winner if its fitness

value is significantly better than other individuals, otherwise, the winner

will be selected with the other criteria. As a result, the semantic diversity

of the GP population is promoted. It is noted that, in order to select

the winner in the three proposed tournament selection techniques, a

series of the Wilcoxon signed rank test is applied on the error vectors

of sampled individuals. Potentially, there are two limitations of this

approach. The first limitation is the overuse of statistical tests may

result in the significant difference being detected by chance as indicated

52

by Cumming [17]. This, subsequently, may affect the performance of

statistics tournament selection. However, in Subsection 2.5.1 we show

that, on average, approximate 50% to 70% of the Wilcoxon test in TS-R

and TS-S is significant. This large number may help to alleviate the

impact of the test that is affected by chance.

The second limitation is the overhead of computational time resulting

from executing a series of the statistical test. In terms of algorithm com-

plexity, the time complexity of statistics tournament selection is T (n)

times the time complexity of standard tournament selection, where T (n)

is the time complexity of the statistical hypothesis test. In the algorithm

of Wilcoxon signed rank test, T (n) depends on a sorting algorithm used

in step 3. T (n) equals O(n.log(n)), where n is the number of fitness

cases, when using the best sorting algorithm. The time complexity of

a single tournament in standard tournament selection is O(k), where k

is tournament size. Thus, the time complexity of statistics tournament

selection is O(k.n.log(n)).

Besides, in the experiment, we compare the computational time of

executing the selection step in statistics tournament selection and in

standard tournament selection and find that the execution time of the

selection step in statistics tournament selection is greater than that of

standard tournament selection. However, statistics tournament selec-

tion often helps to remarkably reduce code growth of GP population.

Subsequently, the GP system that implements statistics tournament se-

lection often runs faster than the system that uses standard tournament

selection.

53

2.4. Experimental Settings

This section presents the problems that will be used for testing the

statistics tournament selection methods that are proposed the previous

section. The parameter settings for the GP systems in our experiments

are also given.

2.4.1. Symbolic Regression Problems

In order to evaluate the proposed tournament selection techniques,

we tested them on a large number of problems including twenty-six re-

gression problems. Among them, fifteen problems are GP benchmark

problems recommended in the literature [120] and an additional eleven

problems were taken from UCI machine learning repository [4].

For each problem, we also created a noisy version from the origi-

nal (noiseless) form that results in twenty-six noisy datasets. In total,

fifty-two datasets were used for the experiments in this chapter. The

detailed description of the tested problems including the abbreviation,

their name, number of features, number of training and testing samples

are presented in Table 2.1.

2.4.2. Parameter Settings

The GP parameters used for our experiments are shown in Table 2.2.

They are typical values for the experiments based on GP [49]. The

terminal set for each problem includes n variables corresponding to the

number of features of that problem. The raw fitness is the mean of abso-

lute error on all fitness cases. Therefore, smaller values are better. In all

54

Table 2.1: Problems for testing statistics tournament selection techniques

Abbreviation Name Features Training Testing

A. Benchmarking Problems

F1 korns-11 5 20 20

F2 korns-12 5 20 20

F3 korns-14 5 20 20

F4 vladislavleva-2 1 100 221

F5 vladislavleva-4 5 500 500

F6 vladislavleva-6 2 30 93636

F7 vladislavleva-8 2 50 1089

F8 korns-1 5 1000 1000

F9 korns-2 5 1000 1000

F10 korns-3 5 1000 1000

F11 korns-4 5 1000 1000

F12 korns-11 5 1000 1000

F13 korns-12 5 1000 1000

F14 korns-14 5 1000 1000

F15 korns-15 5 1000 1000

B. UCI Problems

F16 airfoil self noise 5 800 703

F17 casp 9 100 100

F18 ccpp 4 1000 1000

F19 wpbc 31 100 98

F20 3D spatial network 3 750 750

F21 protein Tertiary Structure 9 1000 1000

F22 yacht hydrodynamics 6 160 148

F23 slump test Compressive 7 50 53

F24 slump test FLOW 7 50 53

F25 slump test SLUMP 7 50 53

F26 Appliances energy prediction 26 5000 9235

55

experiment, three popular values of tournament size (referred to as tour-

size hereafter) including 3, 5 and 7 were tested2. The elitism technique

was also used in which the best individual in the current generation is

always copied to the next generation.

Table 2.2: Evolutionary Parameter Values.

Parameters Value

Population size 500

Generations 100

Tournament size 3, 5, 7

Crossover, mutation probability 0.9; 0.1

Function set +,−, ∗, /, sin, cos
Terminal set X1, X2, ..., Xn

Initial Max depth 6

Max depth 17

Max depth of mutation tree 15

Raw fitness mean absolute error on all fitness cases

Trials per treatment 100 independent runs for each value

Elitism Copy the best individual to the next generation.

A popular value of the critical value in Wilcoxon test, alpha = 0.05,

was used in TS-R and TS-S to decide if the null hypothesis is rejected.

For each problem and each parameter setting, 100 runs were performed.

To compare between different methods in terms of statistics, we fol-

lowed the suggestion by Derrac [19] to employ the Friedman’s test on

the results in all tables in the following sections. If the Friedman test

shows that at least the result of one technique is significantly different

from the others with confident level of 95%, we conducted a post-hoc
2Since the space limitation, we only show in this chapter the results with tour-size=3 and tour-size=7. The results

with tour-size=5 are presented in the appendix of the dissertation and at https://github.com/chuthihuong/GP.

56

analysis with the Bonferroni–Dunn correction of the p value for each

comparison [19]. In the tables, if the result of a method is significantly

better than GP with standard tournament selection (shorthanded as GP

hereafter), this result is marked + at the end. Conversely, if it is signif-

icantly worse compared to GP, this result is marked − at the end. In

addition, if it is the best (lowest) value, it is printed underline, and if

the result of a method is better than GP, it is printed bold face.

The source code of all tested methods in this chapter are available for

download 3. All techniques were implemented in Java with the exception

of neatGP for which we used the implementation in Python 4. Moreover,

the same computing platform (Operating system: Windows 7 Ultimate

(64bit), RAM 16.0GB, Intel ® Core�i7-4790 CPU@3.60GHz) was used

in every experiment in this chapter.

2.5. Results and Discussions

We divided our experiment into three sets. The first aims at investigat-

ing the performance of three variants of semantic tournament selection

based on statistical analysis in comparison with standard tournament

selection. The second attempts to improve the performance of the se-

mantic selection strategy through its combination with a state of the art

semantic crossover operator [93]. The third set of experiments examine

the performance of the strategies on noisy instances of the problems. The

detailed results of these experiment sets are presented in the following

subsections.
3https://github.com/chuthihuong/GP
4http://www.tree-lab.org/index.php/resources-2/downloads/open-source-tools

57

2.5.1. Performance Analysis of Statistics Tournament Selection

This subsection analyses the performance of three statistical tourna-

ment selection methods and compares them with GP (GP with standard

tournament selection) and semantic in selection (SiS) by Galvan-Lopez

et al [29]. SiS is probably the most similar approach to the proposed

methods.

The first metric is the mean best fitness values across 100 runs on the

training data and this is presented in Table 2.3. This table shows that

three new selection methods did not help to improve the performance

of GP on the training data. By contrast, the training error of standard

tournament selection is often significantly better than that of statistics

tournament selection. This result is not very surprising since the statis-

tics tournament selection techniques impose less pressure on the improv-

ing training error compared to standard tournament selection. For SiS, it

is also slightly worse than standard tournament selection. The training

error of SiS is significantly worse than that value of standard tourna-

ment selection on 5 problems with tour-size=3 and one problem with

tour-size=7, while the training error of standard tournament selection is

not significantly worse than that of SiS on any problems.

The second metric used in the comparison is the generalisation abil-

ity of the tested methods. In each run, the best solution was selected

and evaluated on an unseen data set (the testing set). The median of

these values across 100 runs was calculated and the results are shown in

Table 2.4. We can see that the testing error of SiS and GP are roughly

58

Table 2.3: Mean of best fitness with tour-size=3 (the left) and tour-size=7 (the right).

Pro GP SiS TS-R TS-S TS-P GP SiS TS-R TS-S TS-P

A. Benchmarking Problems

F1 2.01 1.91 2.74– 2.98– 2.70– 1.46 1.50 2.29– 3.13– 2.29–

F2 0.24 0.24 0.39– 0.56– 0.31– 0.23 0.22 0.35– 0.55– 0.26–

F3 5.19 4.94 6.62– 6.36– 6.15– 4.62 3.62 5.66– 6.29– 4.93–

F4 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03+

F5 0.126 0.133– 0.130 0.126 0.127 0.124 0.126 0.129 0.127 0.123

F6 0.44 0.46 0.76– 0.99– 0.59– 0.33 0.31 0.62– 1.09– 0.48–

F7 0.43 0.45 0.47– 0.51– 0.44 0.42 0.43 0.44 0.52– 0.40

F8 4.37 3.85 4.43 4.72 4.12 5.22 4.85 4.51 5.71– 4.76

F9 1.48 1.50– 1.98 1.96 1.32 1.62 1.90 1.42+ 2.30– 1.66

F10 7.93 8.77 7.94 6.39 8.78 7.72 7.06 6.65 5.38+ 8.51

F11 0.10 0.10 0.11 0.07 0.09 0.10 0.08 0.11 0.07 0.10

F12 7.04 7.13– 7.15– 7.11– 7.14– 6.96 7.07– 7.14– 7.11– 7.06–

F13 0.87 0.87 0.89– 0.88– 0.88– 0.88 0.89 0.89– 0.89– 0.88+

F14 76.12 76.54 80.58 76.72 79.68 75.84 76.75 76.26 74.08 76.15

F15 2.55 2.85 2.64 2.45 2.61 2.17 2.33 2.23 2.29 2.37

B. UCI Problems

F16 9.74 9.13 10.19 9.83 10.39 8.04 8.15 8.77 8.40 8.65

F17 3.69 3.75 4.05– 4.11– 3.97– 3.39 3.46 3.89– 4.11– 3.82–

F18 10.62 11.51 11.61 11.43 12.04 9.72 9.07 11.05 9.41 10.06

F19 26.43 26.36 29.42– 31.63– 28.57– 25.25 24.79 29.98– 31.88– 27.98–

F20 10.50 10.88 10.80 10.78 10.64 9.35 9.43 9.87– 9.85– 9.70

F21 4.35 4.42– 4.47– 4.41– 4.44– 4.23 4.26 4.33– 4.35– 4.28

F22 1.10 1.24– 1.33– 1.29– 1.24– 0.84 0.84 1.02– 1.22– 0.93

F23 4.24 4.36 5.35– 4.66 5.01– 3.47 3.47 4.58– 7.22– 4.18–

F24 8.99 9.18 10.73– 10.91– 10.35– 8.08 8.05 10.22– 12.14– 9.47–

F25 4.98 5.00 6.18– 6.69– 5.86– 4.47 4.44 5.79– 7.18– 5.40–

F26 52.00 52.14 52.10 52.18– 52.07 51.77 51.84 51.97 52.09– 51.94

59

Table 2.4: Median of testing error with tour-size=3 (the left) and tour-size=7 (the
right)

Pro GP SiS TS-R TS-S TS-P GP SiS TS-R TS-S TS-P

A. Benchmarking Problems

F1 8.55 9.06 5.31+ 3.93+ 6.68+ 11.3 10.2 6.13+ 3.97+ 6.18+

F2 0.96 0.99 0.88 0.81+ 0.92 0.98 1.00 0.89+ 0.82+ 0.98

F3 33.4 34.2 15.7 + 14.2+ 16.7 + 33.4 34.2 14.8 + 13.5+ 16.7 +

F4 0.06 0.06 0.06 0.05 0.06 0.06 0.05 0.05 0.06 0.04+

F5 0.135 0.137– 0.136 0.131 0.135 0.135 0.135 0.135 0.130 + 0.131

F6 1.78 1.45 1.89 1.90 1.63 1.34 1.21 1.64 1.97 1.62

F7 1.70 1.69 1.74 1.56+ 1.75 1.77 1.75 1.80 1.54+ 1.72

F8 6.20 4.52 6.75 6.90 5.52 7.38 6.79 6.96 7.38 6.85

F9 1.66 1.63 1.61 1.58+ 1.57 1.71 1.66 1.59+ 1.59+ 1.61

F10 41.1 38.9 46.1 35.8 39.1 56.5 42.2 38.1 34.1 52.9

F11 0.085 0.086 0.086 0.084 0.085 0.084 0.085 0.085 0.083 0.084

F12 7.39 7.33+ 7.32+ 7.32+ 7.33 7.42 7.41 7.35+ 7.33+ 7.37+

F13 0.876 0.875 0.873 0.872 + 0.875 0.878 0.875 0.874+ 0.871 + 0.878

F14 128.7 130.5 130.0 128.4 126.2 127.8 129.7 124.7 122.7 124.3

F15 4.95 5.32 5.14 4.74 4.90 4.23 4.43 4.32 3.92 4.68

B. UCI Problems

F16 20.9 20.8 27.1 25.5 27.8 18.8 23.7 24.6 24.5 24.2

F17 4.99 4.93 4.90 4.78+ 4.87 4.93 4.99 4.91 4.70+ 4.88

F18 8.72 9.07 10.1 10.1 11.1 8.70 8.31 10.3 8.79 8.88

F19 41.3 41.1 38.8+ 36.1+ 39.9+ 42.1 42.2 38.5+ 36.8+ 39.5+

F20 9.54 9.91 9.75 9.56 9.75 9.42 9.57 9.68 9.52 9.53

F21 4.35 4.38 4.44 4.37 4.42 4.27 4.29 4.32 4.30 4.29

F22 2.11 2.03 2.40 1.93 2.09 1.86 1.81 1.97 1.90 1.73

F23 7.74 7.24 7.99 5.89+ 7.90 6.65 7.37 6.63 8.04– 6.01

F24 16.7 18.4 15.8 14.9+ 18.1 17.5 18.3 15.5+ 13.3+ 16.4

F25 8.70 8.44 8.31 7.99+ 8.48 8.89 8.43 7.99+ 8.40+ 8.46+

F26 46.05 46.14 46.04 46.04+ 46.14 50.33 47.94 49.67 48.54+ 47.18

60

equal. The difference between the testing error of two techniques is often

marginal. SiS is only significant better than GP on F12 and GP is only

significantly better than SiS on F5 with tour-size=3. Conversely, the

testing error of three statistics tournament selection are often smaller

than that of GP. Among three statistics tournament selection, the per-

formance of TS-S is the best on the testing data. TS-S achieved the

best performance on 18 problems with tour-size=3 and 14 problems

with tour-size=7. This result on the testing demonstrates that, using

statistical test to only select the winner individual for the mating pool

when the individual is statistically better than others help to improve

the generalization of GP.

In terms of statistical comparison using Friedman’s test, the proposed

tournament selection is often significantly better (with the confident level

of 95%) than GP. For tour-size=3, TS-R is significantly better than GP

on 4 problems, TS-S is significantly better than GP on 13 problems and

TS-P is significantly better than GP on 3 problems. For tour-size=7,

these values are 9, 13 and 6 problems, respectively. Conversely, GP is

only significantly better than TS-S on one problem with the tour-size=7

(F23).

The third metric is the average size of their solutions. These values

are presented in Table 2.5. While the solutions found by SiS are often as

complex as those found GP, the solutions found by statistics tournament

selection are simpler than those of GP and SiS. Statistical test using

Friedman’s test also show that the size of the solutions obtained by TS-R,

TS-S and TS-P is significantly smaller than that of GP on most problems.

61

Table 2.5: Average of solution’s size with tour-size=3 (the left) and tour-size=7 (the
right)

Pro GP SiS TS-R TS-S TS-P GP SiS TS-R TS-S TS-P

A. Benchmarking Problems

F1 280 276 244 121+ 238 + 286 292 264 100+ 259

F2 169 170 130 + 35+ 148 + 160 173 150 37+ 169

F3 263 270 262 124+ 277 262 276 278 98+ 277

F4 171 190 225 79+ 197 184 177 217 80+ 194

F5 89 78 91 53+ 105 91 85 93 42+ 111

F6 167 156 141 + 50+ 159 137 151 134 37+ 145

F7 142 138 128 48+ 147 133 136 149 38+ 157

F8 180 166 174 108+ 184 247 215 197 101+ 210

F9 166 141 129 + 73+ 140 227 176 + 161 + 74+ 166 +

F10 161 145 162 108+ 162 184 172 165 101+ 175

F11 148 139 149 76+ 152 149 151 154 66+ 159

F12 259 222 + 179 + 92+ 188 + 306 258 211 + 89+ 226 +

F13 169 146 119 + 32+ 135 + 161 152 117 + 29+ 152

F14 254 210 268 168+ 273 332 284 300 164+ 287

F15 155 132 147 112+ 163 157 150 133 84+ 156

B. UCI Problems

F16 200 184 193 152+ 189 262 252 260 203+ 276

F17 207 182 168 50+ 165 230 220 192 39+ 192

F18 160 150 165 119+ 165 226 207 206 132+ 203

F19 208 200 119 + 16+ 152 + 313 280 100 + 11+ 182 +

F20 198 177 193 125+ 199 299 290 264 178+ 282

F21 178 149 + 179 97+ 179 236 196 219 71+ 199

F22 186 171 178 105+ 182 194 185 190 85+ 184

F23 160 159 132 + 56+ 134 + 204 200 149 + 24+ 155 +

F24 164 168 115 + 45+ 137 220 195 131 + 20+ 155 +

F25 170 167 111 + 31+ 138 + 226 205 132 + 22+ 157 +

F26 161 129 159 107+ 156 249 213 226 107+ 211

62

Especially, the size of the solutions of TS-S is always much smaller than

that of GP on all problems. This provides a reason partially explaining

why the performance of TS-S on the testing data is better than other

techniques in Table 2.4 following the Occam Razor principle [75].

We also measured the semantic distance between parents and their

children of GP, SiS and TS-S5 using the similar approach to Nguyen

et al. [82]. This information shows the ability of a method to discover

different areas in the search space. The semantic distance between a pair

of individuals (e.g. a parent and a child) averaged over the population

and over 100 runs with tour-size=3 is presented in Table 2.6.

Table 2.6: Average semantic distance with tour size=3. Bold indicates the value of
SiS and TS-S is greater than the value of GP.

Pro GP SiS TS-S Pro GP SiS TS-S

F1 2.42 8.93 3.76 F14 11.22 11.88 12.30

F2 0.42 1.60 0.43 F15 10.36 12.28 12.79

F3 7.01 19.73 5.02 F16 71.08 101.43 78.42

F4 1.05 1.55 1.24 F17 60.91 13.52 136.99

F5 0.07 0.63 0.10 F18 105.55 366.87 123.34

F6 0.99 1.58 1.03 F19 35.12 51.21 7.83

F7 0.44 0.58 0.70 F20 12.43 21.87 15.25

F8 38.28 426.28 57.13 F21 62.09 20.84 96.44

F9 8.79 16.88 8.86 F22 6.83 7.56 11.61

F10 8.16 12.66 10.65 F23 42.25 29.08 53.12

F11 4.32 5.18 6.13 F24 43.10 44.05 80.74

F12 6.12 7.10 8.81 F25 37.19 17.49 41.42

F13 2.81 3.86 10.69 F26 54.86 56.66 78.18

Apparently, both SiS and TS-S maintained higher semantic diversity
5We focus on analysing TS-S since this is the best selection approach among three proposed techniques.

63

compared to GP. TS-S and SiS preserved better semantic diversity than

GP on 24 and 22 problems, respectively. These results show that TS-

S achieved one of its objective in enhancing semantic diversity of GP

population.

The last result in this subsection is the percentage of rejecting the

null hypothesis (Nrejnull) in Wilcoxon test of TS-S and TS-R with tour-

size=3. This value is calculated in Equation 2.5.

Nrejnull =
Np

Ntest

(2.5)

in which Np is the number of the Wilcoxon test rejecting the null hy-

pothesis and Ntest is the total number of the Wilcoxon test conducted in

each selection technique. Table 2.7 shows that there is a large number

of the test that rejected the null hypothesis. This value of TS-R is often

from 30% to 70% and the value of TS-S is slightly higher (from 50% to

nearly 90%). Thus, the statistical test will have a considerable impact

Table 2.7: Average percentage of rejecting the null hypothesis in Wilcoxon test of
TS-R and TS-S with tour-size=3.

Pro TS-R TS-S Pro TS-R TS-S Pro TS-R TS-S

F1 25.32% 50.91% F10 71.95% 81.93% F19 39.83% 86.09%

F2 19.68% 53.97% F11 62.18% 84.25% F20 75.61% 84.27%

F3 30.75% 51.26% F12 43.31% 69.85% F21 66.13% 77.81%

F4 63.60% 74.61% F13 38.82% 78.64% F22 71.36% 80.85%

F5 59.65% 68.34% F14 66.87% 78.65% F23 43.22% 77.46%

F6 39.80% 47.88% F15 85.17% 87.53% F24 42.26% 73.06%

F7 33.69% 63.44% F16 82.01% 87.30% F25 35.80% 79.95%

F8 70.29% 88.25% F17 43.98% 69.74% F26 78.53% 84.77%

F9 62.91% 77.23% F18 82.29% 87.28%

64

to the selection process in TS-R and TS-S [17].

Overall, three statistics tournament selection methods find simpler

solutions and generalize better on unseen data even though they do not

improve the training error. Particularly, the solutions found by TS-S

are much less complex than those of GP. Moreover, the generalization

ability of TS-S is also better compared to GP and SiS.

