
CONCLUSIONS AND FUTURE WORK

This dissertation focuses on the selection stage in the evolution and the
code bloat problem of GP. The overall goal was to improve GP performance by
using semantic information. This goal was successfully achieved by developing a
number of new methods. The dissertation has the following main contributions.

• Three semantic tournament selection are proposed, including TS-R, TS-S
and TS-P. For further improvements, the best method, TS-S is combined
with RDO, and the resulting method is called TS-RDO.

• A novel semantic approximation technique (SAT) is proposed. Besides,
two other versions of SAT are also introduced.

• Two methods, SA and DA based on semantic approximation technique
for reducing GP code bloat are proposed. Additionally, three other bloat
control methods based on the variants of SAT, including SAT-GP, SAS-
GP and PP-AT are introduced.

However, the dissertation is subject to some limitations. First, the proposed
methods are based on the concepts of sampling semantics that is only defined
for the problems in which the input and output are continuous real-valued vec-
tors. Second, the dissertation lacks examining the distribution of GP error vec-
tors to select an appropriate statistical hypothesis test. Third, two approaches
for reducing GP code bloat, SA and DA add two more parameters (max depth
of sTree and the portion of GP population for pruning) to GP systems.

Building upon this research, there are a number of directions for future
work arisen from the dissertation. Firstly, we will conduct research to reduce
the above limitations of the dissertation. Secondly, we want to expand the use
of statistical analysis in other phases of the GP algorithm, for example, in
model selection [129]. Thirdly, SAT was used for lessening code bloat in GP.
Nevertheless, this technique can also be used for designing new genetic opera-
tors to be similar to RDO [93]. Finally, in terms of applications, all proposed
methods in the dissertation can be applied to any problem domain where the
output is a single real-valued number. In the future, we will extend them to a
wider range of real-world applications including classification and problems of
bigger datasets to better understand their weakness and strength.

24

INTRODUCTION

Genetic Programming (GP) is considered as a machine learning method that
allows computer programs encoded as a set of tree structures to be evolved using
an evolutionary algorithm. A GP system is started by initializing a population
of individuals. The population is then evolved for a number of generations
using genetic operators such as crossover and mutation. At each generation, the
individuals are evaluated using a fitness function, and a selection schema is used
to choose better individuals to create the next population. The evolutionary
process is continued until a desired solution is found or when the maximum
number of generations is reached.

To enhance GP performance, the dissertation focuses on two main objec-
tives, including improving selection performance and addressing code bloat
phenomenon in GP. In order to achieve these objectives, several new methods
are proposed in this research by incorporating semantics into GP evolutionary
process. The main contributions of the dissertation are outlined as follows.

• Three new semantics based tournament selection methods are proposed.
A novel comparison between individuals based on a statistical analysis of
their semantics is introduced. From that, three variants of the selection
strategy are proposed. These methods promote semantic diversity and
reduce code bloat in GP.

• A semantic approximation technique is proposed. We propose a new tech-
nique that allows to grow a small (sub)tree with the semantics approxi-
mate to a given target semantics.

• New bloat control methods based on semantic approximation are intro-
duced. Inspired by the semantic approximation technique, a number of
methods for reducing GP code bloat are proposed and evaluated on a
large set of regression problems and a real-world time series forecasting.

The dissertation is organised into three chapters except for introduction,
conclusion, future work, bibliography and appendix. Chapter 1 gives the back-
grounds related to this research. Chapter 2 presents the proposed forms of
tournament selection, and Chapter 3 introduces a new proposed semantics ap-
proximation technique and several methods for reducing code bloat.

1

Chapter 1

BACKGROUNDS

1.1 Genetic Programming
Genetic Programming (GP) is an Evolutionary Algorithm (EA) that auto-

matically finds the solutions of unknown structure for a problem[50,96]. It is
also considered as a metaheuristic-based machine learning method which finds
solutions in form of computer programs for a given problem through an evo-
lutionary process. Technically, GP is considered as an evolutionary algorithm,
so it shares a number of common characteristics with other EAs. Algorithm 1
presents the algorithm of GP.

Algorithm 1: GP algorithm
1. Randomly create an initial population of programs from the available
primitives.

repeat
2. Execute each program and evaluate its fitness.
3. Select one or two program(s) from the population with a
probability based on fitness to participate in genetic operators.