2.5.2. Combining Semantic Tournament Selection with Semantic Crossover

The results in the previous subsection showed that three approaches

to statistical-driven semantic tournament selection, and particularly TS-

S, helped to increase the generalization ability of GP and find solutions

of lower complexity. Moreover, the simplicity of the design of these tech-

niques allows them to be easily combined with advances in GP search

operators. In this subsection, we present an improvement of TS-S (the

best approach among three proposed selection techniques) performance

by combining this technique with a recently proposed crossover - random

desired operator (RDO) [93]. In other words, we used RDO instead of

standard crossover in TS-S. The resulting GP system is called statistics

tournament selection with random desired operator and referred to as

TS-RDO. The reason for combining RDO with TS-S is that the training

error of TS-S is often worse than GP as shown in the previous subsec-

tion. Moreover, RDO has been showed to perform well on the training

data [82, 93]. We predict that the coupling of these semantic selection

and semantic crossover strategies in the form of TS-RDO will lead to

the improved performance.

65

We compare TS-RDO with TS-S, neatGP (a state of the art bloat

control approach) [112], RDO [93] and GP. The setting for RDO is simi-

lar to the setting in [82] in which a library of 1000 semantically different

individuals with max depth of 4 was randomly generated. The result on

the testing data of these methods is shown in Table 2.8. It can be seen

that TS-RDO achieved the best result among five tested techniques. The

testing error of TS-RDO is smallest on 13 and 15 problems with tour-

size=3 and tour-size=7, respectively. Furthermore, TS-RDO is more

frequently significantly better than GP compared to TS-S. TS-RDO is

significantly better than GP on 17 problems with tour-size=3 and on

22 problems with tours-size=7 while these values of TS-S are only 10

and 11, respectively. RDO achieved the second best (behind TS-RDO)

result. The testing error of RDO is often smaller than that of GP on

all problems. This is consistent with the result in Pawlak et al. [82, 93]

where RDO has been reported to perform well on unseen data.

Among five examined methods in Table 2.8, the performance of neatGP

is the worst. neatGP is only significantly better than GP on 2 and 4

problems, while it is significantly worse than GP on 9 and 10 problems

correspondingly with tour-size=3 and tour-size=7. This result is slightly

different with the result in Trujillo et al. [112] where neatGP is showed

performing equally well on unseen data compared to GP. The reason

could be that the tested problems in our experiments are more difficult

than those in [112]. Further research needed to examine this.

The average size of the solutions are presented in Table 2.9. The

size of the solutions obtained by both neatGP and TS-S are significantly

66

Table 2.8: Median of testing error of TS-RDO and four other techniques with tour-
size=3 (the left) and tour-size=7 (the right)

Pro GP neatGP TS-S RDO TS-RDO GP neatGP TS-S RDO TS-RDO

A. Benchmarking Problems

F1 8.55 12.5– 3.93+ 8.91 4.19+ 11.3 12.5 3.97+ 8.88 4.52+

F2 0.96 0.84+ 0.81+ 1.17– 0.97 0.98 0.84+ 0.82+ 1.19– 0.96

F3 33.4 32.2 14.2+ 3.73+ 1.61+ 33.4 32.2 13.5+ 5.92+ 1.87+

F4 0.06 0.12– 0.05 0.02+ 0.02+ 0.06 0.12– 0.06 0.02+ 0.02+

F5 0.135 0.135 0.131 0.14 0.14 0.135 0.135 0.131 0.14 0.14–

F6 1.78 1.74 1.90 0.00+ 0.00+ 1.34 1.74– 1.97 0.00+ 0.00+

F7 1.69 1.61 1.56 1.38+ 1.06+ 1.77 1.61 1.54+ 1.15+ 1.33+

F8 6.20 7.41– 6.90 0.00+ 0.00+ 7.38 7.41 7.38 0.00+ 0.00+

F9 1.66 2.41 1.58 0.01+ 0.11+ 1.71 2.41 1.59 0.23+ 0.23+

F10 41.1 41.0 35.8 0.00+ 0.00+ 56.5 41.0 34.1 0.47+ 0.00+

F11 0.08 0.30– 0.08 0.00+ 0.08+ 0.08 0.30– 0.08 0.00+ 0.08

F12 7.39 7.34 7.32+ 7.49– 7.32 7.42 7.34+ 7.33+ 7.40 7.28+

F13 0.88 0.87 0.87+ 0.88 0.87 0.88 0.87+ 0.87+ 0.88 0.87+

F14 128.7 131.3– 128.4 124.3 121.8+ 127.8 131.3– 122.7+ 125.9 121.7+

F15 4.95 5.92 4.74 3.24+ 3.24+ 4.23 5.92– 3.92 3.24+ 3.24+

B. UCI Problems

F16 20.9 33.7– 25.5 6.11+ 5.75+ 18.8 33.7– 24.5 6.46+ 5.91+

F17 4.99 4.95 4.78+ 5.50– 4.85 4.93 4.95 4.70+ 5.63– 4.74+

F18 8.72 28.49– 10.18 3.56+ 3.56+ 8.70 28.49– 8.79 3.63+ 3.61+

F19 41.3 38.3+ 36.1+ 41.5 32.3+ 42.1 38.3+ 36.8 + 39.1+ 32.2+

F20 9.54 9.18 9.56 12.0– 11.4– 9.42 9.18 9.52 12.2– 11.4–

F21 4.35 4.52– 4.37 4.19+ 4.17+ 4.27 4.52– 4.30 4.24 4.18+

F22 2.11 3.29– 1.93 1.09+ 1.15+ 1.86 3.29– 1.90 1.23+ 1.23+

F23 7.74 8.44 5.89+ 5.72 4.32+ 6.65 8.44– 8.04– 6.84 4.03+

F24 16.7 17.7 14.9+ 22.2– 14.8 17.5 17.7 13.3+ 23.3 14.3+

F25 8.70 8.89 7.99+ 12.2– 8.13 8.89 8.89 8.40+ 16.0– 7.07+

F26 46.05 47.26 46.05 46.75 45.84 50.33 47.26 47.63 46.10 45.40+

67

Table 2.9: Average of solutions size of TS-RDO and four other techniques with tour-
size=3 (the left) and tour-size=7 (the right)

Pro GP neatGP TS-S RDO TS-RDO GP neatGP TS-S RDO TS-RDO

A. Benchmarking Problems

F1 280 124 + 121 + 238 + 78+ 286 124 + 100 + 219 + 56+

F2 169 60 + 35+ 174 – 80 + 160 60 + 37+ 167 – 47 +

F3 263 112 + 124 + 153 + 59+ 262 112 + 98 + 169 + 48+

F4 171 60+ 79 + 320 – 207 – 184 60+ 80 + 311 – 146 +

F5 89 12+ 53 + 49 + 23 + 91 12+ 42 + 46 + 13 +

F6 167 45 + 50 + 40 + 20+ 137 45 + 37 + 50 + 18+

F7 142 50 + 48+ 240 – 83 + 133 50 + 38+ 197 – 73 +

F8 180 118 + 108 + 21 + 12+ 247 118 + 101 + 14 + 9+

F9 166 62 + 73 + 53 + 36+ 227 62 + 74 + 74 + 37+

F10 161 60 + 108 + 71 + 51+ 184 60 + 101 + 105 + 57+

F11 148 44 + 76 + 28 + 15+ 149 44 + 66 + 39 + 13+

F12 259 67 + 92 + 181 + 55+ 306 67 + 89 + 162 + 32+

F13 169 49 + 32 + 142 + 22+ 161 49 + 29 + 113 + 17+

F14 254 66+ 168 + 160 + 72 + 332 66 + 164 + 165 + 55+

F15 155 58 + 112 + 53 + 40+ 157 58 + 84 + 45 + 35+

B. UCI Problems

F16 200 103+ 152 + 279 – 186 + 262 103+ 203 + 326 – 165 +

F17 207 62 + 50+ 207 + 106 + 230 62 + 39+ 247 – 81 +

F18 160 71+ 119 + 305 – 196 – 226 71+ 132 + 380 – 178 +

F19 208 79 + 16 + 83 + 9+ 313 79 + 11 + 84 + 7+

F20 198 87+ 125 + 328 – 237 – 299 87+ 178 + 387 – 208 +

F21 178 63+ 97 + 199 – 113 + 236 63+ 71 + 243 – 102 +

F22 186 83 + 105 + 139 + 58+ 194 83 + 85 + 127 + 46+

F23 160 55+ 56 + 245 – 118 + 204 55 + 24 + 286 – 84 +

F24 164 68 + 45+ 240 – 97 + 220 68 + 20+ 291 – 46 +

F25 170 63 + 31+ 227 – 92 + 226 63 + 22+ 265 – 63 +

F26 161 40+ 107 + 70 + 50 + 249 40 + 107 + 58 + 29+

68

smaller than that of GP. Comparing between neatGP and TS-S, the table

shows that their solution’s size is roughly equal. For RDO, its solutions

are also often smaller than the solutions of GP. However, this seems

only true on the benchmarking problems. On most of UCI problems,

RDO’s solutions are more complex than the solutions of GP. The best

technique in Table 2.9 is TS-RDO. This method achieved the best result

on most problems regarding to the solution’s size. The average size of the

solutions found by TS-RDO is the smallest one on 12 and 14 problems

with tour-size=3 and tour-size=7, respectively.

Overall, TS-RDO improves the testing error, and further reduces the

size of the solutions compared to TS-S. Moreover, this technique per-

forms better than both RDO and neatGP, two recently proposed meth-

ods for improving GP performance and reducing GP code bloat.

2.5.3. Performance Analysis on The Noisy Data

This subsection investigates the performance of five methods in Sub-

section 2.5.2 on the noisy data. In data mining, it has been observed

that the problems will become harder when they are incorporated with

noise [101, 102]. We created a noisy dataset from the original one by

adding 10% Gaussian noise with zero mean and one standard deviation

in the all features and objective function of the problems in Table 2.1.

Moreover, the noise is installed for both the training and the testing

data. The testing error on the noisy data is shown in Table 2.10.

There are some interesting results observed from Table 2.10. First,

TS-RDO performs slightly more consist on the noisy data compared to

69

Table 2.10: Median of testing error on the noisy data with tour-size=3 (the left) and
tour-size=7 (the right)

Pro GP neatGP TS-S RDO TS-RDO GP neatGP TS-S RDO TS-RDO

A. Benchmarking Problems

F1 9.68 13.1– 5.88+ 10.3 7.99 9.19 13.1– 5.13+ 10.2 6.53+

F2 0.92 0.84 0.81 1.17– 1.01– 0.90 0.84 0.79+ 1.14– 0.92

F3 29.6 32.2 15.9+ 7.06+ 6.28+ 34.8 32.2 16.8+ 7.30+ 6.28+

F4 0.15 0.19– 0.145 0.143 0.136+ 0.151 0.19– 0.147 0.143 0.138+

F5 0.14 0.14 0.139+ 0.141– 0.14 0.14 0.14 0.137+ 0.14 0.14

F6 2.14 2.19 2.10 4.03– 1.36+ 2.22 2.19 2.07+ 2.71 1.39+

F7 1.74 1.73 1.71 1.64 1.61 1.79 1.73 1.64+ 1.78 1.51+

F8 66.9 66.9 66.8+ 68.3– 66.8+ 67.1 66.9 66.8+ 68.0 66.6+

F9 5.52 5.68 5.34 5.19 5.04 5.49 5.68 5.24 4.98+ 5.10+

F10 63.8 56.4 56.2 49.2+ 46.3+ 57.0 56.4 55.0 49.6+ 47.1+

F11 0.20 0.32– 0.20 0.20 0.20+ 0.20 0.32– 0.20 0.20+ 0.20+

F12 7.40 7.41 7.31+ 7.54– 7.36 7.44 7.41+ 7.34+ 7.44 7.30+

F13 0.90 0.90 0.90+ 0.91 0.90 0.90 0.90 0.90+ 0.90 0.90+

F14 122.8 128.8– 122.6 122.8 122.6+ 122.8 128.8– 122.6 122.8 122.5+

F15 5.01 6.21– 5.07 4.15+ 4.12+ 4.20 6.21– 4.13 4.13+ 4.12+

B. UCI Problems

F16 36.4 36.3 37.2 12.0+ 11.4+ 34.5 36.3 37.5 12.1+ 11.55+

F17 5.61 5.45 5.42+ 6.41– 5.34+ 5.70 5.45 5.30+ 6.55– 5.26+

F18 48.3 52.9– 46.6 37.8+ 36.8+ 48.0 52.9– 46.3 38.6+ 36.7+

F19 42.8 40.2+ 37.7+ 39.5+ 35.6+ 44.9 40.2+ 37.7+ 38.4+ 35.6+

F20 9.22 8.72+ 9.13 11.1– 10.5– 9.33 8.72+ 9.16 11.7– 10.3–

F21 4.53 4.67– 4.54 4.36+ 4.32+ 4.49 4.67– 4.50 4.42 4.35+

F22 5.91 6.19– 5.80 5.97 5.43+ 5.87 6.19– 5.91 5.93 5.50+

F23 8.84 9.15 5.81+ 8.96 6.07+ 7.52 9.15– 9.19– 9.29– 6.01+

F24 20.2 19.1 17.1+ 23.7 16.5+ 22.7 19.1 16.9+ 29.1 16.0+

F25 9.36 9.42 8.38+ 14.8– 8.00+ 9.58 9.42 8.50+ 13.9– 7.38+

F26 46.25 46.58 46.23 46.26 46.16 46.83 46.58 46.61 46.72 46.62

70

the noiseless data. The best testing error is mostly achieved by TS-RDO

on all problems with both values of the tournament size. Second, the

performance of RDO on the noisy data is not as good as on the noiseless

data. This technique only achieved the best performance on one problem

with tour-size=7. This evidenced that RDO is prone to be over-fitted on

the noisy problems. Third, the performance of TS-S is also robust and

more consistent than on the noiseless data. This method is significantly

better than GP on 11 and 13 problems with tour-size=3 and tour-size=7

while these values on the noiseless data are only 10 and 11, respectively.

Last, neatGP is still the worst method regarding to the generalization

ability.

Since the solution’s size of the tested methods on the noisy data is

similar to the result on the noiseless data, it is shown in the appendix.

Alternately, Figure 2.1 presents the testing error and the population

size on four typical problems over the evolutionary process 6. It can be

seen that TS-RDO often achieved the lowest testing error over the whole

evolution process. TS-RDO quickly achieved a good testing error and

often kept improving this value. On one problem, F25, the testing error

of TS-RDO slightly goes up at the last generations. However, it does

not go as high as that of RDO. The second best technique is often RDO.

However, this crossover is over-fitted after few generations particularly

on the UCI problems like F22 and F25. The figure also shows that the

testing error of GP and neatGP are usually much higher than others.

Last, TS-S is the technique that has less over-fitted impact compared to
6The figures for other problems are presented in the supplement of the dissertation at

https://github.com/chuthihuong/GP.

71

0 20 40 60 80 100
Generations

5

10

15

20

25

30

35
M

ed
ia

n
of

 fi
tte

st
F3

GP
neatGP
 TS-S
 RDO
 TS-RDO

0 20 40 60 80 100
Generations

50

100

150

200

250

M
ea

n
of

 p
op

ul
at

io
n

siz
e

F3

GP
neatGP
 TS-S
 RDO
 TS-RDO

0 20 40 60 80 100
Generations

0.14

0.15

0.16

0.17

0.18

0.19

M
ed

ia
n

of
 fi

tte
st

F4

GP
neatGP
 TS-S
 RDO
 TS-RDO

0 20 40 60 80 100
Generations

0

50

100

150

200

250

300

M
ea

n
of

 p
op

ul
at

io
n

siz
e

F4

GP
neatGP
 TS-S
 RDO
 TS-RDO

0 20 40 60 80 100
Generations

6

7

8

9

M
ed

ia
n

of
 fi

tte
st

F22

GP
neatGP
 TS-S
 RDO
 TS-RDO

0 20 40 60 80 100
Generations

25

50

75

100

125

150

175

200

M
ea

n
of

 p
op

ul
at

io
n

siz
e

F22

GP
neatGP
 TS-S
 RDO
 TS-RDO

0 20 40 60 80 100
Generations

7

8

9

10

11

12

13

14

15

M
ed

ia
n

of
 fi

tte
st

F25

GP
neatGP
 TS-S
 RDO
 TS-RDO

0 20 40 60 80 100
Generations

0

50

100

150

200

M
ea

n
of

 p
op

ul
at

io
n

siz
e

F25

GP
neatGP
 TS-S
 RDO
 TS-RDO

Figure 2.1: Testing error and Population size over the generations with tour-size=3.
72

others. This selection is only the technique that the trend of the testing

error is mostly downward.

In terms of the growth of the population size, three methods includ-

ing neatGP, TS-S and TS-RDO do not incur much code growth in GP

population. The population size of these techniques is only slightly in-

creased during the course of the evolution. Conversely, the population

size of GP and RDO is quickly grown and it is much higher than that

of neatGP, TS-S and TS-RDO.

The last experimental result analysed in this chapter is the average

running time of the five methods. The average running time over 100

runs is shown in Table 2.11. Apparently, TS-S is often the fastest sys-

tem among all tested methods especially with tour-size=3. This is not

surprising since, the code growth of TS-S’s population is much less than

GP (Figure 2.1).

All other techniques need a longer running time compared to GP. For

neatGP, since we used its implementation in Python, the computational

time is larger than that of GP and others. RDO also requires a longer

time to run compared to GP and this is consistent with the result in

previous research [82]. Finally, although TS-RDO is slower than GP,

its execution time has been considerably reduced compared to RDO.

Thus, by combining TS-S with RDO, we achieved better testing error

compared to all tested methods. Moreover, this technique also helps

to reduce GP code growth and consequently lessens the computational

expensive of RDO.

Table 2.12 presents the average execution time of the selection step

73

Table 2.11: Average running time in seconds on noisy data with tour-size=3 (the left)
and tour-size=7 (the right)

Pro GP neatGP TS-S RDO TS-RDO GP neatGP TS-S RDO TS-RDO

A. Benchmarking Problems

F1 4 863– 1+ 32– 10– 3 863– 2+ 34– 9–

F2 3 501– 1+ 29– 10– 2 501– 1+ 32– 10–

F3 4 831– 1+ 29– 11– 2 831– 2 32– 11–

F4 12 686– 6+ 160– 117– 9 686– 8 144– 116–

F5 20 177– 18 690– 556– 24 177– 25 627– 595–

F6 3 522– 1+ 104– 85– 17 522– 2+ 142– 86–

F7 4 448– 2+ 75– 34– 3 448– 3 93– 37–

F8 51 2439– 35+ 1647– 1240– 69 2439– 72 1674– 1259–

F9 49 584– 36 1762– 1430– 53 584– 71 1755– 1556–

F10 67 710– 59 1937– 1536– 67 710– 90 1856– 1738–

F11 69 573– 59 2095– 1239– 72 573– 87 1924– 1257–

F12 88 678– 62 1558– 1118– 91 678– 104 1387– 1078–

F13 69 396– 36+ 1697– 1235– 69 396– 61 1530– 1259–

F14 109 867– 106 1571– 1134– 117 867– 136 1745– 1204–

F15 54 672– 48 1478– 1228– 50 672– 74– 1390– 1255–

B. UCI Problems

F16 27 1081– 32 1195– 1050– 39 1081– 58 1602– 1072–

F17 9 398– 4+ 137– 65– 8 398– 6 192– 67–

F18 36 821– 37 1782– 1282– 40 821– 62– 2293– 1406–

F19 8 706– 1+ 135– 57– 9 706– 3+ 199– 58–

F20 94 879– 41+ 1755– 1084– 120 879– 66+ 2280– 1063–

F21 58 535– 45 1645– 1436– 66 535– 66 2083– 1512–

F22 8 670– 5+ 184– 133– 8 670– 9 222– 136–

F23 5 365– 2+ 68– 31– 3 365– 2 81– 31–

F24 4 367– 1+ 53– 30– 3 367– 2 103– 28–

F25 4 395– 1+ 53– 27– 4 395– 2 78– 25–

F26 522 408 484 40 389– 35 838– 474 408 614– 39 577– 41 971–

74

in GP, TS-S and the average execution time of a run. It can be seen

that the selection step in TS-S is slower than that of GP. However, this

overhead is mostly acceptable. Moreover, since TS-S helps to reduce the

code growth of GP population, the overall computational time of a run

of TS-S is often smaller than that of GP.

We also observed that the execution time of the selection step in TS-S

is often higher on the problems with a large number of fitness cases (F8,

F9, etc.) than on the problems with a small number of fitness cases (F1,

F1, etc.). On the first problems group, it is possible to further reduce the

Table 2.12: Average execution time of a run (shorted as Run) and average execution
time of selection step (shorted as Tour) of GP and TS-S in seconds on
noisy data with tour size=3.

Pro
GP TS-S

Pro
GP TS-S

Run Tour Run Tour Run Tour Run Tour

F1 4 0.02 1 0.3 F14 109 0.01 106 14.8

F2 3 0.02 1 0.3 F15 54 0.02 48 16.5

F3 4 0.02 1 0.2 F16 27 0.01 32 10.7

F4 12 0.02 6 0.9 F17 9 0.01 4 1.3

F5 20 0.01 18 5.4 F18 36 0.01 37 14.1

F6 3 0.01 1 0.2 F19 8 0.01 1 0.9

F7 4 0.01 2 0.5 F20 94 0.01 41 10.2

F8 51 0.02 35 17.0 F21 58 0.01 45 14.3

F9 49 0.02 36 17.2 F22 8 0.01 5 2.0

F10 67 0.01 59 16.2 F23 5 0.02 2 0.6

F11 69 0.01 59 15.8 F24 4 0.02 1 0.6

F12 88 0.02 62 16.1 F25 4 0.02 1 0.6

F13 69 0.02 36 16.8 F26 522 0.04 484 278.6

computational time of TS-S by conducting the statistical test on only

75

a subset of the fitness cases. An extra experiment was conducted to

examine this hypothesis by applying the Wilcoxon test on 100 random

values of fitness cases on the problems where the number of fitness cases

is greater than 100. The results of this experiment (Table 2.13) show

that this technique (TS-S-100) helps to further reduce the running time

of TS-S (about 50%) while its testing error is mostly preserved. As a

result, the average running time of TS-S-100 is always much smaller than

that of GP.

Table 2.13: Median of testing error and average running time in seconds on noisy data
with tour-size=3 when the statistical test is conducted on 100 fitness
cases. The left is the median of the testing error and the right is the
average running time.

Pro F.cases GP TS-S TS-S-100 GP TS-S TS-S-100

F5 500 0.14 0.14+ 0.14 20.40 17.67 10.41+

F8 1000 66.95 66.84+ 66.81+ 51.42 35.03 9.11+

F9 1000 5.52 5.34+ 5.33 48.53 36.19+ 11.09+

F10 1000 63.89 56.21+ 55.04+ 66.99 59.42+ 31.00+

F11 1000 0.199 0.198+ 0.198 68.84 58.67+ 32.63+

F12 1000 7.4 7.31+ 7.25+ 87.78 61.51+ 26.29+

F13 1000 0.901 0.896+ 0.895+ 69.03 35.92+ 14.90+

F14 1000 122.86 122.67 122.59 108.65 106.48 69.57+

F15 1000 5.01 5.07– 4.13 54.01 48.16 18.70+

F16 800 36.44 37.20– 55.82– 27.33 32.30 18.02+

F18 1000 48.33 46.60+ 47.49 36.02 36.75 16.57+

F20 750 9.22 9.13 8.80+ 93.63 41.50 23.61+

F21 1000 4.53 4.54– 4.67– 58.21 45.36 17.06+

F22 160 5.91 5.80+ 5.80 7.63 4.89 3.34+

F26 5000 46.25 46.23 52.65– 522.26 484.13 + 17.01+

76

2.6. Conclusion

In this chapter, we introduced the idea of using a statistical test as

part of an approach to semantic selection, which utilizes the error vectors

of GP individuals. We proposed three variations of tournament selection

that employ statistical analysis of these semantic vectors to select the

winner for the mating pool. The proposed techniques aim at enhancing

the semantic diversity and reducing the code bloat in GP population.

The effectiveness of the approach was examined on a large number of

symbolic regression problems including GP benchmark problems and ad-

ditional problem instances drawn from UCI dataset. In the experimental

results we observed that, the proposed techniques especially TS-S was

better than standard tournament selection and neatGP (the state of the

art method for controlling GP code bloat) in improving GP generalisa-

tion and reducing GP code growth.

One of the advantages of the proposed method is its simplicity in

design and implementation. This allows it to be further improved by

combining it with advanced techniques in GP. In this chapter, the best

approach to semantic tournament selection, TS-S, was combined with

the recently proposed semantic crossover, RDO. The resulting method,

TS-RDO, achieved better testing error and reduced code growth to a

greater extent. In addition, noisy instances of each problem were gener-

ated and performance of the various strategies examined demonstrating

that the proposed methods have a good ability to perform well on noisy

problems.

77

Chapter 3

SEMANTIC APPROXIMATION FOR
REDUCING CODE BLOAT

Code bloat is a phenomenon in Genetic Programming (GP) charac-

terized by the increase in individual size during the evolutionary process

without a corresponding improvement in fitness. Bloat negatively af-

fects GP performance, since large individuals are more time consuming

to evaluate and harder to interpret. In this chapter, we propose a se-

mantic approximation technique allowing to grow a (sub)tree that is se-

mantically approximate to a given target semantics. Based on that, two

approaches for reducing GP code bloat are introduced. The bloat control

methods are tested on regression and time series forecasting problems.

The experimental results showed that our methods help to significantly

reduce code bloat and improve the performance of GP. The results in

this chapter have been introduced in [C2, C5, C6, C7].

3.1. Introduction

GP has been successfully applied to many real-world problems; how-

ever, it is still not widely accepted as other machine learning approaches

e.g. Support Vector Machines or Linear Regression [65]. This is due

to some important shortcomings of GP such as its poor local structure,

ill-defined fitness landscape and code bloat [88]. Among them, bloat

78

phenomenon is one of the most studied problems. Bloat happens when

individuals grow too large without a corresponding improvement in fit-

ness [99, 119]. Bloat causes several problems to GP: the evolutionary

process is more time consuming, it is harder to interpret the solutions,

and the larger solutions are prone to overfitting. To date, many tech-

niques have been proposed to address bloat. These techniques range

from limiting individual size to designing specific genetic operators for

GP [21, 53, 60, 63, 93, 104, 105, 106, 107].

In recent years, many studies have shown that the integration of se-

mantic information into GP is highly effective and efficient. In this chap-

ter, we propose a new usage of semantics in GP. Specifically, a technique

for generating a new tree that is semantically approximate (similar) to

the target semantics is introduced and used for reducing code bloat in

some different strategies.

In this chapter, we present a novel approach to control GP bloat by

using semantic information. The main contributions of this chapter are:

� This chapter demonstrates how the idea of semantic approximation

can be utilized to reduce code growth in GP. A new proposed tech-

nique for reducing code bloat called Semantic Approximation Tech-

nique (SAT) is introduced. SAT allows to grow a small (sub)tree of

similar semantics to a target semantic vector.

� Using SAT, two approaches for lessening GP code bloat are pro-

posed. The first method is Subtree Approximation (SA) in which a

random subtree is selected in an individual and this subtree is re-

79

placed by a small tree of approximate semantics. The second method

is Desired Approximation (DA) where a new tree is grown to approx-

imate the desired semantics of the subtree instead of its semantics.

� The performance of the bloat control strategies is examined and

compared with a number of GP and non-GP systems on a large set

of regression problems employing the benchmark and UCI problems.

We observe that the new proposed methods help to significantly

reduce code growth and improve the performance of the evolved

solutions when compared to the tested methods.

� Some variants of SAT are also introduced. Base on that, several

other methods for reducing GP code bloat are proposed. Further-

more, all proposed bloat control methods are intensively experi-

mented on a real-world time series forecasting problem with dif-

ference GP parameters. The results show that these methods also

robust with time series forecasting problems.

The remainder of this chapter is organised as follows. In the next

section, we review the related work on managing code bloat in GP. The

semantic approximation technique and some strategies for lessening code

bloat are presented in Section 3.3. Then, Section 3.4 presents the exper-

imental settings adopted in the chapter. After that, Section 3.5 analyses

and compares the performance of the proposed strategies with standard

GP and some recent related methods. Several properties of our proposed

methods are analysed in Section 3.6. Section 3.7 compares the proposed

methods with four popular machine learning algorithms. Section 3.8

80

applies and analyses the proposed methods on a real-world time series

forecasting problem. Finally, Section 3.9 concludes the chapter.

3.2. Controlling GP Code Bloat

Due to the negative impact of code bloat, many approaches have been

proposed to control bloat and lessen its impact on GP performance.

Generally, the bloat control methods can be divided into three main

groups: constraining individual size, adjusting selection techniques and

designing genetic operators.

3.2.1. Constraining Individual Size

Earlier techniques are often based on limiting the size of individuals

to prevent bloat [50, 63]. Any offspring with the size or depth above the

limits is rejected and replaced by one of its parents. Some later research

used the dynamic limits that are derived from the size of the best-so-

far individual [104] or from the average size of the population [95, 96].

Overall, these approaches have relatively succeeded in controlling code

bloat. However, it is difficult to select an appropriate value of the limits.

If the limits are set at too small values, the improvement of fitness values

may be prevented.

3.2.2. Adjusting Selection Techniques

The second approach is to use more than one fitness value in the selec-

tion. The parsimony pressure technique punishes the large individuals

in the fitness function or prefers to choose smaller individuals in selec-

tion methods. The fitness is a linear combination of the individual size

81

and its fitness value [9, 13], or is assigned a very bad fitness for large

individuals in the population [95, 96].

Lexicographic Parsimony Pressure (LPP) [59] compares two random

individuals in Boolean and Artificial Ant problems using two criteria:

fitness and size. If two individuals have different fitness then the bet-

ter fitness individual is chosen. Conversely, the smaller individual is

selected. Double Tournament [58] selects individuals using two tourna-

ments: one based on fitness and one based on size. The winners of fitness

tournament go on to compete in the tournament using size to select the

smaller individuals for the mating pool. Biased Multi-Objective Parsi-

mony Pressure method (BMOPP) [89] sorts individuals into a Pareto

layer based on the concept of denomination: an individual A dominates

an individual B if A is as good as B in all objectives and is better than

B in at least one objective. After the Pareto layers have been formed,

individuals are selected using tournament selection. The individuals are

compared with each other based on their fitness with probability p and

based on their respective Pareto layers with probability 1− p.

An extension of LPP is Spatial Structure with Lexicographic Parsi-

monious Elitism (SS+LPE) [20]. SS+LPE implicitly controls bloat by

mapping the population onto a 2D torus and defines a neighborhood

relationship between individuals on this topology. At each generation,

an individual is mated with one of its neighbors. The offspring is then

compared with the parent using LPP to choose the winner for the next

generation. In Chapter 2, we propose Statistics Tournament Selection

with Size (TS-S) for reducing code bloat. To select the winner in a tour-

82

nament, TS-S uses a statistical test on the error vector of the sampled

individuals. For a pair of individuals, if the test shows that the individ-

uals are different, then the individual with a better fitness value is the

winner. Conversely, the individual with smaller size is chosen.

3.2.3. Designing Genetic Operators

The third approach has received a considerable attention, lately. Alfaro-

Cid et al. [2] proposed Prune and Plant (PP) operator that splits an

individual into two ones. A random subtree is selected and replaced

by a terminal to create the first offspring. The selected subtree is also

added to the population as the second offspring. Operator Equalisation

(OE) [21] focuses explicitly on controlling the distribution of program

sizes at each generation. OE determines a target histogram for the indi-

viduals in which the width of the bin determines the size of the programs

belonging to the bin, and the height represents the number of individuals

in the bin. OE then directs the population to the target distribution by

accepting or rejecting each newly created individual into its correspond-

ing bin. However, OE is computationally expensive because it requires

to generate and reject many individuals that do not fit the desired target

distribution.

Silva et al. [103, 106] used a Flat Target Distribution (Flat-OE) to

address the shortcoming of OE. In other words, the range of the distribu-

tion remains constant throughout the search. Empirical results suggest

that Flat-OE can control bloat while maintaining the quality of obtained

solutions. Gardner et al. [31] extended OE by using the cutoff point con-

83

cept and the accept–reject method to adjust the target distribution. The

cutoff point is the size of the smallest individual which reaches a certain

percentage of the best fitness so far. The bins are then only applied to

the individuals of larger size than the cutoff point. Trujillo et al. [112]

controlled code bloat by using neat-crossover operator in neatGP sys-

tem. This operator first identifies the shared topological structure Sij

between parents, and then swaps of a single internal node between the

parents in Sij. In this way, offspring maintain the topological structure

of their parents. Thus, the size of the resultant tree does not increase

after crossover. neatGP was then extended to neatGP-LS by integrating

with local search [41, 111].

Recently, using semantic information to control bloat, two mutation

operators, including MORSM and MODO [28] were proposed. These op-

erators choose randomly a subtree in a parent and replace it with a ran-

dom subprogram taken from a Restricted Candidate List (RCL). RCL is

built from a pre-defined library of subprograms so that the subprograms

in RCL are not dominated for a given set of objectives (the semantic

distance, the individual length). The difference between MORSM and

MODO is in the first objective. While MORSM minimizes the seman-

tic distance between the selected subtree and the subprograms, MODO

minimizes the distance between the desired semantics of the selected

subtree and the semantics of subprograms. In the next section, we will

introduce the semantic approximation technique that allows to generate

a new tree of semantically similar to a given target semantics. Using

this proposed technique, we will propose some new genetic operators for

84

reducing GP code bloat.

3.3. Methods

This section introduces a new proposed semantic approximation tech-

nique. Based on this technique, two approaches for reducing GP code

bloat are continuously proposed next. The first approach replaces a ran-

dom subtree in an individual by a smaller tree of approximate semantics.

The second approach replaces a random subtree by a smaller tree that

is semantically approximate to the desired semantics of this subtree.

3.3.1. Semantic Approximation

Searching for a tree that is semantically approximate or similar to a

target semantic vector has been important in several researches [79, 93].

Nguyen et al. [79] searched for a pair of semantically similar subtree by

repeatedly sampling from two parents. Pawlak and Krawiec [93] found

a tree that is semantically closest to the desired semantics from a pre-

defined library. In this chapter, we propose a novel approach to search for

a tree of approximate semantics to the target semantics. This approach

is called the Semantic Approximation Technique (SAT).

Let s = (s1, s2, ..., sn) be the target semantics, then the objective of

SAT is to grow a tree in the form: newTree = θ ·sTree (sTree is a small

randomly generated tree) so that the semantics of newTree is as close

to s as possible. Let q = (q1, q2, ...qn) be the semantics of sTree, then

the semantics of newTree is p = (θ · q1, θ · q2, ..., θ · qn). To approximate

s, we need to find θ so that the squared Euclidean distance between two

vectors s and p is minimal. In other words, we need to minimize function

85

f(θ) =
∑n

i=1(θ · qi − si)
2 with respect to θ. The quadratic function f(θ)

achieves the minimal value at the vertex, θ∗ calculated in Equation 3.1:

θ∗ =

∑n
i=1 qisi∑n
i=1 q

2
i

(3.1)

After finding θ∗, newTree = θ∗ ·sTree is grown, and this tree is called

the approximate tree of the semantic vector s.

Figure 3.1: An example of Semantic Approximation

Figure 3.1 presents an example of growing a tree in the form: newTree =

θ ·(1+X) using SAT. In this figure, X = {0.1, 0.2, 0.3} is the fitness cases

of the problem, s = (0.5, 0.6, 0.7) is the target semantics, and θ∗ ≈ 0.5.

Compared to the previous techniques [79, 93], SAT has some advan-

tages. First, SAT is easier to implement and faster to execute than the

techniques in [79, 93]. Subsequently, GP systems based on SAT will run

faster. Second, GP operators using SAT will create the population of

higher diversity than the operators that only search for the subtree in

other individuals [79] or from a pre-defined library [93]. Thus, SAT-based

86

operators may achieve better performance than SSC [79] and RDO [93].

Last but not least, the size of newTree can be constrained by limiting

the size of sTree, and this will be used for designing two approaches to

reduce GP code bloat in the next subsections.

3.3.2. Subtree Approximation

Based on SAT, we propose two techniques for reducing code bloat in

GP. The first technique is called Subtree Approximation (shortened as

SA). At each generation, after applying the genetic operators to generate

the next population, k% largest individuals in the population are selected

Algorithm 6: Subtree Approximation

Input: Population size: N , Number of pruning: k%.

Output: a solution of the problem.

i←− 0;

P0 ←− InitializePopulation();

Estimate fitness of all individuals in P0;

repeat

i←− i+ 1;

P′
i ←− GenerateNextPop(Pi−1);

pool←− get k% of the largest individuals of P′
i;

Pi ←− P′
i − pool;

foreach I ′ ∈ pool do

subTree←− RandomSubtree(I ′);

S ←− Semantics(subTree)

newTree←− SemanticApproximation(S);

I ←− Substitute(I ′, subTree, newTree);

Pi ←− Pi ∪ I;

Estimate fitness of all individuals in Pi;

until Termination condition met ;

return the best-so-far individual;

87

for pruning. Next, for each selected individual, a random subtree is

chosen and replaced by an approximate tree of smaller size. Algorithm 6

presents this technique in detail.

In Algorithm 6, function InitializePopulation() creates an initial pop-

ulation using the ramped half-and-half method. Function Generate-

NextPop(Pi−1) generates the template population using genetic opera-

tors (crossover and mutation). The next step selects k% of the largest

individuals in the template population (P′
i) and stores them in a pool.

The loop after that is used to simplify the individuals in the pool.

For each individual I ′ in the pool, a random subtree subTree in I ′ is se-

lected using function RandomSubtree(I ′), and a small tree sTree is ran-

domly generated 1. The semantics of subTree is calculated and assigned

to S (S becomes the target semantics) with function Semantics(subTree).

A newTree = θ ·sTree is grown to approximate S by using the semantic

approximation technique in function SemanticApproximation(S). Fi-

(a) (b) (c)

Figure 3.2: (a) the original tree with the selected subtree, (b) the small generated
tree, and (c) the new tree obtained by substituting a branch of tree (a)
with an approximate tree grown from the small tree (b).

1To reduce bloat, the size of sTree needs to be smaller than the size of subTree− 2. If this condition is not satisfied,
the process of selecting subTree and generating sTree is repeated. If no pair of subTree and sTree is found after 100
trials, individual I′ is added to the next generation.

88

nally, individual I ′ is simplified to form individual I by replacing subTree

with newTree. Individual (I) is added to the next generation, Pi. Fig-

ure 3.2 illustrates how to prune an individual by using SAT. The pop-

ulation at the generation i is then evaluated using the fitness function,

and the whole process is repeated until the termination condition meets.

3.3.3. Desired Approximation

The second technique attempts to achieve two objectives simultane-

ously: lessen GP code bloat and enhance its ability to fit the training

data. This technique is called Desired Approximation (shortened as DA).

Algorithm 7: Desired Approximation

Input: Population size: N , Number of pruning: k%.

Output: a solution of the problem.

i←− 0;

P0 ←− InitializePopulation();

Estimate fitness of all individuals in P0;

repeat

i←− i+ 1;

P′
i ←− GenerateNextPop(Pi−1);

pool←− get k% of the largest individuals of P′
i;

Pi ←− P′
i − pool;

foreach I ′ ∈ pool do

subTree←− RandomSubtree(I ′);

D ←− DesiredSemantics(subTree);

newTree←− SemanticApproximation(D);

I ←− Substitute(I ′, subTree, newTree);

Pi ←− Pi ∪ I;

Estimate fitness of all individuals in Pi;

until Termination condition met ;

return the best-so-far individual;

89

DA is similar to RDO [93] in which it first calculates the desired seman-

tics for a randomly selected subtree in an individual using the semantic

backpropagation algorithm [53, 93]. However, instead of searching for a

tree in a pre-defined library, DA uses SAT to grow a small tree that is

semantically approximate to the desired semantics. Algorithm 7 thor-

oughly describes DA.

The structure of Algorithm 7 is very similar to that of SA. The main

difference is in the second loop. First, the desired semantics of subTree

is calculated by using the semantic backpropagation algorithm instead

the semantics of subTree. Second, newTree is grown to approximate the

desired semantics D of subTree instead of its semantics S. By replacing

subTree by a newTree that is semantically approximate to the desired

semantics, it is predicted that the individual will be closer to the optimal

value.

3.4. Experimental Settings

We tested SA and DA on twenty-six regression problems with the same

dataset of Chapter 2, including fifteen GP benchmark problems recom-

mended in the literature [120], and an additional eleven real problems

are taken from UCI machine learning repository [4]. The abbreviation,

the name, number of features, number of training and testing samples

of each problem are presented in Table 2.1.

The GP parameters used in our experiments are typical values that

are often used by GP researchers and GP practitioners [49]. They are

shown in Table 3.1. The raw fitness is the root mean squared error on

90

all fitness cases. Therefore, smaller values are better. For each problem

and each parameter setting, 30 runs were performed.

Table 3.1: Evolutionary parameter values

Parameters Value

Population size 500

Generations 100

Tournament size 3

Crossover, mutation probability 0.9; 0.1

Function set +,−, ∗, /, sin, cos
Terminal set X1, X2, ..., Xn

Initial Max depth 6

Max depth 17

Max depth of mutation tree 15

Raw fitness root mean squared error on all fitness cases

Trials per treatment 30 independent runs for each value

Elitism Copy the best individual to the next generation.

We compared SA and DA with standard GP (referred to as GP),

Prune and Plant (PP) [2], TS-S and RDO [93]. PP is probably the most

similar technique to SA, RDO is the inspiration for DA and TS-S is the

most recently proposed bloat control method. The probability of PP

operator was set to 0.5. This is the value for the best performance of

PP [2, 3]. For RDO, we used a pre-defined library of 1000 subprograms

with max depth of 2.

For SA and DA, 10% and 20% of the largest individuals in the popula-

tion were selected for pruning. The corresponding versions were shorted

as SA10, SA20, DA10 and DA20. Moreover, a dynamic version of SA

(shortened as SAD) and DA (referred to as DAD) was also tested in

91

which the individuals with the size greater than the average of the pop-

ulation are selected for pruning. The newTree was grown from sTree

with the max depth of 2.

The source code of all tested methods are available for download2.