4. Create new individual program(s) by applying genetic operators
with specified probabilities.

until an acceptable solution is found or other stopping condition is met.
return the best-so-far individual.

The first step in running a GP system is to create an initial population of
computer programs. GP then finds out how well a program works by running
it, and then comparing its behaviour to some objectives of the problem (step
2). Those programs that do well are chosen to breed (step 3) and produce
new programs for the next generation (step 4). Generation by generation, GP
transforms populations of programs into new, hopefully better, populations of
programs by repeating steps 2-4 until a termination condition is met.

1.2 Semantics in GP
Semantics is a broad concept used in different research fields. In the context

of GP, we are mostly interested in the behavior of the individuals (what they
‘do’). To specify what individual behavior is, researchers have recently intro-

2

in the generalization ability. Moreover, the solution complexity of SA and DA is
much simple than the solution complexity of RF that is often the combination
of dozens or hundreds of trees.

3.6 Applying semantic methods for time series forecasting
The above analysis, we used the generalized version of SAT, in which sTree is

a small randomly generated tree. Besides, there are some variants of SAT that
can be sTree is a random terminal taken from the terminal set, and sTree is a
small tree taken from the pre-defined library. Based on that, we have proposed
a new method called SAT-GP [C2] in which sTree is a random terminal that
taken from the terminal set, and a new other method, namely SAS-GP [C5] in
which sTree is a small tree taken from a pre-defined library of subprograms.

Moreover, the semantic approximation technique can be applied to other
bloat control methods. We combine this semantic approximation technique with
Prune and Plant operator [2] to create a new operator called PP-AT [C6]. PP-
AT is an extension of Prune and Plant. PP-AT selects a random subtree and
then replaces it with an approximate tree. The approximate tree is grown from a
random terminal so that the semantics of it is the most similar to the semantics
of the selected subtree. Moreover, this subtree is also grown in the population
as a new another child.

For an extension, we applied the proposed semantic methods for reducing
code bloat on a real-world time series forecasting problem taken from Kaggle
competition with different GP parameter settings. However, due to the lim-
ited space, the results of this section is only summarized. The experimental
results showed that TS-S and SAT-based methods usually achieved better per-
formance in comparison to GP. For PP-AT, although it has not achieved good
performance like TS-S and SAT-based methods, it has inherited the benefits
and improved the performance of PP.

3.7 Conclusion
In this chapter, we proposed a new technique for generating a tree that is

semantically similar to a target semantic vector. Based on that, we proposed
two approaches for lessening GP code bloat. Besides, some other versions of
SAT are introduced. From that, several other methods for reducing code bloat
are proposed, including SAT-GP, SAS-GP and PP-AT. The results illustrated
that all proposed bloat control methods based on semantics help GP system
increase the performance and reducing code bloat.

23

than GP. The average running time of SA and DA are significantly smaller
than that of GP on most tested problems. Comparing between various versions
of SA and DA we can see that SA20, SAD, DA20 and DAD often run faster
than SA10 and DA10.

Overall, the results in this section show that SA and DA improve the train-
ing error and the testing error compared to GP and the recent bloat control
methods (PP and TS-S). Moreover, the solutions obtained by SA and DA are
much simpler, and their average running time are much less than that of GP
on most tested functions.

3.5 Comparing with Machine Learning Algorithms
This section compares the results of the proposed methods with four popular

machine learning algorithms including Linear Regression (LR), Support Vector
Regression (SVR), Decision Tree (DT) and Random Forest (RF).

The testing error of the proposed models and four machine learning systems
are presented in Table 3.8. The experimental results show that our proposed

Table 3.8: Comparison of the testing error of GP and machine learning
systems. The best results are underlined.
Pro GP SA10 SA20 SAD DA10 DA20 DAD LR SVR DT RF