All techniques were implemented in Java. Moreover, the same comput-

ing platform (Operating system: Windows 7 Ultimate (64bit), RAM

16.0GB, Intel®Core TM i7-4790 CPU@3.60GHz) was used in every ex-

periment in this chapter.

Wilcoxon signed rank test with the confidence level of 95% is used

across all the result tables in this chapter. If the test shows that a

method is significantly better than GP, this result is marked + at the

end. Conversely, if it is significantly worse than GP, this result is marked

- at the end. Moreover, if the result of a method is better than GP, it is

printed bold face, and if it is the best value, it is printed underline.

3.5. Performance Analysis

This section analyses the performance of the proposed methods us-

ing four popular metrics: training error, testing error, solution size and

running time.

3.5.1. Training Error

Training error is useful for analysing the learning process of GP. Thus,

it is first analysed in this section. The mean of the best fitness values in

the training process across 30 runs is presented in Table 3.2.

The table shows that RDO achieved the smallest training error on
2https://github.com/chuthihuong/SemanticApproximation

92

most tested problems. This is not surprising since the main objective

Table 3.2: Mean of the best fitness

ProGP RDO PP TS-S SA10 SA20 SAD DA10 DA20 DAD

A. Benchmarking Problems

F1 0.47 0.07+ 1.60– 0.97– 0.52 0.89– 1.30– 0.41 0.97– 1.17–

F2 0.08 0.02+ 0.17– 0.16– 0.09 0.16– 0.19– 0.09 0.15– 0.17–

F3 1.91 0.06+ 4.45– 1.79 1.08+ 2.33 4.12– 0.96+ 2.2 3.58–

F4 0.01 0.00+ 0.02– 0.01 0.01 0.01 0.01 0.01 0.01 0.01

F5 0.01 0.01 0.01– 0.01 0.01+ 0.01– 0.01– 0.01 0.01 0.01

F6 0.12 0.00+ 0.23– 0.26– 0.09 0.07+ 0.06+ 0.05+ 0.03+ 0.01+

F7 0.1 0.05+ 0.15– 0.15– 0.12 0.14– 0.12– 0.09 0.12– 0.11

F8 0.16 0.01+ 0.42– 0.21– 0.00+ 0.05+ 0.06+ 0.00+ 0.00+ 0.00+

F9 0.51 0.05+ 1.26– 0.91– 0.06+ 0.83 1.88– 0.13+ 0.37 1.04–

F10 1.13 0.55+ 1.87– 1.08 0.95 1.75– 2.64– 0.92+ 1.54– 2.39–

F11 0.01 0.00+ 0.01– 0.00 0.00+ 0.00 0.00 0.00+ 0.00+ 0.00+

F12 0.26 0.25 0.27– 0.27– 0.25 0.25 0.26 0.25 0.25 0.25

F13 0.03 0.03 0.03+ 0.04– 0.03 0.03+ 0.03+ 0.03+ 0.03+ 0.03+

F14 9.9 7.74 27.02– 13.10– 10.45 26.50– 37.12– 7.57 17.06– 26.35–

F15 0.38 0.32 0.51– 0.37 0.35 0.48– 0.49– 0.35 0.46– 0.48–

B. UCI Problems

F16 0.41 0.11+ 1.03– 0.40 0.17+ 0.22+ 0.22+ 0.14+ 0.17+ 0.18+

F17 0.47 0.39+ 0.52– 0.51– 0.48– 0.52– 0.53– 0.46 0.50– 0.51–

F18 0.4 0.13+ 1.32– 0.42 0.19+ 0.27+ 0.30 0.15+ 0.16+ 0.17+

F19 3.28 2.97+ 3.68– 3.77– 3.34– 3.43– 3.44– 3.07+ 3.26 3.29

F20 0.51 0.46+ 0.69– 0.52 0.53– 0.59– 0.63– 0.52 0.58– 0.61–

F21 0.17 0.17+ 0.18– 0.17 0.17 0.18– 0.18– 0.17+ 0.17 0.17

F22 0.17 0.08+ 0.48– 0.23– 0.12+ 0.53– 0.62– 0.14 0.25– 0.43–

F23 0.82 0.22+ 1.20– 0.94 0.65+ 0.87 0.98– 0.45+ 0.52+ 0.57+

F24 1.68 0.88+ 2.05– 1.93– 1.7 1.99– 2.05– 1.51+ 1.83– 1.93–

F25 0.91 0.56+ 1.19– 1.13– 0.90 1.11– 1.11– 0.84+ 1.01– 1.04–

F26 1.51 1.51 1.53– 1.50+ 1.52 1.53– 1.53– 1.51 1.52– 1.52–

93

of RDO is to improve the training error [93]. Among four methods for

reducing code bloat (PP, TS-S, SA and DA), PP is the worst. The

training error of PP is always much higher than the others. TS-S also

does not improve the training error compared to GP. The mean best

fitness of TS-S is slightly greater than that of GP on 19 problems. This

result is consistent with the result in Chapter 2.

Conversely, the training error of SA and DA is often better than that

of GP, PP and TS-S. Comparing between three configurations of SA

and DA, we can see that SA10 and DA10 are better than two the other

configurations. The training error of DA10 is better than GP on most

tested problems, and the training error of SA10 is better than that of

GP on 16 problems. This result is very impressive since the previous

researches showed that bloat control methods often negatively affect the

ability of GP to fit the training data [112].

To understand why SA and DA improve the training error of GP

while other techniques for controlling bloat are often failed to do so,

we measured the percentage of the pruning operator in PP, SA and DA

that generates the offspring having better fitness than their parents. This

value is calculated in Equation 3.2

Pbetter =
NB

NP

(3.2)

in which NP is the number of the offspring that are generated by PP,

SA or DA, and NB is the number of the offspring that is better than its

parent. The value across 30 runs was averaged and shown in Table 3.3.

The table shows that PP hardly generates better offspring compared

94

Table 3.3: Average percentage of better offspring

Pro PP SA10 SA20 SAD DA10 DA20 DAD

A. Benchmarking Problems

F1 10.8% 36.3% 42.3% 46.6% 40.5% 50.7% 62.3%

F2 12.3% 37.3% 32.7% 33.9% 35.7% 45.2% 46.7%

F3 14.0% 38.3% 42.5% 50.2% 43.2% 51.7% 71.0%

F4 8.1% 50.9% 51.1% 54.4% 48.8% 49.5% 47.7%

F5 12.2% 41.0% 35.1% 28.4% 38.5% 44.5% 46.8%

F6 14.2% 43.8% 45.6% 47.0% 49.7% 54.1% 52.7%

F7 14.7% 43.8% 43.2% 44.5% 43.6% 47.4% 46.6%

F8 9.0% 48.7% 64.3% 68.6% 68.4% 68.9% 79.6%

F9 14.4% 42.7% 44.3% 54.2% 45.1% 47.6% 66.6%

F10 18.2% 43.8% 51.8% 55.8% 43.2% 49.7% 59.7%

F11 13.6% 49.1% 50.8% 60.8% 54.5% 59.0% 73.6%

F12 8.7% 45.6% 53.2% 57.6% 43.0% 49.2% 66.6%

F13 8.9% 47.2% 48.7% 58.9% 40.7% 41.7% 52.0%

F14 13.9% 43.4% 44.9% 47.2% 43.1% 57.3% 65.6%

F15 10.9% 44.0% 52.2% 60.4% 45.4% 65.4% 82.4%

B. UCI Problems

F16 12.6% 44.3% 47.8% 49.9% 48.5% 68.7% 80.5%

F17 10.2% 49.3% 56.2% 63.3% 44.3% 79.9% 90.6%

F18 8.2% 49.6% 55.1% 57.5% 53.4% 65.9% 74.0%

F19 9.3% 45.2% 47.2% 47.6% 50.2% 83.0% 92.5%

F20 14.4% 48.2% 53.6% 55.3% 51.9% 58.0% 64.0%

F21 10.2% 48.6% 53.2% 60.7% 51.5% 82.1% 90.9%

F22 14.8% 48.5% 49.4% 52.0% 51.4% 68.3% 81.9%

F23 9.8% 46.2% 57.0% 60.6% 51.6% 73.9% 87.5%

F24 10.5% 45.4% 56.0% 60.0% 49.1% 77.2% 88.7%

F25 11.1% 45.1% 60.4% 61.9% 48.6% 76.0% 88.4%

F26 12.4% 47.6% 42.6% 45.7% 66.5% 86.6% 92.2%

95

to their parents. This value of PP is only from 10% to 15%. In contrast,

this value of SA and DA is much higher (from 40% to 90%). Moreover, we

can see that DA generates better offspring more frequently than SA. This

is reasonable since DA used the semantic backpropagation algorithm

in [93] to improve its fitness. Comparing between three versions of SA

and DA, we can see that, the value of SAD and DAD are better than the

value of SA10, SA20, DA10 and DA20, respectively. The reason could

be that the mean best fitness of SAD and DAD is often worse than that

of the other versions (Table 3.2). Thus, the probability to improve the

fitness of SAD and DAD by using an operator like pruning is higher than

of SA10, SA20, DA10 and DA20. Overall, the result in Table 3.3 helps

to partly explain for the better training error of SA and DA compared

to the other bloat control methods.

3.5.2. Generalization Ability

This subsection analyses the generalization ability of the tested meth-

ods through comparing their testing error. In each run, the best solution

(the individual with the smallest fitness) was selected and evaluated on

the testing data (an unseen data set). The median of these values across

30 runs was calculated and shown in Table 3.4.

The table shows that all configurations of SA and DA outperform

GP on the unseen data. For example, the testing error of SA10 and

DA10 is smaller than that of GP on 25 and 23 problems, respectively.

Similarly, SA20, SAD, DA20 and DAD are considerably better than GP

on most tested functions. For the other bloat control methods, PP is

96

Table 3.4: Median of testing error

ProGP RDO PP TS-S SA10 SA20 SAD DA10 DA20 DAD

A. Benchmarking Problems

F1 1.69 3.16– 1.76 1.35+ 1.28+ 1.05+ 1.44+ 0.80+ 1.68+ 1.95

F2 0.30 0.36– 0.25+ 0.26+ 0.27+ 0.25+ 0.24+ 0.28 0.26+ 0.26+

F3 10.17 1.92+ 8.00 6.66 4.41+ 5.44+ 5.44+ 4.38+ 4.67+ 5.68+

F4 0.01 0.00+ 0.01– 0.01 0.01 0.01 0.01 0.01 0.01 0.01

F5 0.01 0.01 0.01 0.01+ 0.01+ 0.01 0.01 0.01+ 0.01 0.01

F6 0.01 0.00+ 0.01 0.01 0.00 0.00+ 0.00+ 0.00+ 0.00+ 0.00+

F7 0.06 0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05

F8 0.23 0.00+ 0.27– 0.27 0.00+ 0.05+ 0.05+ 0.00+ 0.00+ 0.00+

F9 0.31 0.01+ 2.18 0.33 0.06+ 0.73 3.44– 0.01+ 0.01+ 1.40

F1033.01 8.04 22.14 37.53 20.69 7.23+ 10.28+ 12.84+ 3.92+ 6.62+

F11 0.00 0.00+ 0.01– 0.00+ 0.00+ 0.00 0.00 0.00+ 0.00+ 0.00+

F12 0.26 0.26 0.27 0.25 0.25+ 0.25+ 0.25+ 0.25+ 0.25+ 0.25+

F13 0.03 0.03 0.03+ 0.03 0.03 0.03+ 0.03+ 0.03+ 0.03+ 0.03+

F1445.88 44.63 46.1 48.36 45.40 44.87+ 44.34 46.66 44.28 44.33+

F15 2.19 2.18 2.18 2.19 2.18 2.18+ 2.18+ 2.2 2.18 2.18+

B. UCI Problems

F16 0.75 0.29+ 1.28 0.83 0.27+ 0.27+ 0.28+ 0.26+ 0.23+ 0.26+

F17 0.61 0.66– 0.57+ 0.58+ 0.60 0.57+ 0.58+ 0.59 0.57+ 0.57+

F18 0.36 0.14+ 1.60– 0.45 0.21+ 0.29+ 0.32+ 0.16+ 0.17+ 0.18+

F19 5.18 4.62 4.32+ 4.42+ 3.89+ 3.91+ 3.94+ 4.03+ 3.75+ 3.77+

F20 0.58 0.60– 0.51 0.48 0.50 0.52 0.55+ 0.51 0.53+ 0.53+

F21 0.18 0.17+ 0.18 0.18 0.17 0.18 0.18 0.17+ 0.17+ 0.17+

F22 0.28 0.15+ 0.59– 0.38 0.18+ 0.61– 0.76– 0.21 0.34 0.52

F23 1.44 1.19 1.30 1.14+ 0.65+ 0.87+ 0.99+ 0.52+ 0.51+ 0.53+

F24 2.69 9.69– 2.14+ 2.41 2.42 2.10+ 2.04+ 2.31 2.08+ 1.97+

F25 1.77 3.91 1.21+ 1.34+ 1.26+ 1.13+ 1.13+ 1.30+ 1.30+ 1.34+

F26 1.04 1.03 1.02+ 1.03 1.02+ 1.02+ 1.02+ 1.03 1.02+ 1.02+

97

roughly equal to GP, and TS-S is better than GP. RDO is also better

than GP on 19 problems. However, its performance on UCI problems is

less convincing.

The result of the Wilcoxon test also confirms the good generaliza-

tion ability of SA and DA. SA and DA are significantly better than

GP on most tested problems. For instance, SA10, SA20 and SAD are

significantly better than GP on 15, 18 and 18 problems, respectively.

Similarly, DA is significantly better than GP on 16, 20 and 20 problems

corresponding to its three configurations. TS-S also outperforms GP.

The testing error of TS-S is significantly better than that of GP on 8

problems, while GP is not significantly better than TS-S on any prob-

lems. PP is also significantly better than GP on 7 problems, but GP

is significantly better than it on 5 problems. For RDO, the Wincoxon

test shows that it is slightly better than GP. RDO is significantly better

than GP on 10 problems, it is significantly worse on 5 problems.

Overall, the result in this subsection shows that the performance of SA

and DA is more convincing on the testing data compared to the training

data. Moreover, these approaches achieve the best generalization ability

compared to all tested methods. Perhaps, the reason for the convincing

result of SA and DA on the testing data is that these techniques obtain

simple solutions (Table 3.5) and smaller fitness than the other methods.

3.5.3. Solution Size

The main objective for performing bloat control is to reduce the com-

plexity of the solutions. To validate if SA and DA achieve this objective,

98

we recorded the size of the final solution (the individual with the best

fitness) in each GP run. These values are then averaged over 30 runs

and presented in Table 3.5.

The table shows that all tested methods find the simpler solutions

compared to GP. Among them, SA20, SAD and DA20, DAD often find

the smallest solutions. SA10 and DA10 also remarkably reduce the com-

plexity of the solutions but to less extent compared to the other con-

figurations. The solution size of PP is also very small. However, this

value is slightly greater than the value of SA20, SAD, DA20 and DAD.

The solution size of TS-S and RDO are greater than that of SA, DA and

PP. This result provide partial explanation for the good generalization

ability of the tested methods, particularly SA and DA following occam’s

razor principle [75].

3.5.4. Computational Time

The last metric we examine in this section is the average running

time of the tested systems. This result is showed in Table 3.6. It can

be observed that both SA and DA run faster than GP. The average

running time of SA and DA are significantly smaller than that of GP on

most tested problems. PP and TS-S also run faster than GP on most

tested problems. However, they are still slower than four versions of

SA and DA including SA20, SAD, DA20 and DAD. Conversely, RDO

is much slower compared to the other methods. This is consistent with

the results in Chapter 2. Comparing between various versions of SA

and DA we can see that SA20, SAD, DA20 and DAD often run faster

99

Table 3.5: Average size of solutions

Pro GP RDO PP TS-S SA10 SA20 SAD DA10 DA20 DAD

A. Benchmarking Problems

F1 295.5 167.7 + 66.9 + 135.0 + 89.3 + 19.9 + 18.2 + 79.4 + 17.3 + 13.3 +

F2 171.0 115.9 + 28.3 + 31.2 + 69.8 + 19.2 + 22.9 + 53.3 + 17.9 + 20.8 +

F3 228.3 115.7 + 44.8 + 126.7 + 82.8 + 23.7 + 16.5 + 72.5 + 26.8 + 13.3 +

F4 163.5 107.1 + 39.2 + 82.3 + 102.7 + 47.0 + 77.5 + 104.1 + 55.6 + 72.6 +

F5 100.9 43.7 + 23.9 + 62.4 + 51.9 + 15.0 + 14.9 + 52.4 + 21.1 + 11.3 +

F6 152.3 12.6 + 33.1 + 40.3 + 81.7 + 39.5 + 31.8 + 64.1 + 36.9 + 31.5 +

F7 180.9 93.0 + 44.3 + 37.9 + 60.7 + 36.6 + 30.4 + 66.6 + 49.5 + 29.5 +

F8 179.9 67.4 + 51.5 + 95.6 + 49.8 + 8.3+ 7.0+ 50.7 + 10.3 + 8.2+

F9 187.3 70.2 + 19.4 + 84.5 + 67.2 + 18.4 + 13.4 + 52.1 + 13.1 + 10.1 +

F10 162.5 96.8 + 21.9 + 102.6 + 57.5 + 17.9 + 10.0 + 53.2 + 11.6 + 10.9 +

F11 140.1 35.8 + 23.7 + 77.4 + 62.6 + 22.3 + 7.2+ 57.7 + 15.4 + 8.7+

F12 216.9 81.5 + 21.4 + 105.9 + 83.0 + 25.0 + 9.9+ 69.5 + 18.6 + 12.8 +

F13 153.6 57.4 + 21.5 + 46.2 + 70.1 + 23.0 + 18.5 + 72.3 + 18.6 + 19.6 +

F14 161 94.9 + 16.1 + 121.8 + 64.6 + 20.0 + 20.1 + 58.3 + 16.8 + 14.8 +

F15 237.8 91.0 + 30.4 + 169.5 + 80.3 + 15.6 + 12.0 + 68.4 + 19.2 + 8.9+

B. UCI Problems

F16 196.4 148.4 + 21.5 + 209.6 52.6 + 8.8+ 9.2+ 63.8 + 16.3 + 12.8 +

F17 192 140.7 + 10.2 + 72.3 + 60.0 + 9.6+ 7.2+ 77.3 + 17.4 + 12.4 +

F18 151.7 164.6 19.9 + 151.9 55.0 + 14.6 + 13.4 + 73.7 + 21.9 + 13.3 +

F19 200.8 67.0 + 13.3 + 18.6 + 23.8 + 6.9+ 7.2+ 64.1 + 14.1 + 8.6+

F20 196.4 132.3 + 27.4 + 136.1 + 77.1 + 38.6 + 26.2 + 80.0 + 42.6 + 32.7 +

F21 170.5 79.5 + 9.5+ 93.7 + 56.8 + 9.9+ 7.4+ 60.7 + 13.6 + 10.6 +

F22 216.5 73.5 + 23.3 + 90.7 + 59.7 + 14.6 + 15.6 + 78.0 + 19.0 + 16.1 +

F23 187.4 156.3 10.3 + 48.1 + 53.2 + 10.3 + 7.6+ 69.6 + 16.3 + 10.4 +

F24 192.6 161.6 10.0 + 45.8 + 61.6 + 11.6 + 7.9+ 76.6 + 17.5 + 15.2 +

F25 177.5 141.6 + 12.0 + 49.4 + 62.8 + 9.0+ 8.1+ 66.0 + 19.2 + 12.7 +

F26 177.2 25.8 + 14.2 + 130.6 + 16.1 + 7.0+ 7.0+ 29.8 + 11.1 + 8.4+

100

Table 3.6: Average running time in seconds

Pro GP RDO PP TS-S SA10 SA20 SAD DA10 DA20 DAD

A. Benchmarking Problems

F1 3.6 18.7 – 1.1+ 1.3+ 1.0+ 0.7+ 0.8+ 0.9+ 0.4+ 1.0+

F2 2.7 17.5 – 1.1+ 0.7+ 1.4+ 0.6+ 0.7+ 1.3+ 0.8+ 0.5+

F3 2.7 15.9 – 0.9+ 1.6+ 1.0+ 0.6+ 1.1+ 0.9+ 0.4+ 0.8+

F4 25.5 122.5 – 34.5 – 6.8+ 12.1 + 11.9 + 21.8 + 8.6+ 8.8+ 9.1+

F5 31.5 468.7 – 6.9+ 20.4 + 16.4 + 6.1+ 3.1+ 20.5 + 9.3+ 8.6+

F6 14.5 70.2 – 3.2+ 1.4+ 2.4+ 2.1+ 10.2 + 2.1+ 1.9+ 2.7+

F7 4.3 33.9 – 3.5 1.8+ 2.0+ 2.6+ 8.8 2.9+ 1.9+ 3.6

F8 50.0 907.0 – 9.4+ 25.7 + 12.7 + 5.4+ 5.4+ 16.4 + 5.6+ 9.0+

F9 63.2 882.7 – 15.0 + 27.7 + 16.6 + 6.4+ 8.5+ 18.5 + 7.2+ 10.5 +

F10 64.9 902.9 – 13.7 + 44.7 + 16.9 + 5.7+ 7.7+ 19.5 + 7.1+ 10.9 +

F11 75.3 526.8 – 19.6 + 54.6 + 65.9 15.4 + 5.6+ 32.1 + 11.2 + 8.8+

F12 96.0 1475.5 – 15.9 + 55.2 + 33.4 + 11.1 + 8.1+ 30.2 + 10.0 + 10.2 +

F13 77.7 773.1 – 19.4 + 31.6 + 27.4 + 11.5 + 8.5+ 32.2 + 12.5 + 11.5 +

F14 79.7 936.0 – 12.9 + 58.6 + 21.1 + 6.2+ 8.2+ 26.4 + 8.6+ 11.1 +

F15 82.7 1232.6 – 15.3 + 61.7 + 22.8 + 7.1+ 7.4+ 26.6 + 9.1+ 9.9+

B. UCI Problems

F16 46.0 629.8 – 7.0+ 55.7 7.2+ 3.4+ 5.3+ 15.3 + 5.9+ 7.0+

F17 8.4 45.5 – 2.6+ 3.2+ 2.9+ 1.3+ 2.9+ 5.6+ 1.4+ 3.7+

F18 43.8 768.8 – 10.2 + 40.4 12.9 + 6.3+ 8.1+ 19.1 + 9.1+ 11.5 +

F19 7.2 35.8 – 2.0+ 1.2+ 1.1+ 1.2+ 2.8+ 4.5+ 1.5+ 3.6+

F20 95.5 1246.8 – 39.1 + 48.0 + 35.3 + 26.5 + 15.9 + 34.6 + 22.0 + 36.9 +

F21 63.1 723.9 – 10.8 + 35.2 + 17.0 + 5.9+ 7.8+ 21.3 + 6.3+ 11.1 +

F22 10.6 68.5 – 2.3+ 4.9+ 3.7+ 1.3+ 2.1+ 4.4+ 1.3+ 2.4+

F23 4.1 35.2 – 0.6+ 0.9+ 1.2+ 0.8+ 1.2+ 2.9+ 1.0+ 2.2+

F24 4.0 33.8 – 0.6+ 1.0+ 1.3+ 0.5+ 1.1+ 2.8+ 0.4+ 0.8+

F25 4.0 32.4 – 0.6+ 1.0+ 1.3+ 0.5+ 1.2+ 3.0 0.5+ 0.9+

F26 268.1 9334.5 – 33.0 +237.0 18.1 + 19.3 + 30.8 + 84.7 + 20.0 + 42.6 +

101

than SA10 and DA10. This is because the size of the individuals in the

population of SA20, SAD, DA20 and DAD are often remarkably smaller

than the size of the individuals in SA10 and DA10 as shown in Table 3.5.

Consequently, the computing time of fitness evaluation in SA20, SAD,

DA20 and DAD is much less than that in SA10 and DA10.

Overall, the results in this section show that SA and DA improve the

training error and the testing error compared to GP and the recent bloat

control methods (PP and TS-S). Moreover, the solutions obtained by SA

and DA are much simpler, and their average running time are much less

than that of GP on most tested functions.

3.6. Bloat, Overfitting and Complexity Analysis

This section presents a deeper analysis on the properties of the tested

methods using three quantitative metrics proposed in [115]: bloat, over-

fitting and functional complexity. Due to the space limitation, we only

present the results on four typical problems (F1, F13, F17 and F25) and

for two configurations (SA20 and DA20). The results on the other prob-

lems and the rest versions of SA and DA are shown in the supplement

of this chapter3.

3.6.1. Bloat Analysis

Although bloat is a well-known phenomenon, it is often difficult to

quantify the bloat of a GP system. Here, we use the metric proposed by

Vanneschi et al. [115] to measure the amount of bloat in a GP generation.
3https://github.com/chuthihuong/SemanticApproximation

102

The bloat value (bloat(g)) at generation g is calculated by Equation 3.3.

bloat(g) =
(δ̄(g)− δ̄(0))/δ̄(0)

(f̄(0)− f̄(g))/f̄(0)
(3.3)

where δ̄(g) is the average size of the individuals at generation g, and

f̄(g) is the average fitness at the generation g. Bloat value presents

the relationship between the average size growth and the average fitness

improvement up to generation g compared to the respective values at

generation zero (f(0) and δ̄(0)).

Using Equation 3.3, we recorded the amount of bloat in each GP run

and then averaged across 30 runs. The bloat values over generations on

four problems, F1, F13, F17 and F25 are presented in Figure 3.3. It can

be seen that, GP and RDO are two methods that incur high amount

of bloat. The bloat value of these methods considerably grows over

generations. Conversely, all bloat control methods do not lead to bloat.

The bloat value of PP, TS-S, SA and DA are mostly stable during the

evolutionary process. This result evidences that bloat control methods

achieve their objective in lessening GP code growth.

3.6.2. Overfitting Analysis

A learner is overfitting if it performs well on the training data and does

not perform satisfactorily on the testing data. However, quantitatively

measuring the overfitting of a learner is very challenging. In this chapter,

we follow Vanneschi et al. [115] to quantify the overfitting of a GP system

based on its training error and testing error: at a given generation g, if

the testing error (te err) is smaller than the training error (tr err) or is

better than the best testing error so far, there is no overfitting; otherwise

103

Figure 3.3: Average bloat over generations on four problems F1, F13, F17 and F25.

104

the overfitting is calculated by the difference of the distance between the

testing error and the training error at the generation g and the distance

between the testing error (te br) and the training error (tr br) at the

generation that achieves the best testing error so far. In other words,

the overfitting at generation g is calculated in Equation 3.4.

overfit(g) =



0, if tr err(g) > te err(g)

0, if te err(g) > te br

|tr err(g)− te err(g)|

−|tr br − te br|, otherwise.

(3.4)

Figure 3.4 shows the average overfitting over generations on four prob-

lems F1, F13, F17 and F25. The amount of overfitting of RDO is often

the highest. This operator has the greatest overfitting on three out of

four functions in Figure 3.4. The reason for this could be that RDO

solely focuses on improving the training error but not the testing error.

The second highest overfitting is GP. Although the training error of GP

is not as small as RDO, the higher complexity of its solutions may be the

source of overfitting. On the contrast to RDO and GP, all bloat control

methods (SA, DA, TS-S and PP) do not impose much overfitting. The

overfitting of these techniques are mostly stable. On one function (F13),

the overfitting of SA, DA, TS-S and PP slightly increases in some early

generations. However, their values are still much smaller than that of

GP and RDO. For SA and DA, this result is very interesting: Although

these two methods improve the training error, they do not incur the

105

Figure 3.4: Average overfitting over the generations on four problems F1, F13, F17
and F25.

106

overfitting as RDO. The reason could be that the solutions obtained by

SA and DA are much smaller than the solutions of RDO.

3.6.3. Function Complexity Analysis

The complexity of a GP solution is often judged based on its size (the

number of nodes). However, a solution with greater size might not always

be more complex than a solution of smaller size. To better quantify the

complexity of GP solutions, we use a metric based on the curvature of a

function [115].

Let X = (x1,x2, ...,xn) be the fitness cases of a problem, where each xi

is an m-dimensional vector. Let g : Rm −→ R be the function coding a

GP individual and let gi = g(xi). Let pj = (x1j, x2j, ..., xnj) be the vector

containing all the values of feature j in X and qj = (y1j, y2j, ..., ynj) is a

permutation of pj so that the values in qj are sorted in the ascending

order. Let ϕ : {1, 2, ..., n} −→ {1, 2, ..., n} be a function that returns

the position of the corresponding element of qj in pj. Then the partial

complexity on the jth dimension is defined as:

pcj =


∑n−2

i=1

∣∣∣gϕ(i+1)−gϕ(i)
y(i+1)j−yij

− gϕ(i+2)−gϕ(i+1)

y(i+2)j−y(i+1)j

∣∣∣ , if n ≥ 3

0, otherwise.

(3.5)

Finally, the complexity is calculated as the average of all the partial

complexities on all the dimensions of the feature space:

complexity =

∑m
j=1 pcj

m
(3.6)

Figure 3.5 shows the average complexity of the best individual over

30 runs across generations. Interestingly, although the solution size of

107

Figure 3.5: Average complexity of the best individual over the generations on four
problems F1, F13, F17 and F25.

108

RDO is often smaller than GP (Table 3.5), the complexity of its solution

is higher than GP. This partially explains for the higher overfitting value

of RDO in Figure 3.4. For four bloat control methods, the figure shows

that they often produce the less complex solutions. The complexity of

the solutions obtained by these methods is much lower than GP and

RDO. Moreover, this value does not increase much until the end of the

evolution.

3.7. Comparing with Machine Learning Algorithms

This section compares the results of the proposed methods with some

popular machine learning models. Four machine learning algorithms in-

cluding Linear Regression (LR), Support Vector Regression (SVR), De-

cision Tree (DT), and Random Forest (RF) are used in this experiment.

The implementation of these regression algorithms in a popular machine

learning packet in Python Scikit learn [94] is used. To minimize the

impact of experimental parameters to the performance of the regression

algorithms, we implemented the grid search technique for tuning the im-

portant parameters for SVR, DT and RF. We did not execute the grid

search for LR since it does not have parameters for tuning. The range

of values for each parameter that is tuned by the grid search technique

Table 3.7: Values of the grid search for SVR, DT and RF

Methods Parameters

SVR ‘C’=[0.01, 0.1, 1, 10, 100]

DT ‘max depth’=[10, 20, 50, 100, 200]

RF ‘n estimators’=[20, 50, 100, 200] ; ‘max depth’=[10, 20, 50, 100, 200]

109

is presented in Table 3.7. Other parameters are used as the default set-

tings in Scikit learn. The testing error of the proposed models and four

machine learning systems are presented in Table 3.8.

It can be seen from Table 3.8 that, while standard GP is often worse

than four machine learning systems, the proposed methods are com-

petitive with machine learning algorithms. Specifically, the proposed

methods achieve the smallest testing error on 12 problems while non-GP

methods achieve the best result on 14 problems. Among four machine

learning methods, we can see that RF is the best technique. RF achieves

the best result on 6 out of 26 problems. However, the results of RF are

only roughly equal to the performance of DA20. On some problems such

as F9 and F10, DA20 achieves much smaller testing errors than RF and

the three other machine learning techniques.

Overall, the results in this section show that our proposed methods are

often better than three machine learning algorithms including LR, SVR

and DT and they are as good as the best machine learning algorithm

(RF) in the generalization ability. Moreover, the solution complexity

of SA, DA is much simple then the solution complexity of RF that are

often the combination of dozens or hundreds trees.

3.8. Applying semantic methods for time series forecasting

This section introduces some variants of SAT and proposes several

bloat control methods based on that. Then, we expand the investigation

of semantic methods on a real-world time series forecasting problem with

different GP parameters.

110

Table 3.8: Comparison of the testing error of GP and machine learning systems. The
best results are underlined.

Pro GP SA10SA20 SAD DA10 DA20 DAD LR SVR DT RF

A. Benchmarking Problems

F1 1.69 1.28 1.05 1.44 0.80 1.68 1.95 1.85 1.64 1.50 1.45

F2 0.30 0.27 0.25 0.24 0.28 0.26 0.26 0.26 0.25 0.30 0.24

F3 10.17 4.41 5.44 5.44 4.38 4.67 5.68 6.61 5.37 7.59 5.83

F4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01

F5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00

F6 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01

F7 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.07 0.05 0.05 0.05

F8 0.23 0.00 0.05 0.05 0.00 0.00 0.00 0.00 21.77 0.12 0.06

F9 0.31 0.06 0.73 3.44 0.01 0.01 1.40 5.18 5.17 4.44 5.24

F10 33.0120.69 7.23 10.28 12.84 3.92 6.62 81.30 81.38 81.92 82.28

F11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F12 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.30 0.26

F13 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03

F14 45.8845.4044.87 44.34 46.66 44.28 44.33 44.13 43.97 45.67 51.95

F15 2.19 2.18 2.18 2.18 2.20 2.18 2.18 2.17 2.17 2.23 2.18

B. UCI Problems

F16 0.75 0.27 0.27 0.28 0.26 0.23 0.26 0.22 0.32 0.31 0.23

F17 0.61 0.60 0.57 0.58 0.59 0.57 0.57 0.60 0.64 0.70 0.54

F18 0.36 0.21 0.29 0.32 0.16 0.17 0.18 0.15 0.37 0.16 0.13

F19 5.18 3.89 3.91 3.94 4.03 3.75 3.77 4.12 4.18 4.85 3.72

F20 0.58 0.50 0.52 0.55 0.51 0.53 0.53 0.50 0.49 0.47 0.40

F21 0.18 0.17 0.18 0.18 0.17 0.17 0.17 0.17 0.19 0.20 0.15

F22 0.28 0.18 0.61 0.76 0.21 0.34 0.52 0.76 1.14 0.14 0.15

F23 1.44 0.65 0.87 0.99 0.52 0.51 0.53 1.84 1.02 0.56 0.56

F24 2.69 2.42 2.10 2.04 2.31 2.08 1.97 1.83 2.47 2.53 2.04

F25 1.77 1.26 1.13 1.13 1.30 1.30 1.34 1.58 1.22 1.15 1.14

F26 1.04 1.02 1.02 1.02 1.03 1.02 1.02 1.31 1.02 3.35 1.67

111

3.8.1. Some other versions

In the semantic approximation technique, an approximate tree is grown

in the form: newTree = θ · sTree which in sTree is a small tree. Based

on the growth and storage of the small tree, sTree, we have proposed a

number of different versions of the SAT. For a generalized version, sTree

is a small randomly generated tree. Additionally, some of its variants

can be:

� sTree is a random terminal taken from the terminal set.

� sTree is a small tree taken from the pre-defined library.

Based on that, we have proposed a new method called Substituting a

subtree with an Approximate Terminal (SAT-GP) [C2]. SAT-GP uses

Algorithm 6 in which sTree is a random terminal that taken from the

terminal set instead to randomly generate. Besides, we have also pro-

posed an extension of SAT-GP, namely Substituting a subtree with an

Approximate Subprogram (SAS-GP) [C5]. SAS-GP aims at having more

options to select approximate trees. Thus, a pre-defined library of sub-

programs is used instead of the terminal set as in SAT-GP.

Moreover, the semantic approximation technique can be applied to

other bloat control methods. We combine this semantic approximation

technique with Prune and Plant operator [2] to create a new operator

called Prune and Plant based on Approximate Terminal (PP-AT) [C6].

PP-AT is an extension of Prune and Plant. Figure 3.6 demonstrates

an example. PP-AT selects a random subtree T1 and then replaces it

with an approximate tree T2. T2 is grown so that the semantics of T2

112

(a) Parent (b) Child 1 (c) Child 2

Figure 3.6: An example of PP-AT.

and T1 are most similar by using the variant of SAT where sTree is a

random terminal taken from the terminal set. Moreover, T1 is grown in

the population as a new other child.

3.8.2. Time series prediction model and parameter settings

The proposed semantic methods for lessening code bloat, including

TS-S, SAT-GP, SAS-GP, PP-AT, SA and DA are evaluated on a real-

world time series forecasting problem taken from Kaggle competition,

Corporación Favorita Grocery Sales Forecasting problem [18]. The com-

petition was opened from October 19, 2017 to January 15, 2018 on the

website4 to predict the unit sales for items sold at different Favorita

stores located in Ecuador. The unit sales were daily recorded from Jan-

uary 2, 2013 to August 15, 2017. We downloaded a data set for one item

with the identifier of 103665 at Santo Domingo city, Santo Domingo de

los Tsáchilas Province, Ecuador (the identifier of this store is 5). These

data are then divided into two sets, training set and testing set. The

data from 1/2/2013 to 4/15/2017 are used for training, and the oth-

ers are used for testing. Figure 3.7 plots the data from 9/1/2016 to
4https://www.kaggle.com/c/favorita-grocery-sales-forecasting

113

Figure 3.7: Plot of log(unit sale + 1) from 9/1/2016 to 12/31/2016.

12/31/2016. Totally, there are 1549 samples used for training and 121

samples used for testing.

Generally, there are two time series prediction models: one-step and

multi-step prediction [98, 80]. The objective of one-step prediction is

to express the future value of x(t + 1) as a function of the N previous

values in the time series, x(t), x(t− 1), ..., x(t−N + 1). That is to find

the function F so that:

x(t+ 1) = F (x(t), x(t− 1), ..., x(t−N + 1)) (3.7)

The task of multi-step prediction is a prediction of several steps ahead

in the future, x(t+ 1), x(t+ 2), x(t+ 3),

In the experiments, we use the one-step prediction model and set N at

7 5. In other words, the main task of GP is to find a model for x(t+ 1)

based on its 7 previous values, x(t), x(t− 1), ..., x(t− 6).

The GP hyper-parameters used for these experiments are shown in
5These data were collected daily, so we predict the value in the future based on the values of 7 successively previous

points.

114

Table 3.1. Moreover, in order to investigate the code bloat control meth-

ods based on semantics, we examine three population sizes, 250, 500 and

1000, and four values of generation including 25, 50, 100 and 150.

We compare the semantic methods with standard GP (referred to as

GP) and Prune and Plant (PP) [2]. The probability of PP and PP-AT

is set to 0.5, and k% the largest individuals of SAT-GP, SAS-GP, SA

and DA is set 10%. In SAS-GP, the pre-defined library of subprograms

has 1000 subtrees with max depth of 2.

3.8.3. Results and Discussion

This subsection compares the results of the semantic methods with

standard GP and PP [2]. Four metrics including the training error, the

testing error, the code bloat effect and the evolution time are used to

evaluate the performance of these methods.

The first metric measures the mean of best fitness on the training

data, and these results are shown in Table 3.9. The table indicates

that the training error of all tested GP systems normally decreases as

population size increases, and the training error of the methods based

on SAT, including SAT-GP, SAS-GP, SA and DA (referred to SAT-

based methods hereafter) are usually better than that of GP with the

population size of 250 and 500. However, when using the population

size of 1000, the mean of the best fitness created from these methods are

mostly worse than that of GP on all the settings of generation.

For the remaining methods, the training error of PP and PP-AT are

often significantly worse than that of GP. However, compared to PP,

115

Table 3.9: Mean of the best fitness

Pop Gen GP TS-S PP PP-AT SAT-GP SAS-GP SA DA

250

25 0.710 0.705 0.727– 0.714– 0.702+ 0.703+ 0.702+ 0.701+

50 0.698 0.697 0.721– 0.709– 0.695 0.694 0.695 0.693

100 0.69 0.692 0.716– 0.705– 0.689 0.688 0.687 0.689

150 0.686 0.691– 0.711– 0.704– 0.687 0.686 0.685 0.686

500

25 0.701 0.701 0.722– 0.710– 0.697+ 0.698+ 0.698+ 0.697+

50 0.692 0.695– 0.716– 0.705– 0.691 0.690 0.692 0.691

100 0.686 0.691– 0.710– 0.703– 0.685 0.685 0.686 0.686

150 0.684 0.689– 0.707– 0.702– 0.683 0.682 0.683 0.684

1000

25 0.696 0.697 0.717– 0.704– 0.696 0.694 0.696 0.696

50 0.688 0.692– 0.711– 0.702– 0.689– 0.688 0.690 0.689

100 0.681 0.689– 0.707– 0.700– 0.683– 0.683– 0.684– 0.683–

150 0.677 0.687– 0.704– 0.699– 0.681– 0.681– 0.681– 0.681–

PP-AT has improved PP performance. Obviously, the training error of

PP-AT are smaller than that of PP with all GP configurations. For

TS-S, its training error is often not better than that of GP. This result

is consistent with the result in Chapter 2 which illustrated that the

statistics-based tournament selection techniques put less pressure on the

improvement of training error in comparison to standard tournament

selection.

The second metric used to analyse the performance of the tested GP

systems is the prediction ability. For each run, the best solution is se-

lected and evaluated on the testing data. The median of these values

across 30 runs is shown in Table 3.10.

It can be seen from Table 3.10 that SAT-based methods increase the

prediction ability of GP. The testing errors of SAT-GP, SAS-GP, SA

116

Table 3.10: Median of testing errors

Pop Gen GP TS-S PP PP-AT SAT-GP SAS-GP SA DA

250

25 0.710 0.710 0.702 0.707 0.691 0.686+ 0.674+ 0.690

50 0.672 0.674 0.738– 0.710– 0.662+ 0.655+ 0.660+ 0.663+

100 0.663 0.665 0.736– 0.709– 0.654+ 0.643+ 0.643+ 0.655+

150 0.664 0.659 0.721– 0.698– 0.651+ 0.642+ 0.640+ 0.644+

500

25 0.696 0.690 0.705– 0.706– 0.680 0.681 0.669+ 0.677+

50 0.674 0.675 0.738– 0.707– 0.653 0.657+ 0.661+ 0.664

100 0.666 0.663 0.719– 0.700– 0.644+ 0.639+ 0.647+ 0.646+

150 0.662 0.657 0.710– 0.701– 0.645+ 0.641+ 0.644+ 0.644+

1000

25 0.677 0.681 0.735– 0.698– 0.672 0.653+ 0.670 0.670

50 0.665 0.669 0.725– 0.687– 0.658 0.646+ 0.652+ 0.652+

100 0.660 0.659 0.706– 0.686– 0.650 0.634+ 0.638+ 0.645+

150 0.664 0.653 0.708– 0.686– 0.645+ 0.631+ 0.634+ 0.635+

and DA are better than that of GP on all the experimental settings.

Apparently, SAS-GP improved the performance greatly in comparison

to other methods. The testing error of SAS-GP is the smallest on 8

GP configurations out of 12 GP configurations. For TS-S, it is also

better than GP especially when large number of generations (100, 150)

are used. More interestingly, although the training errors of TS-S, SAT-

based methods are not better than that of GP at population size of

1000, the testing errors of them are much more convincing. Perhaps,

the reason for the better performance on the testing data is due to their

ability to obtain very simple solutions as shown in Table 3.11, and GP

may be overfitted (the testing error of GP at generation 150 is bigger

than that at generation 100, 0.664 vs 0.660).

Conversely, the test error of both PP and PP-AT is worse than that

117

of GP; even though, the combination of the semantic approximation

technique with PP has increased the predicted performance of PP.

The results of Wilcoxon signed rank test with the confidence level of

95% again confirm the improvement of these methods. It is clear that the

prediction ability of the SAT-based methods is significantly better than

that of GP. Particularly, SAT-GP, SAS-GP, SA and DA are significantly

better than GP on 6, 11, 11 and 9 GP configurations, respectively. On

the other hand, GP is not significantly better than these SAT-based

methods at any the GP parameter settings.

Figure 3.8 gives information about the testing error of the GP systems

over the generations. This figure shows that the SAT-based methods

quickly achieved a good testing error at the early generations and kept

improving until the last generation. SAS-GP practically achieved the

lowest testing error over the whole evolution process. The testing error

produced from TS-S was approximately to that from GP in early gener-

ations, and continued improving for further generations while that from

GP slightly increased at the last generations. The figure also confirms

that PP-AT boosted the predictability of PP. The test error of PP-AT

is much lower than that of PP during the evolution.

Next metric is the impact of the proposed methods on reducing the

complexity of GP solutions and the GP code bloat. In each GP run, we

record the size of the selected solutions. These values are then averaged

over 30 runs and presented in Table 3.11.

It can be seen from this table that the solutions found by all tested

code bloat control methods are simpler than that of GP on most GP pa-

118

(a) At population size of 250

(b) At population size of 500

(c) At population size of 1000

Figure 3.8: Testing error over the generations.

119

Table 3.11: Average of solution’s size

Pop Gen GP TS-S PP PP-AT SAT-GP SAS-GP SA DA

250

25 46.1 35.9 9.7+ 10.3 + 26.4 + 23.6 + 25.1 + 26.3 +

50 78.9 31.2 + 10.7 + 11.9 + 39.0 + 37.9 + 36.9 + 42.9 +

100 111.7 37.1 + 11.7 + 10.5 + 53.3 + 52.8 + 54.8 + 53.1 +

150 141.6 42.1 + 14.4 + 10.3 + 66.5 + 69.0 + 62.3 + 64.3 +

500

25 46.4 29.2 + 10.4 + 10.9 + 26.1 + 25.2 + 28.6 + 27.7 +

50 84.4 35.4 + 11.1 + 10.7 + 40.0 + 37.8 + 38.4 + 40.8 +

100 120.9 32.9 + 13.2 + 12.0 + 57.9 + 52.6 + 57.1 + 56.6 +

150 153.2 38.7 + 14.1 + 12.7 + 65.7 + 64.0 + 65.1 + 67.6 +

1000

25 51.5 34.5 + 13.9 + 13.9 + 30.8 + 27.6 + 29.8 + 28.6 +

50 96.3 36.6 + 14.5 + 15.4 + 42.2 + 40.7 + 42.7 + 37.9 +

100 145.4 45.0 + 15.6 + 15.7 + 63.2 + 54.5 + 66.1 + 53.6 +

150 161.7 52.5 + 16.4 + 17.5 + 70.9 + 63.3 + 71.9 + 65.2 +

rameter settings. PP often obtains the simplest solutions. The solution

size of PP-AT is roughly equal the that of PP. For SAT-based methods,

the size of solutions created by them are also much smaller than that

produced from GP.

The Wilcoxon test signed rank test also shows that the size of solutions

obtained from these methods is significantly better than that of GP on

most settings. Based on Occam’s razor principle [75], obtaining a simple

solution of these methods is probably one of the reasons for improving

their predictive efficiency.

Figure 3.9 presents the average size of the population (the average size

of the individuals in the population) over the evolutionary process. It

can be observed from this figure that TS-S and SAT-based methods do

not incur much code bloat phenomenon in GP population. The average

120

(a) At population size of 250

(b) At population size of 500

(c) At population size of 1000

Figure 3.9: Average size of population over the generations.

121

size of the population of TS-S is remained steady, and that of SAT-based

methods are only slightly increased during the evolution. The graphs of

PP and PP-AT equally overlap during evolution. Their average size of

the population go down in the first generations and then remain stable

until the last generations.

Conversely, the average size of the standard GP population quickly

grows, and it is much larger than that of the others on all GP parameter

settings. Overall, it is clear that all tested methods achieved their main

objective for reducing code bloat phenomenon in GP system.

The last metric is the average running time of the tested GP systems.

The total time needed to complete a GP run is recorded, and these values

are then averaged over 30 runs. The results are showed in Table 3.12.

Table 3.12: Average running time in seconds

Pop Gen GP TS-S PP PP-AT SAT-GP SAS-GP SA DA

250

25 5.3 7.0– 5.5 10.0 – 3.4+ 2.5+ 9.4– 4.5

50 15.5 15.1 3.2+ 5.2+ 9.6+ 7.1+ 8.8+ 10.8 +

100 42.3 32.0 + 6.7+ 10.6 + 20.6 + 20.4 + 17.8 + 27.8 +

150 59.6 36.1 + 11.5 + 18.3 + 29.4 + 33.2 + 31.1 + 44.3 +

500

25 9.7 13.8 – 4.4+ 6.4+ 6.5+ 5.8+ 7.6+ 11.6 +

50 32.8 29.2 + 7.7+ 12.2 + 17.9 + 14.6 + 16.8 + 23.3 +

100 102.4 59.8 + 16.3 + 22.9 + 34.4 + 39.3 + 37.1 + 56.9 +

150 138.4 67.1 + 22.2 + 34.9 + 60.6 + 63.2 + 59.4 + 90.3 +

1000

25 34.1 24.6 + 10.9 + 14.6 + 13.5 + 12.2 + 15.8 + 21.2 +

50 95.2 64.4 + 20.3 + 26.6 + 42.4 + 27.3 + 35.2 + 51.0 +

100 293.4 131.1 + 36.5 + 52.1 + 99.3 + 70.6 + 75.0 + 124.8 +

150 355.0 143.8 + 48.0 + 78.8 + 128.9 + 111.8 + 118.9 + 226.7 +

It can be seen from this table that all tested bloat control methods,

122

including TS-S, PP, PP-AT and SAT-based methods run faster than GP

on most GP parameter settings. This is not surprising since the previous

analysis has shown that these methods maintain a population which is

much smaller in the average size in comparison to GP. Additionally, the

average running time of PP is often the smallest. PP-AT also inherits

this benefit; consequently, PP-AT is probably considered as the second

fastest method.

In summary, the above analyses show that TS and SAT-based meth-

ods usually achieved the better performance in comparison to GP on four

evaluative criteria on most the GP parameter settings. These evaluative

criteria are predicting ability, lowering the complexity of the GP solu-

tions, reducing code bloat phenomenon and running time. SAT-based

methods also achieved better training error, especially at the population

size of 250 and 500. Although PP-AT has not achieved good perfor-

mance like TS-S and SAT-based methods, it has inherited the benefits

and improved the performance of PP.

3.9. Conclusion

In this chapter, we proposed a new technique for generating a small

tree in the form: newTree = θ · sTree that is semantically similar to

a target semantic vector. This technique is called Semantic Approxi-

mation Technique (SAT). Based on SAT, we proposed two approaches

for lessening GP code bloat. The first method is Subtree Approximation

(SA) in which a random subtree is chosen and replaced by a new tree of

semantic approximation. The second method is Desired Approximation

123

(DA) where the new tree is grown to approximate the desired semantics

of the selected subtree instead of its semantics.

Three configurations of SA and DA were tested on twenty-six symbolic

regression problems. They were compared to standard GP, Prune and

Plant [2] (PP), Statistics Tournament Selection with Size (TS-S) [C3],

Random Desired Operator (RDO) [93] and four popular machine learn-

ing algorithms. The results showed that SA and DA outperform all

tested GP models including GP, PP and RDO in improving the per-

formance and the generalization of GP. Moreover, SA and DA found

simpler solutions and imposed less overfitting and less code growth than

the other GP methods. This property is very appealing since the previ-

ous bloat control methods in GP like PP [2] and neatGP [112] often did

not improve the ability to fit the training data. Moreover, the perfor-

mance of SA and DA is also competitive comparing to the best tested

machine learning model (RF) on the selected datasets.

Besides, some other versions of SAT are introduced. Based on that,

several other methods for reducing code bloat are proposed, including

SAT-GP, SAS-GP and PP-AT. Then, all proposed bloat control methods

based on semantics are applied in a real-world time series forecasting.

The results illustrated that these methods help GP systems increase the

performance on the time series forecasting problem.

124

CONCLUSIONS AND FUTURE WORK

The dissertation focuses on the selection stage in the evolution and

the code bloat problem of GP. The overall goal was to improve GP

performance by using semantic information. This goal was successfully

achieved by developing a number of new methods based on incorpo-

rating semantics into GP evolutionary process. The proposed methods

were evaluated and compared with existing methods on a large set of

regression problems and a real-world time series forecasting. Results

show that the proposed methods are able to promote semantic diver-

sity in GP population, improve GP performance and address GP code

bloat problem. This section gives a summary of the main contributions

of the dissertation, then presents some limitations and possible future

extensions derived from the dissertation.

In addition to a review of literature regarding to the research in the

dissertation, the following main contributions can be drawn from the

investigations presented in this dissertation.

� Three semantic tournament selection are proposed, including TS-R,

TS-S and TS-P. The methods are based on a new comparison pro-

posal between individuals using a statistical analysis. A statistical

hypothesis test employs information from the individual’s error vec-

125

tor to test the differences among individuals in GP. Additionally, for

further improvement, TS-S is combined with the recently proposed

semantic crossover, RDO, and the resulting method is called TS-

RDO. These methods are tested on twenty-six regression problems

and their noisy variants. The experimental results demonstrate the

benefit of the proposed methods in promoting semantic diversity, re-

ducing GP code growth and improving the generalisation behaviour

of GP solutions when compared to standard tournament selection,

a similar selection technique and a state of the art bloat control

approach.

� A novel semantic approximation technique, SAT is proposed that

allows to grow a small tree in the form newTree = θ · sTree (sTree

is a small randomly generated tree) with the semantics approximate

to a given target semantics. Besides, two other versions of SAT are

also introduced wherein sTree is a random terminal taken from the

terminal set, or sTree is a small tree taken from the pre-defined

library.

� Two methods based on semantic approximation technique for reduc-

ing GP code bloat are proposed. The first method called SA replaces

a random subtree in an individual by a smaller tree of approximate

semantics. The second method called DA replaces a random subtree

by a smaller tree that is semantically approximate to the desired se-

mantics. Moreover, three other bloat control methods based on the

variants of SAT, including SAT-GP, SAS-GP and PP-AT are intro-

126

duced. The performance of the bloat control strategies is examined

on a large set of regression problems and a real-world time series fore-

casting. The experimental results showed that the proposed methods

improve the performance of GP and specifically reduce code bloat

compared to standard GP and several recent bloat control methods

in GP. Furthermore, the performance of the proposed approaches

is competitive with the best machine learning technique among the

four tested machine learning algorithms.

In addition to a new variant of GP structure is proposed in the process of

carrying out the dissertation. A number of subdatasets are sampled from

the training data and a subpopulation is evolved on each of these datasets

for a pre-defined generation. The subpopulations are then combined to

form a full population that is evolved on the full training dataset for the

rest generations.

However, the dissertation is subject to some limitations. First, the

proposed methods are based on the concepts of sampling semantics that

is only defined for the problems in which the input and output are con-

tinuous real-valued vectors. Subsequently, these methods were only ap-

plied to the real-valued symbolic regression problems and leaving other

domains like reinforcement learning problems and classification prob-

lems an open question. Second, the semantic selection methods use

the statistical analysis of GP error vectors. In the experiments, we use

Wilcoxon Signed Rank Test to analyse the error vectors. Nevertheless,

selecting an appropriate statistical test will increase the performance of

127

the proposed methods. The dissertation lacks examining the distribu-

tion of GP error vectors. Therefore, in the future, we will examine this.

Third, two approaches for reducing GP code bloat, SA and DA add two

more parameters (max depth of sTree and the portion of GP population

for pruning) to GP systems. Currently, these parameters were experi-

mentally determined and they might not be the best choices for these

problems and for others.

Building upon this research, there are a number of directions for fu-

ture work arisen from the dissertation. Firstly, we will conduct research

to reduce the above limitations of the dissertation. Secondly, statistical

analysis was used only to enhance selection. It is also possible that sta-

tistical analysis can be employed in other phases of the GP algorithm,

for example, in model selection [129]. Thirdly, SAT was used for less-

ening code bloat in GP. Nevertheless, this technique can also be used

for designing new genetic operators be similar to RDO [93]. Finally, in

terms of applications, all proposed methods in the dissertation can be

applied to any problem domain where the output is a single real-valued

number. In this dissertation, we focused exclusively on GP’s most pop-

ular problem domain, symbolic regression, in the future we will extend

them to a wider range of real-world applications including classification

and problems of bigger datasets to better understand their weakness and

strength.

128

PUBLICATIONS

[C1] Chu, T.H., Nguyen, Q.U., ONeill, M.: Tournament selection based

on statistical test in genetic programming. In: The proceeding of In-

ternational Conference on Parallel Problem Solving from Nature. pp.

303–312. Springer (2016).

[C2] Chu, T.H., Nguyen, Q.U.: Reducing code bloat in genetic pro-

gramming based on subtree substituting technique. In: The proceeding

of 2017 21st Asia Pacific Symposium on Intelligent and Evolutionary

Systems (IES). pp. 25–30. IEEE (2017).

[C3] Chu, T.H., Nguyen, Q.U., O’Neill, M.: Semantic tournament se-

lection for genetic programming based on statistical analysis of error vec-

tors. Information Sciences (ISI-SCI, Q1, IF=5.524) 436, 352–366 (2018).

[C4] Chu, T.H., Nguyen, Q.U.: Sampling method for evolving multiple

subpopulations in genetic programming. Journal of Science and Technol-

ogy: The Section on Information and Communication Technology 12,

5–16 (2018).

[C5] Chu, T.H., Nguyen, Q.U., Cao, V.L.: Semantics based substi-

tuting technique for reducing code bloat in genetic programming. In:

Proceedings of the Ninth International Symposium on Information and

Communication Technology. pp. 77− 83. ACM (2018).

[C6] Chu, T.H.: Semantic approximation based operator for reducing

129

code bloat in genetic programming. In: The 14th Young Researchers

Conference. pp. 3–4. and Under review in Journal of Science and Tech-

nology: The Section on Information and Communication Technology, Le

Quy Don Technical University (2019).

[C7] Nguyen, Q.U, Chu, T.H.: Semantic Approximation for Reduc-

ing Code Bloat in Genetic Programming. Under review in: Swarm and

Evolutionary Computation(ISI-SCIE, Q1, IF=6.330)(2019).

130

BIBLIOGRAPHY

[1] Al-Betar, M.A., Awadallah, M.A., Faris, H., Aljarah, I., Hammouri, A.I.: Natural

selection methods for grey wolf optimizer. Expert Systems with Applications 113,

481–498 (2018)

[2] Alfaro-Cid, E., Esparcia-Alcázar, A., Sharman, K., de Vega, F.F., Merelo, J.:

Prune and plant: a new bloat control method for genetic programming. In: Hy-

brid Intelligent Systems 2008. pp. 31–35. IEEE (2008)

[3] Alfaro-Cid, E., Merelo, J.J., de Vega, F.F., Esparcia-Alcázar, A.I., Sharman, K.:

Bloat control operators and diversity in genetic programming: A comparative

study. Evolutionary Computation 18(2), 305–332 (2010)

[4] Bache, K., Lichman, M.: UCI machine learning repository (2013),

http://archive.ics.uci.edu/ml

[5] Bäck, T.: Selective pressure in evolutionary algorithms: A characterization of se-

lection mechanisms. In: Proceedings of the first IEEE conference on evolutionary

computation. IEEE World Congress on Computational Intelligence. pp. 57–62.

IEEE (1994)

[6] Beadle, L., Johnson, C.G.: Semantically driven crossover in genetic programming.

In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress

on Computational Intelligence). pp. 111–116. IEEE (2008)

[7] Beadle, L., Johnson, C.G.: Semantic analysis of program initialisation in ge-

netic programming. Genetic Programming and Evolvable Machines 10(3), 307–

337 (2009)

131

[8] Beadle, L., Johnson, C.G.: Semantically driven mutation in genetic program-

ming. In: 2009 IEEE Congress on Evolutionary Computation. pp. 1336–1342.

IEEE (2009)

[9] Belpaeme, T.: Evolution of visual feature detectors. In: University of Birming-

ham School of Computer Science technical. Citeseer (1999)

[10] Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary

algorithms. Evolutionary Computation 4(4), 361–394 (1996)

[11] Castelli, M., Castaldi, D., Giordani, I., Silva, S., Vanneschi, L., Archetti, F.,

Maccagnola, D.: An efficient implementation of geometric semantic genetic pro-

gramming for anticoagulation level prediction in pharmacogenetics. In: Por-

tuguese Conference on Artificial Intelligence. pp. 78–89. Springer (2013)

[12] Castelli, M., Manzoni, L., Silva, S., Vanneschi, L., Popovic, A.: The influence of

population size in geometric semantic gp. Swarm and Evolutionary Computation

32, 110–120 (2017)

[13] Cavaretta, M.J., Chellapilla, K.: Data mining using genetic programming: the

implications of parsimony on generalization error. In: Proceedings of the 1999

Congress on Evolutionary Computation. vol. 2, p. 1337 Vol. 2 (1999)

[14] Chen, Q., Xue, B., Mei, Y., Zhang, M.: Geometric semantic crossover with an

angle-aware mating scheme in genetic programming for symbolic regression. In:

European Conference on Genetic Programming. pp. 229–245. Springer (2017)

[15] Chen, Q., Xue, B., Zhang, M.: Improving generalisation of genetic programming

for symbolic regression with angle-driven geometric semantic operators. IEEE

Transactions on Evolutionary Computation (2018)

[16] Chen, Q., Zhang, M., Xue, B.: Geometric semantic genetic programming with

perpendicular crossover and random segment mutation for symbolic regression.

In: Asia-Pacific Conference on Simulated Evolution and Learning. pp. 422–434.

Springer (2017)

132

[17] Cumming, G.: Understanding The New Statistics: Effect Sizes, Confidence In-

tervals, and Meta-Analysis. Routledge (2012)

[18] Data, K.: Corporación favorita grocery sales forecasting (2018),

https://www.kaggle.com/c/favorita-grocery-sales-forecasting/data

[19] Derrac, J., Garćıa, S., Molina, D., Herrera, F.: A practical tutorial on the use of

nonparametric statistical tests as a methodology for comparing evolutionary and

swarm intelligence algorithms. Swarm and Evolutionary Computation 1(1), 3–18

(2011)

[20] Dick, G., Whigham, P.A.: Controlling bloat through parsimonious elitist replace-

ment and spatial structure. In: European Conference on Genetic Programming.

pp. 13–24. Springer (2013)

[21] Dignum, S., Poli, R.: Operator equalisation and bloat free gp. Lecture Notes in

Computer Science 4971, 110–121 (2008)

[22] Dijkstra, E.W., Scholten, C.S.: Predicate calculus and program semantics.

Springer Science & Business Media (2012)

[23] Dou, T., Rockett, P.: Semantic-based local search in multiobjective genetic pro-

gramming. In: Proceedings of the Genetic and Evolutionary Computation Con-

ference Companion. pp. 225–226. ACM (2017)

[24] Eiben, A.E., Smith, J.E., et al.: Introduction to evolutionary computing, vol. 53.

Springer (2003)

[25] Euzenat, J., Shvaiko, P., et al.: Ontology matching, vol. 18. Springer (2007)

[26] Fang, Y., Li, J.: A review of tournament selection in genetic programming. In:

International Symposium on Intelligence Computation and Applications. pp. 181–

192. Springer (2010)

[27] Forstenlechner, S., Nicolau, M., Fagan, D., O’Neill, M.: Introducing semantic-

clustering selection in grammatical evolution. In: Proceedings of the Companion

133

Publication of the 2015 Annual Conference on Genetic and Evolutionary Com-

putation. pp. 1277–1284. ACM (2015)

[28] Fracasso, J.V.C., Von Zuben, F.J.: Multi-objective semantic mutation for genetic

programming. In: 2018 IEEE Congress on Evolutionary Computation (CEC). pp.

1–8. IEEE (2018)

[29] Galvan-Lopez, E., Cody-Kenny, B., Trujillo, L., Kattan, A.: Using semantics in

the selection mechanism in genetic programming: a simple method for promoting

semantic diversity. In: 2013 IEEE Congress on Evolutionary Computation. pp.

2972–2979. IEEE (2013)

[30] Gandomi, A.H., Alavi, A.H., Ryan, C.: Handbook of genetic programming ap-

plications. Springer (2015)

[31] Gardner, M.A., Gagné, C., Parizeau, M.: Controlling code growth by dynami-

cally shaping the genotype size distribution. Genetic Programming and Evolvable

Machines 16(4), 455–498 (2015)

[32] Gathercole, C.: An investigation of supervised learning in genetic programming.

Ph.D. thesis (1998)

[33] Ghodrat, M.A., Givargis, T., Nicolau, A.: Equivalence checking of arithmetic

expressions using fast evaluation. In: Proceedings of the 2005 international con-

ference on Compilers, architectures and synthesis for embedded systems. pp. 147–

156. ACM (2005)

[34] Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in

genetic algorithms. Foundations of genetic algorithms 1, 69–93 (1991)

[35] Hara, A., Kushida, J.i., Tanemura, R., Takahama, T.: Deterministic crossover

based on target semantics in geometric semantic genetic programming. In: 2016

5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI).

pp. 197–202. IEEE (2016)

134

[36] Harper, R.: Practical foundations for programming languages. Cambridge Uni-

versity Press (2016)

[37] Helmuth, T., McPhee, N.F., Spector, L.: Effects of lexicase and tournament

selection on diversity recovery and maintenance. In: Proceedings of the 2016

on Genetic and Evolutionary Computation Conference Companion. pp. 983–990.

ACM (2016)

[38] Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with

lexicase selection. IEEE Transactions on Evolutionary Computation 19(5), 630–

643 (2015)

[39] Hingee, K., Hutter, M.: Equivalence of probabilistic tournament and polynomial

ranking selection. In: 2008 IEEE Congress on Evolutionary Computation. pp.

564–571. IEEE (2008)

[40] Iba, H.: Evolutionary approach to deep learning. In: Evolutionary Approach to

Machine Learning and Deep Neural Networks, pp. 77–104. Springer (2018)

[41] Juárez-Smith, P., Trujillo, L.: Integrating local search within neat-gp. In: Pro-

ceedings of the 2016 on Genetic and Evolutionary Computation Conference Com-

panion. pp. 993–996. ACM (2016)

[42] Julstrom, B.A., Robinson, D.H.: Simulating exponential normalization with

weighted k-tournaments. In: Proceedings of the 2000 Congress on Evolutionary

Computation. vol. 1, pp. 227–231. IEEE (2000)

[43] Kanji, G.K.: 100 Statistical Tests. SAGE Publications (1999)

[44] Kattan, A., Agapitos, A., Ong, Y.S., Alghamedi, A.A., O’Neill, M.: Gp made

faster with semantic surrogate modelling. Information Sciences 355-356, 169–185

(2016)

[45] Kattan, A., Ong, Y.S.: Surrogate genetic programming: A semantic aware evo-

lutionary search. Information Sciences 296, 345–359 (2015)

135

[46] Kelly, S., Heywood, M.I.: Emergent solutions to high-dimensional multitask re-

inforcement learning. Evolutionary computation 26(3), 347–380 (2018)

[47] Kelly, S., Smith, R.J., Heywood, M.I.: Emergent policy discovery for visual re-

inforcement learning through tangled program graphs: A tutorial. Genetic pro-

gramming theory and practice XVI pp. 37–57 (2019)

[48] Kim, J.J., Zhang, B.T.: Effects of selection schemes in genetic programming for

time series prediction. In: Proceedings of the Congress on Evolutionary Compu-

tation. vol. 1, pp. 252–258 (1999)

[49] Koza, J.R.: Genetic Programming: On the Programming of Computers by Means

of Natural Selection, vol. 1. The MIT Press (1992)

[50] Koza, J.R.: Genetic programming as a means for programming computers by

natural selection. Statistics and Computing 4(2), 87–112 (1994)

[51] Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space.

In: Proceedings of the 11th Annual conference on Genetic and evolutionary com-

putation. pp. 987–994. ACM (2009)

[52] Krawiec, K., Pawlak, T.: Locally geometric semantic crossover. In: Proceedings

of the 14th annual conference companion on Genetic and evolutionary computa-

tion. pp. 1487–1488. ACM (2012)

[53] Krawiec, K., Pawlak, T.: Approximating geometric crossover by semantic back-

propagation. In: Proceedings of the 15th annual conference on Genetic and evo-

lutionary computation. pp. 941–948. ACM (2013)

[54] Krawiec, K., Pawlak, T.: Locally geometric semantic crossover: a study on the

roles of semantics and homology in recombination operators. Genetic Program-

ming and Evolvable Machines 14(1), 31–63 (2013)

136

[55] La Cava, W., Helmuth, T., Spector, L., Moore, J.H.: A probabilistic and multi-

objective analysis of lexicase selection and ε-lexicase selection. Evolutionary com-

putation pp. 1–26 (2018)

[56] La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In:

Proceedings of the Genetic and Evolutionary Computation Conference 2016. pp.

741–748. ACM (2016)

[57] Le, T.A., Chu, T.H., Nguyen, Q.U., Nguyen, X.H.: Malware detection using

genetic programming. In: the 2014 Seventh IEEE Symposium on Computational

Intelligence for Security and Defense Applications (CISDA). pp. 1–6. IEEE (2014)

[58] Luke, S., Panait, L.: Fighting bloat with nonparametric parsimony pressure.

Parallel Problem Solving from Nature VII pp. 411–421 (2002)

[59] Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of the

4th Annual Conference on Genetic and Evolutionary Computation. pp. 829–836.

Morgan Kaufmann Publishers Inc. (2002)

[60] Luke, S., Panait, L.: A comparison of bloat control methods for genetic program-

ming. Evolutionary Computation 14(3), 309–344 (2006)

[61] Maghsoodlou, S., Noroozi, B., Haghi, A.: Application of genetic programming ap-

proach for optimization of electrospinning parameters. Polymers Research Jour-

nal 11(1), 17–25 (2017)

[62] Mariot, L., Picek, S., Leporati, A., Jakobovic, D.: Cellular automata based s-

boxes. Cryptography and Communications 11(1), 41–62 (2019)

[63] Martin, P., Poli, R.: Crossover operators for a hardware implementation of gp us-

ing fpgas and handel-c. In: Proceedings of the 4th Annual Conference on Genetic

and Evolutionary Computation. pp. 845–852. Morgan Kaufmann Publishers Inc.

(2002)

137

[64] Martins, J.F., Oliveira, L.O.V., Miranda, L.F., Casadei, F., Pappa, G.L.: Solving

the exponential growth of symbolic regression trees in geometric semantic genetic

programming. In: Proceedings of the Genetic and Evolutionary Computation

Conference. pp. 1151–1158. ACM (2018)

[65] McConaghy, T.: Ffx: Fast, scalable, deterministic symbolic regression technol-

ogy. In: Genetic Programming Theory and Practice IX, chap. 13, pp. 235–260.

Springer (2011)

[66] Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’neill, M.: Grammar-based

genetic programming: a survey. Genetic Programming and Evolvable Machines

11(3-4), 365–396 (2010)

[67] McPhee, N., Ohs, B., Hutchison, T.: Semantic building blocks in genetic pro-

gramming. In: Proceedings of 11th European Conference on Genetic Program-

ming. pp. 134–145. Springer (2008)

[68] Metevier, B., Saini, A.K., Spector, L.: Lexicase selection beyond genetic pro-

gramming. In: Genetic Programming Theory and Practice XVI, pp. 123–136.

Springer (2019)

[69] Miller, J.F.: Cartesian genetic programming. In: Cartesian Genetic Program-

ming, pp. 17–34. Springer (2011)

[70] Miller, J.F., Thomson, P.: Cartesian genetic programming. In: European Con-

ference on Genetic Programming. pp. 121–132. Springer (2000)

[71] Mitchell, T.M.: Machine Learning. McGraw-Hill Science, New York (1997)

[72] Moraglio, A.: An efficient implementation of gsgp using higher-order functions

and memoization. Semantic Methods in Genetic Programming, Ljubljana, Slove-

nia 13 (2014)

138

[73] Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-

ming. In: International Conference on Parallel Problem Solving from Nature. pp.

21–31. Springer (2012)

[74] Naredo, E., Trujillo, L., Legrand, P., Silva, S., Munoz, L.: Evolving genetic

programming classifiers with novelty search. Information Sciences 369, 347–367

(2016)

[75] Needham, S., Dowe, D.L.: Message length as an effective ockham’s razor in

decision tree induction. In: International Workshop on Artificial Intelligence and

Statistics (AISTATS). Society for Artificial Intelligence and Statistics (2001)

[76] Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic aware crossover for genetic

programming: the case for real-valued function regression. In: European Confer-

ence on Genetic Programming. pp. 292–302. Springer (2009)

[77] Nguyen, Q.U., Nguyen, X.H., O’Neill, M., McKay, B.: Semantics based crossover

for boolean problems. In: Proceedings of the 12th annual conference on Genetic

and evolutionary computation. pp. 869–876. ACM (2010)

[78] Nguyen, Q.U., Nguyen, X.H., O’Neill, M., McKay, R.I., Dao, N.P.: On the roles

of semantic locality of crossover in genetic programming. Information Sciences

235, 195–213 (2013)

[79] Nguyen, Q.U., Nguyen, X.H., O’Neill, M., McKay, R.I., Galvan-Lopez, E.:

Semantically-based crossover in genetic programming: application to real-valued

symbolic regression. Genetic Programming and Evolvable Machines 12(2), 91–119

(2011)

[80] Nguyen, Q.U., O’Neill, M., Nguyen, X.H.: Predicting the tide with genetic pro-

gramming and semantic-based crossovers. In: 2010 Second International Confer-

ence on Knowledge and Systems Engineering. pp. 89–95. IEEE (2010)

139

[81] Nguyen, Q.U., O’Neill, M., Nguyen, X.H.: Examining semantic diversity and

semantic locality of operators in genetic programming. Ph.D. thesis, University

College Dublin (2011)

[82] Nguyen, Q.U., Pham, T.A., Nguyen, X.H., McDermott, J.: Subtree semantic ge-

ometric crossover for genetic programming. Genetic Programming and Evolvable

Machines 17(1), 25–53 (2016)

[83] Oksanen, K., Hu, T.: Lexicase selection promotes effective search and behavioural

diversity of solutions in linear genetic programming. In: 2017 IEEE Congress on

Evolutionary Computation (CEC). pp. 169–176. IEEE (2017)

[84] Oliveira, L.O.V., Casadei, F., Pappa, G.L.: Strategies for improving the distri-

bution of random function outputs in gsgp. In: European Conference on Genetic

Programming. pp. 164–177. Springer (2017)

[85] Oliveira, L.O.V., Miranda, L.F., Pappa, G.L., Otero, F.E., Takahashi, R.H.:

Reducing dimensionality to improve search in semantic genetic programming. In:

International Conference on Parallel Problem Solving from Nature. pp. 375–385.

Springer (2016)

[86] Oliveira, L.O.V., Otero, F.E., Pappa, G.L.: A dispersion operator for geometric

semantic genetic programming. In: Proceedings of the Genetic and Evolutionary

Computation Conference 2016. pp. 773–780. ACM (2016)

[87] Oltean, M., Groşan, C., Dioşan, L., Mihăilă, C.: Genetic programming with

linear representation: a survey. International Journal on Artificial Intelligence

Tools 18(02), 197–238 (2009)

[88] O’Neill, M., Vanneschi, L., Gustafson, S.M., Banzhaf, W.: Open issues in genetic

programming. Genetic Programming and Evolvable Machines 11, 339–363 (2010)

[89] Panait, L., Luke, S.: Alternative bloat control methods. In: Genetic and Evolu-

tionary Computation Conference. pp. 630–641. Springer (2004)

140

[90] Pawlak, T.P., Krawiec, K.: Progress properties and fitness bounds for geometric

semantic search operators. Genetic Programming and Evolvable Machines 17(1),

5–23 (2016)

[91] Pawlak, T.P., Krawiec, K.: Competent geometric semantic genetic programming

for symbolic regression and boolean function synthesis. Evolutionary computation

26(2), 177–212 (2018)

[92] Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and comparative analysis of

geometric semantic crossovers. Genetic Programming and Evolvable Machines

16(3), 351–386 (2015)

[93] Pawlak, T.P., Wieloch, B., Krawiec, K.: Semantic backpropagation for designing

search operators in genetic programming. IEEE Transactions on Evolutionary

Computation 19(3), 326–340 (2015)

[94] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,

A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Sklearn tutorial

[online] (2011), https://scikit-learn.org/stable/ Accessed: 2019-11-24

[95] Poli, R.: A simple but theoretically-motivated method to control bloat in genetic

programming. Genetic programming pp. 43–76 (2003)

[96] Poli, R.: Covariant tarpeian method for bloat control in genetic programming.

Genetic Programming Theory and Practice VIII pp. 71–89 (2011)

[97] Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A field guide to genetic

programming. Lulu. com (2008)

[98] Poli, R., McPhee, N.F., Citi, L., Crane, E.: Memory with memory in tree-based

genetic programming. In: European Conference on Genetic Programming. pp.

25–36. Springer (2009)

141

[99] Purohit, A., Choudhari, N.S., Tiwari, A.: Code bloat problem in genetic pro-

gramming. International Journal of Scientific and Research Publications 3(4),

1612 (2013)

[100] Rumpf, D.L.: Statistics for dummies. Technometrics 46(3) (2004)

[101] Sáez, J.A., Galar, M., Luengo, J., Herrera, F.: Tackling the problem of classifica-

tion with noisy data using multiple classifier systems: Analysis of the performance

and robustness. Information Sciences 247, 1–20 (2013)

[102] Sáez, J.A., Galar, M., Luengo, J., Herrera, F.: Analyzing the presence of noise in

multi-class problems: alleviating its influence with the one-vs-one decomposition.

Knowledge and Information Systems 38(1), 179–206 (2014)

[103] Sara, S., Leonardo, V.: The importance of being flat-studying the program length

distributions of operator equalisation. Genetic Programming Theory and Practice

IX pp. 211–233 (2011)

[104] Silva, S., Costa, E.: Dynamic limits for bloat control in genetic programming and

a review of past and current bloat theories. Genetic Programming and Evolvable

Machines 10(2), 141–179 (2009)

[105] Silva, S., Dignum, S.: Extending operator equalisation: Fitness based self adap-

tive length distribution for bloat free gp. In: European Conference on Genetic

Programming. pp. 159–170. Springer (2009)

[106] Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic

programming and a survey of bloat control methods. Genetic Programming and

Evolvable Machines 13(2), 197–238 (2012)

[107] Silva, S., Vanneschi, L.: Operator equalisation, bloat and overfitting: a study

on human oral bioavailability prediction. In: Proceedings of the 11th Annual

conference on Genetic and evolutionary computation. pp. 1115–1122. ACM (2009)

142

[108] Sokolov, A., Whitley, D.: Unbiased tournament selection. In: Proceedings of the

7th annual conference on Genetic and evolutionary computation. pp. 1131–1138.

ACM (2005)

[109] Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to

designing convolutional neural network architectures. In: Proceedings of the Ge-

netic and Evolutionary Computation Conference. pp. 497–504. ACM (2017)

[110] Szubert, M., Kodali, A., Ganguly, S., Das, K., Bongard, J.C.: Semantic forward

propagation for symbolic regression. In: International Conference on Parallel

Problem Solving from Nature. pp. 364–374. Springer (2016)

[111] Trujillo, L., Emigdio, Z., Juárez-Smith, P.S., Legrand, P., Silva, S., Castelli,

M., Vanneschi, L., Schütze, O., Muñoz, L., et al.: Local search is underused

in genetic programming. Genetic Programming Theory and Practice XIV pp.

119–137 (2018)

[112] Trujillo, L., Muñoz, L., Galván-López, E., Silva, S.: neat genetic programming:

Controlling bloat naturally. Information Sciences 333, 21–43 (2016)

[113] Trujillo, L., Olague, G., Lutton, E., de Vega, F.F., Dozal, L., Clemente, E.:

Speciation in behavioral space for evolutionary robotics. Journal of Intelligent

and Robotic Systems 64(3-4), 323–351 (2011)

[114] Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of

geometric semantic gp and its application to problems in pharmacokinetics. In:

European Conference on Genetic Programming. pp. 205–216. Springer (2013)

[115] Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional

complexity in genetic programming. In: Proceedings of the 12th annual confer-

ence on Genetic and evolutionary computation. pp. 877–884. ACM (2010)

[116] Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic pro-

gramming. Genetic Programming and Evolvable Machines 15(2), 195–214 (2014)

143

[117] Vanneschi, L., Galvao, B.: A parallel and distributed semantic genetic program-

ming system. In: 2017 IEEE Congress on Evolutionary Computation (CEC). pp.

121–128. IEEE (2017)

[118] Vyas, R., Bapat, S., Goel, P., Karthikeyan, M., Tambe, S.S., Kulkarni, B.D.:

Application of genetic programming gp formalism for building disease predictive

models from protein-protein interactions ppi data. IEEE/ACM Transactions on

Computational Biology and Bioinformatics (TCBB) 15(1), 27–37 (2018)

[119] Whigham, P.A., Dick, G.: Implicitly controlling bloat in genetic programming.

IEEE Transaction on Evolutionary Computation 14(2), 173–190 (2010)

[120] White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kro-

nberger, G., Jaskowski, W., O’Reilly, U.M., Luke, S.: Better GP benchmarks:

community survey results and proposals. Genetic Programming and Evolvable

Machines 14(1), 3–29 (2013)

[121] Wilson, D.G., Cussat-Blanc, S., Luga, H., Miller, J.F.: Evolving simple pro-

grams for playing atari games. In: Proceedings of the Genetic and Evolutionary

Computation Conference. pp. 229–236. ACM (2018)

[122] Xie, H.: Diversity control in gp with adf for regression tasks. In: Australasian

Joint Conference on Artificial Intelligence. pp. 1253–1257. Springer (2005)

[123] Xie, H., Zhang, M.: Impacts of sampling strategies in tournament selection for

genetic programming. Soft Computing 16(4), 615–633 (2012)

[124] Xie, H., Zhang, M.: Parent selection pressure auto-tuning for tournament selec-

tion in genetic programming. IEEE Transactions on Evolutionary Computation

17(1), 1–19 (2013)

[125] Xie, H., Zhang, M., Andreae, P.: Automatic selection pressure control in genetic

programming. In: Sixth International Conference on Intelligent Systems Design

and Applications. vol. 1, pp. 435–440. IEEE (2006)

144

[126] Xie, H., Zhang, M., Andreae, P., Johnson, M.: An analysis of multi-sampled issue

and no-replacement tournament selection. In: Proceedings of the 10th annual

conference on Genetic and evolutionary computation. pp. 1323–1330. ACM (2008)

[127] Xie, H., Zhang, M., Andreae, P., Johnston, M.: Is the not-sampled issue in

tournament selection critical? In: 2008 IEEE Congress on Evolutionary Compu-

tation. pp. 3710–3717. IEEE (2008)

[128] Yoo, S., Xie, X., Kuo, F.C., Chen, T.Y., Harman, M.: Human competitiveness

of genetic programming in spectrum-based fault localisation: theoretical and

empirical analysis. ACM Transactions on Software Engineering and Methodology

(TOSEM) 26(1), 4 (2017)

[129] Žegklitz, J., Poš́ık, P.: Model selection and overfitting in genetic programming:

Empirical study. In: Proceedings of the Companion Publication of the 2015 An-

nual Conference on Genetic and Evolutionary Computation. pp. 1527–1528. ACM

(2015)

145

Appendix
Remaining results of the statistics tournament

selection methods

This appendix presents the remaining results of the methods tested

in Chapter 2. The table results include:

� Mean best fitness on training noise data with tour size=3 and tour

size=7.

� Average of solutions size on training noise data with tour size=3 and

tour size=7.

� Mean of best fitness of GP and three semantics tournament selections

with tour size=5.

� Median of testing error of GP and three semantics tournament se-

lections with tour size=5.

� Average of solution’s size of GP and three semantics tournament

selections with tour size=5.

� Mean of best fitness of TS-RDO and four other techniques with tour

size=5.

� Median of fittest of TS-RDO and four other techniques with tour

size=5.

� Average of solutions size of TS-RDO and four other techniques with

tour size=5.

146

Table A.1: Mean best fitness on training noise data with tour-size=3 (the left) and
tour-size=7 (the right)

Pro GP neatGP TS-S RDO TS-RDO GP neatGP TS-S RDO TS-RDO

A. Benchmarking Problems

F1 2.06 4.78– 3.41– 0.15+ 2.43 1.69 4.78– 3.55– 0.19+ 3.38–

F2 0.22 0.41– 0.57– 0.05+ 0.21 0.22 0.41– 0.58– 0.06+ 0.39–

F3 5.39 13.11– 6.63 0.17+ 0.91+ 4.75 13.11– 6.33 0.21+ 1.52+

F4 0.10 0.17– 0.11– 0.08+ 0.09+ 0.10 0.17– 0.12– 0.08+ 0.10

F5 0.14 0.16– 0.14 0.13 0.15– 0.14 0.16– 0.14 0.14 0.15–

F6 0.76 1.00– 1.23– 0.28+ 0.53+ 0.62 1.00– 1.26– 0.27+ 0.61

F7 0.48 0.54– 0.56– 0.26+ 0.45 0.45 0.54– 0.57– 0.27+ 0.46

F8 66.8 69.2– 67.2– 65.9 67.3 – 66.5 69.2– 67.3– 66.0 67.4–

F9 3.99 5.64– 4.61– 2.95+ 3.22 5.40 5.64– 6.74– 2.96+ 3.34

F10 9.93 10.9 6.82 2.72+ 2.85+ 7.96 10.9– 6.98 3.58+ 2.71+

F11 0.21 0.30– 0.21 0.18+ 0.19+ 0.22 0.30– 0.21+ 0.18 0.19+

F12 7.15 7.52– 7.17– 6.76+ 6.98 7.03 7.52– 7.17– 6.81+ 7.06–

F13 0.88 0.93– 0.89– 0.87 0.89– 0.89 0.93– 0.89– 0.87 0.89+

F14 102.6 109.4– 104.5– 94.9+ 102.4 103.1 109.4– 102.7+ 96.2+ 103.6–

F15 3.04 3.95– 3.02 1.86+ 2.01+ 2.52 3.95– 2.65– 1.86+ 2.02

B. UCI Problems

F16 19.3 23.82– 20.0 9.49+ 9.72+ 18.6 23.8– 19.6 9.37+ 9.78+

F17 3.97 4.31– 4.36– 2.82+ 3.69 3.62 4.31– 4.37– 2.57+ 3.78

F18 45.8 56.6– 45.8 34.6+ 35.6+ 45.4 56.6– 45.7 33.9+ 35.7+

F19 26.0 28.50– 31.5– 22.1+ 28.3– 24.3 28.5– 31.7– 22.2 28.6–

F20 16.6 16.9– 16.7– 15.0+ 15.6+ 16.3 16.9– 16.7– 14.8+ 15.7+

F21 4.49 4.68– 4.54 4.05+ 4.18+ 4.41 4.68– 4.51 4.00+ 4.19+

F22 3.44 4.22– 3.75– 2.78+ 3.45 3.19 4.22– 3.85– 2.80+ 3.57–

F23 5.07 7.14– 5.07 1.59+ 3.03+ 4.09 7.14– 8.81– 1.36+ 3.68

F24 11.6 13.6– 14.3– 5.50+ 11.0 10.1 13.6– 15.6– 4.57+ 11.8–

F25 5.46 6.79– 7.04– 2.33+ 4.77 4.81 6.79– 7.48– 2.07+ 5.49–

F26 53.12 53.64– 53.25 52.63 53.07 53.23 53.64– 53.52– 52.85 53.31

147

Table A.2: Average of solutions size on training noise data with tour-size=3 (the left)
and tour-size=7 (the right)

Pro GP neatGP TS-S RDO TS-RDO GP neatGP TS-S RDO TS-RDO

A. Benchmarking Problems

F1 273 123 + 120 + 248 92+ 295 123 + 100 + 231 48+

F2 184 65 + 35+ 174 97 + 168 65 + 38+ 165 49 +

F3 260 103 + 128 + 190 + 98+ 260 103 + 104 + 183 + 84+

F4 250 54+ 69 + 312 – 174 205 54+ 78 + 312 – 132 +

F5 85 10+ 52 50 + 16 + 87 10+ 35 + 45 + 12 +

F6 178 48 + 45+ 240 – 104 + 174 48+ 51 + 231 73 +

F7 145 47 + 46+ 226 – 77 + 142 47 + 44+ 208 – 69 +

F8 235 135 + 92 + 153 + 25+ 366 135 + 70 + 142 + 18+

F9 165 68 + 67+ 171 78 + 220 68 + 60+ 191 69 +

F10 172 66+ 110 + 173 98 + 192 66+ 93 + 185 101 +

F11 149 52 + 69 + 141 + 22+ 159 52 + 57 + 115 + 16+

F12 244 64+ 100 + 179 75 + 297 64 + 84 + 158 + 46+

F13 178 54 + 38 + 160 25+ 161 54 + 26 + 142 19+

F14 323 72 + 209 + 156 + 33+ 361 72 + 170 + 139 + 31+

F15 166 64 + 98 + 135 18+ 191 64 + 72 + 132 + 18+

B. UCI Problems

F16 186 109+ 124 + 296 – 174 284 109+ 117 + 349 – 149 +

F17 194 70 + 45+ 198 84 + 232 70 + 33+ 243 70 +

F18 168 74+ 97 + 340 – 204 220 74+ 86 + 407 – 171 +

F19 213 87 + 13 + 86 + 10+ 317 87 + 8 + 100 + 8+

F20 240 92 + 91+ 397 – 212 331 92 + 86+ 462 – 171 +

F21 183 66+ 88 + 200 110 + 237 66 + 58+ 242 101 +

F22 194 82 + 84 + 190 52+ 211 82 + 61 + 188 39+

F23 168 52+ 53 + 233 – 108 + 212 52 + 20+ 284 – 73 +

F24 169 61 + 35+ 228 – 54 + 214 61 + 16+ 275 – 35 +

F25 174 70 + 34+ 220 72 + 217 70 + 21+ 260 39 +

F26 137 37 + 70 + 64 + 33+ 209 37 + 46 + 54 + 21+

148

Table A.3: Mean of best fitness with tour size=5. The left is original data and the
right is noise data.

Pro GP TS-R TS-S TS-P GP TS-R TS-S TS-P

A. Benchmarking Problems

F1 1.59 2.50– 2.94– 2.46– 1.83 2.56– 3.33– 2.50–

F2 0.23 0.35– 0.58– 0.28– 0.21 0.37– 0.59– 0.29–

F3 4.56 6.20– 6.57– 5.08 5.08 5.74– 6.70– 4.90

F4 0.05 0.04 0.05 0.04+ 0.10 0.11– 0.12– 0.10–

F5 0.12 0.13 0.13 0.13 0.14 0.14– 0.14 0.14

F6 0.35 0.58– 1.01– 0.56 0.61 1.02– 1.21– 0.81–

F7 0.42 0.45 0.52– 0.41 0.46 0.49– 0.56– 0.47

F8 5.44 4.98 5.48– 5.01 66.5 67.1– 67.2– 66.9–

F9 2.06 1.73 2.50– 1.39+ 4.15 4.38 5.56– 3.96

F10 7.92 7.47 5.58+ 7.39 8.23 8.60 6.89 7.83

F11 0.09 0.09 0.07 0.08 0.21 0.21+ 0.20+ 0.21

F12 6.96 7.13– 7.07– 7.13– 7.02 7.16– 7.13– 7.14–

F13 0.88 0.88– 0.88– 0.88– 0.88 0.89– 0.90– 0.89–

F14 72.8 74.3 78.5 77.6 103.6 103.6– 102.5+ 102.7+

F15 2.30 2.50 2.11 2.56 2.51 2.87– 2.62– 2.91–

B. UCI Problems

F16 8.08 8.78 9.22 8.69 18.3 20.1– 19.6 18.8

F17 3.47 4.00– 4.07– 3.80– 3.68 4.27– 4.35– 4.07–

F18 10.2 11.8 10.4 8.9+ 45.3 46.4 44.9 45.9

F19 25.7 29.8– 31.8– 28.3– 25.4 29.7– 31.6– 28.0–

F20 9.36 9.84– 9.77 9.58 16.4 16.7 – 16.7– 16.6 –

F21 4.26 4.38– 4.36– 4.30 4.40 4.50– 4.46 4.48–

F22 0.84 1.14– 1.10– 1.00– 3.25 3.69– 3.78– 3.59–

F23 3.56 4.83– 6.04– 4.23 4.18 5.51– 7.95– 5.18–

F24 8.39 10.5– 11.7– 9.74– 10.4 13.2 – 15.2– 12.3 –

F25 4.57 5.69– 6.97– 5.42– 5.00 6.29– 7.26– 5.94–

F26 51.80 51.94 52.06 51.88 53.11 53.35– 53.58– 53.29–

149

Table A.4: Median of testing error with tour size=5. The left is original data and the
right is noise data.

Pro GP TS-R TS-S TS-P GP TS-R TS-S TS-P

A. Benchmarking Problems

F1 8.86 6.07+ 4.08+ 6.12+ 10.9 6.10+ 5.17+ 7.90+

F2 0.96 0.88+ 0.87+ 0.96 0.94 0.83+ 0.80+ 0.92

F3 31.1 15.3+ 14.1+ 17.4+ 32.4 16.1+ 16.2+ 19.3+

F4 0.051 0.048 0.050 0.042+ 0.147 0.143 0.143 0.141

F5 0.135 0.135 0.129 0.134 0.140 0.140 0.139 0.140

F6 1.36 1.71 1.91 1.92 2.08 2.23 2.06 2.23

F7 1.67 1.77 1.59+ 1.61 1.77 1.83 1.69 1.81

F8 7.37 7.26 7.39 6.78 67.1 66.9+ 66.8+ 67.0

F9 1.69 1.59+ 1.62+ 1.64 5.16 5.49 5.21 5.28

F10 59.7 48.9 25.4+ 39.7 61.9 61.6 57.1 56.2

F11 0.07 0.08 0.06 0.08 0.199 0.199 0.198+ 0.201

F12 7.44 7.33+ 7.33+ 7.37+ 7.39 7.33 7.30+ 7.36

F13 0.877 0.874 0.871+ 0.876 0.90 0.90 0.90+ 0.90

F14 126.8 127.9 124.6 126.7 122.7 122.6 122.5+ 122.7

F15 4.59 4.99 3.58 5.03 4.36 5.00 4.13 5.03–

B. UCI Problems

F16 21.3 22.1 25.3 23.3 37.3 36.6 36.0 34.5

F17 5.12 4.90 4.71+ 5.03 5.65 5.59+ 5.28+ 5.52+

F18 9.77 10.78 9.63 6.78+ 47.6 47.4 44.8 47.0

F19 40.7 38.6+ 36.8+ 39.9 43.1 40.3 + 37.7+ 42.2

F20 9.59 9.83 9.46 9.69 9.32 9.13+ 9.14+ 9.18+

F21 4.33 4.36– 4.34 4.31 4.51 4.56 4.48 4.57

F22 1.90 2.14– 1.82 1.66 5.95 5.90 5.86 5.81

F23 6.84 7.54 8.04 6.53 7.38 7.48 8.48– 8.69

F24 19.1 16.4+ 12.8+ 16.5 24.1 19.5+ 16.8+ 22.7

F25 9.01 8.51 8.33+ 8.12 9.45 8.73 8.31+ 8.82

F26 48.35 46.95 46.28+ 46.99 46.64 46.51 46.63 46.48

150

Table A.5: Average of solution’s size with tour size=5. The left is original data and
the right is noise data.

Pro GP TS-R TS-S TS-P GP TS-R TS-S TS-P

A. Benchmarking Problems

F1 302 258 + 113+ 250 + 292 245 + 106+ 253 +

F2 169 140 + 33+ 164 174 148 + 29+ 159

F3 277 281 99+ 270 273 274 104+ 293

F4 171 205 70+ 184 270 219 67+ 228

F5 93 92 44+ 110 84 89 39+ 116 –

F6 164 146 + 56+ 149 182 139 + 52+ 163

F7 149 150 43+ 137 138 137 + 58+ 153

F8 241 199 + 93+ 201 + 298 189 + 74+ 187 +

F9 209 141 + 70+ 140 + 206 126 + 60+ 139 +

F10 180 168 102+ 168 198 178 + 91+ 167 +

F11 157 145 74+ 149 156 144 61+ 157

F12 281 209 + 90+ 229 + 292 212 + 86+ 248 +

F13 157 109 + 34+ 148 172 141 34+ 147 +

F14 312 275 171+ 292 338 319 156+ 343

F15 158 147 92+ 159 191 165 79+ 186

B. UCI Problems

F16 227 226 180+ 215 250 234 110+ 219

F17 231 172 + 41+ 186 + 217 168 + 32+ 178 +

F18 198 198 127+ 182 195 175 87+ 183

F19 257 100 + 11+ 171 + 284 94 + 11+ 150 +

F20 240 244 152+ 233 301 190 + 91+ 215 +

F21 226 197 89+ 197 207 177 + 81+ 188

F22 207 189 87+ 201 209 176 + 72+ 177

F23 186 146 + 33+ 160 187 131 + 24+ 147 +

F24 186 134 + 26+ 156 + 201 121 + 20+ 141 +

F25 206 143 + 26+ 159 + 202 139 + 24+ 158 +

F26 220 201 116+ 218 171 147 57+ 143

151

Table A.6: Mean of best fitness of TS-RDO and four other techniques with tour
size=5. The left is original data and the right is noise data.

Pro GP neatGP TS-S RDO TS-RDO GP neatGP TS-S RDO TS-RDO

A. Benchmarking Problems

F1 1.59 4.64– 2.94– 0.16+ 2.29– 1.83 4.78– 3.33– 0.14+ 3.02–

F2 0.23 0.40– 0.58– 0.06+ 0.31 0.21 0.41– 0.59– 0.06+ 0.31

F3 4.56 12.63– 6.57 0.16+ 1.06+ 5.08 13.11– 6.70 0.16+ 1.38+

F4 0.05 0.11– 0.05 0.01+ 0.01+ 0.10 0.17– 0.12– 0.08+ 0.10

F5 0.12 0.15– 0.13 0.13 0.15– 0.14 0.16– 0.14 0.14– 0.15–

F6 0.35 0.77– 1.01– 0.01+ 0.01+ 0.61 1.00– 1.21– 0.28+ 0.58

F7 0.42 0.50– 0.52– 0.19+ 0.40 0.46 0.54– 0.56– 0.25+ 0.48

F8 5.44 16.61– 5.48 0.39+ 0.37+ 66.5 69.2– 67.2– 65.8 67.4–

F9 2.06 3.58– 2.50– 0.20+ 0.20+ 4.15 5.64– 5.56– 2.94+ 3.30

F10 7.92 11.50 5.58 0.95+ 0.32+ 8.23 10.9– 6.89 3.14+ 2.86+

F11 0.09 0.29– 0.07 0.03+ 0.06 0.21 0.30– 0.20 0.18+ 0.19+

F12 6.96 7.44– 7.07– 6.74+ 7.04– 7.02 7.52– 7.13– 6.74+ 7.03–

F13 0.88 0.92– 0.88– 0.86 0.87+ 0.88 0.93– 0.90– 0.87 0.89–

F14 72.8 83.8– 78.5 53.8+ 65.9+ 103.6 109.4– 102.5 + 96.1+ 103.1

F15 2.30 3.53– 2.11 1.10+ 1.11+ 2.51 3.95– 2.62– 1.87+ 2.02

B. UCI Problems

F16 8.08 16.73– 9.22 2.01+ 2.18+ 18.3 23.8– 19.6 9.3+ 9.74+

F17 3.47 4.18– 4.07– 2.41+ 3.31 3.68 4.31– 4.35– 2.64+ 3.71

F18 10.2 26.4– 10.4 3.13+ 3.29+ 45.3 56.6– 44.9 34.1+ 35.7+

F19 25.7 28.9– 31.8 – 23.2+ 27.9– 25.4 28.5– 31.6– 22.0+ 28.5–

F20 9.36 13.5– 9.77 6.72+ 7.65+ 16.4 16.9– 16.7– 14.9+ 15.7+

F21 4.26 4.59– 4.36 3.89+ 4.05+ 4.40 4.68– 4.46 4.01+ 4.17+

F22 0.84 2.37– 1.10– 0.55+ 0.71 3.25 4.22– 3.78– 2.75+ 3.53–

F23 3.56 6.23– 6.04– 0.88+ 2.31+ 4.18 7.14– 7.95– 1.38+ 3.30

F24 8.39 11.02– 11.7– 3.53+ 9.38– 10.4 13.6– 15.2– 4.87+ 11.4–

F25 4.57 6.43– 6.97– 2.07+ 4.62 5.00 6.79– 7.26– 2.09+ 5.29

F26 51.80 52.63– 52.07 50.88 51.57 53.11 53.64– 53.58– 52.79 53.24

152

Table A.7: Median of fittest of TS-RDO and four other techniques with tour size=5.
The left is original data and the right is noise data.

Pro GP neatGP TS-S RDO TS-RDO GP neatGP TS-S RDO TS-RDO

A. Benchmarking Problems

F1 8.86 12.59– 4.08+ 8.23 4.16+ 10.9 13.1 5.17+ 10.2 6.63+

F2 0.96 0.84+ 0.87+ 1.15– 1.00 0.94 0.84+ 0.80+ 1.23– 1.00

F3 31.1 32.2 14.1+ 4.92+ 1.85+ 32.4 32.2 16.1+ 7.15+ 6.31+

F4 0.05 0.12– 0.05 0.02+ 0.02+ 0.15 0.19– 0.14 0.14 0.14+

F5 0.135 0.135 0.129+ 0.138 0.138 0.140 0.140 0.139 0.141 0.141 –

F6 1.36 1.74 1.91 0.00+ 0.00+ 2.08 2.19 2.06 3.07 1.25+

F7 1.67 1.61 1.59 1.22+ 1.19+ 1.77 1.73 1.69 1.61 1.62

F8 7.37 7.41 7.39 0.00+ 0.00+ 67.1 66.9 66.8+ 68.5 66.7+

F9 1.69 2.41 1.62 0.20+ 0.23+ 5.16 5.68 5.21 5.02+ 4.95+

F10 59.7 41.0 25.4 0.00+ 0.00+ 61.9 56.4 57.1 50.9+ 46.7+

F11 0.07 0.30– 0.06 0.00+ 0.08 0.20 0.32– 0.20+ 0.20 0.20+

F12 7.44 7.34+ 7.33+ 7.49 7.29+ 7.39 7.41 7.30+ 7.53– 7.31+

F13 0.877 0.874 0.871+ 0.874 0.870+ 0.898 0.898 0.896 0.901 0.896

F14 126.8 131.3– 124.6 124.1 122.6+ 122.7 128.8– 122.5 122.7 122.6

F15 4.59 5.92– 3.58 3.24+ 3.24+ 4.36 6.21– 4.13 4.14+ 4.12+

B. UCI Problems

F16 21.3 33.7– 25.3 6.86+ 5.86+ 37.3 36.3 36.0 12.5+ 11.5+

F17 5.12 4.95 4.71+ 5.66– 4.88+ 5.65 5.45 5.28+ 6.56– 5.36+

F18 9.77 28.4– 9.63 3.60+ 3.58+ 47.6 52.9– 44.8 38.6+ 36.7+

F19 40.7 38.3+ 36.8 + 37.4+ 32.2+ 43.1 40.2+ 37.7 + 39.3 + 35.6+

F20 9.59 9.18 9.46 11.7– 11.5 – 9.32 8.72+ 9.14 11.5 – 10.4–

F21 4.33 4.52– 4.34 4.23+ 4.18+ 4.51 4.67– 4.48 4.41 4.34+

F22 1.90 3.29– 1.82 1.14+ 1.18+ 5.95 6.19– 5.86 6.02 5.52+

F23 6.84 8.44– 8.04 6.42 4.38+ 7.38 9.15– 8.48 10.17– 5.95

F24 19.1 17.7 12.8+ 25.2 14.1+ 24.1 19.1+ 16.8+ 27.6 16.0+

F25 9.01 8.89 8.33 15.25– 7.77+ 9.45 9.42 8.31+ 12.15– 7.50+

F26 48.35 47.26 46.28 46.35 45.11+ 46.64 46.58 46.63 46.73 46.75

153

Table A.8: Average of solutions size of TS-RDO and four other techniques with tour
size=5. The left is original data and the right is noise data.

Pro GP neatGP TS-S RDO TS-RDO GP neatGP TS-S RDO TS-RDO

A. Benchmarking Problems

F1 302 124 + 113 + 227 + 62+ 292 123 + 106 + 242 64+

F2 169 60 + 33+ 163 62 + 174 65 + 29+ 166 67 +

F3 277 112 + 99 + 161 + 48+ 273 103 + 104 + 190 + 83+

F4 171 60+ 70 + 336 – 178 270 54+ 67 + 336 – 143

F5 93 12+ 44 + 43 + 15 + 84 10+ 39 + 37 + 14 +

F6 164 45 + 56 + 36 + 18+ 182 48+ 52 + 234 – 79 +

F7 149 50 + 43+ 207 – 70 + 138 47+ 58 + 224 – 67 +

F8 241 118 + 93 + 13 + 10+ 298 135 + 74 + 168 + 21+

F9 209 62 + 70 + 69 + 35+ 206 68 + 60+ 190 72 +

F10 180 60 + 102 + 96 + 50+ 198 66+ 91 + 181 101 +

F11 157 44 + 74 + 34 + 15+ 156 52 + 61 + 145 + 21+

F12 281 67 + 90 + 179 + 41+ 292 64 + 86 + 188 + 57+

F13 157 49 + 34 + 127 + 22+ 172 54 + 34 + 146 24+

F14 312 66 + 171 + 164 + 60+ 338 72 + 156 + 154 + 36+

F15 158 58 + 92 + 51 + 31+ 191 64 + 79 + 138 + 15+

B. UCI Problems

F16 227 103+ 180 + 321 – 172 + 250 109+ 110 + 339 – 161 +

F17 231 62 + 41+ 232 97 + 217 70 + 32+ 219 78 +

F18 198 71+ 127 + 362 – 188 195 74+ 87 + 392 – 172

F19 257 79 + 11 + 85 + 8+ 284 87 + 11 + 96 + 9+

F20 240 87+ 152 + 374 – 222 301 92 + 91+ 447 – 190 +

F21 226 63+ 89 + 228 110 + 207 66+ 81 + 229 110 +

F22 207 83 + 87 + 129 + 53+ 209 82 + 72 + 194 46+

F23 186 55 + 33+ 272 – 92 + 187 52 + 24+ 259 – 95 +

F24 186 68 + 26+ 265 – 59 + 201 61 + 20+ 260 41 +

F25 206 63 + 26+ 257 77 + 202 70 + 24+ 248 46 +

F26 220 40 + 116 + 54 + 29+ 170 36 + 57 + 55 + 22+

154