F1 1.69 1.28 1.05 1.44 0.80 1.68 1.95 1.85 1.64 1.50 1.45

F2 0.30 0.27 0.25 0.24 0.28 0.26 0.26 0.26 0.25 0.30 0.24

F3 10.17 4.41 5.44 5.44 4.38 4.67 5.68 6.61 5.37 7.59 5.83

F5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00

F6 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01

F9 0.31 0.06 0.73 3.44 0.01 0.01 1.40 5.18 5.17 4.44 5.24

F13 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03

F15 2.19 2.18 2.18 2.18 2.20 2.18 2.18 2.17 2.17 2.23 2.18

F16 0.75 0.27 0.27 0.28 0.26 0.23 0.26 0.22 0.32 0.31 0.23

F17 0.61 0.60 0.57 0.58 0.59 0.57 0.57 0.60 0.64 0.70 0.54

F18 0.36 0.21 0.29 0.32 0.16 0.17 0.18 0.15 0.37 0.16 0.13

F22 0.28 0.18 0.61 0.76 0.21 0.34 0.52 0.76 1.14 0.14 0.15

F23 1.44 0.65 0.87 0.99 0.52 0.51 0.53 1.84 1.02 0.56 0.56

F24 2.69 2.42 2.10 2.04 2.31 2.08 1.97 1.83 2.47 2.53 2.04

F25 1.77 1.26 1.13 1.13 1.30 1.30 1.34 1.58 1.22 1.15 1.14

F26 1.04 1.02 1.02 1.02 1.03 1.02 1.02 1.31 1.02 3.35 1.67

methods are often better than three machine learning algorithms including LR,
SVR and DT and they are as good as the best machine learning algorithm (RF)

22

duced several concepts related to semantics in GP [67,82,92,93] as following.
Let p ∈ P be a program from a set P of all possible programs. When applied

to an input in ∈ I, a program p produces certain output p(in).

Definition 1.1. A semantic space of a program set P is a set S such that a semantic

mapping exists for it, i.e., there exists a function s : P→ S that maps every program p ∈ P
into its semantics s(p) ∈ S and has the following property:

s(p1) = s(p2)⇔ ∀in ∈ I : p1(in) = p2(in)

Definition 1.1 indicates that each program in P has thus exactly one seman-
tics, but two different programs can have the same semantics.

The semantic space S enumerates all behaviors of programs for all possible
input data. That means semantics is complete in capturing the entire informa-
tion on program behavior. In GP, semantics is typically contextualized within
a specific programming task that is to be solved in a given program set P. As a
machine learning technique, GP evolves programs based on a finite training set
of fitness cases [54,71,116]. Assuming that this set is the only available data that
specifies the desired outcome of the sought program, naturally, an instance of
the semantics of a program is the vector of outputs that the program produces
for these fitness cases as Definition 1.2.

Definition 1.2. Let K = {k1, k2, ...kn} be the fitness cases of the problem. The semantics

s(p) of a program p is the vector of output values obtained by running p on all fitness cases.

s(p) = (p(k1), p(k2), . . . , p(kn)), for i = 1, 2, . . . , n.

In Definition 1.2, semantics may be viewed as a point in n−dimensional
semantic space, where n is the number of fitness cases. The semantics of a
program consists of a finite sample of outputs with respect to a set of training
values. Hence, this definition is not a complete description of the behavior of
programs, and it is also called sampling semantics [78,79]. Moreover, the definition
is only valid for programs whose output is a single real-valued number, as in
symbolic regression. However, this definition is widely accepted and extensively
used for designing many new techniques in GP [54,67,73,79,82,93,110]. The
studies in the dissertation use this definition.

Formally, a semantic distance between two points in a semantic space is
defined as Definition 1.3.

3

Definition 1.3. A semantic distance between two points in the semantic space S is

any function:

d : S× S→ R+

that is non-negative, symmetric, and fulfills the properties of the identity of indiscernibles

and triangle inequality.

Interestingly, the fitness function is some kind of distance measure. Thus,
semantics can be computed every time a program is evaluated, and it is essen-
tially free to obtain. Moreover, a part of tree program is also a program, so
semantics can be calculated in (almost) every node of the tree.

Based on Definition 1.2, the error vector of an individual is calculated by
comparing the semantic vector with the target output of the problem. More
precisely, the error vector of an individual is defined as:

Definition 1.4. Let s(p) = (s1, s2, ...sn) be the semantics of an individual p and y =

(y1, y2, ...yn) be the target output of the problem on n fitness cases. The error vector e(p)

of a program p is a vector of n elements calculated as follows.

e(p) = (|s1 − y1|, |s2 − y2|, . . . , |sn − yn|)

Overall, semantics indicates the behavior of a program (individual) and can
be represented by program outputs with all possible inputs.

1.3 Semantic Backpropagation
The semantic backpropagation algorithm was proposed by Krawiec and

Pawlak [53,93] to determine the desired semantics for an intermediate node
of an individual. The algorithm starts by assigning the target of the problem
(the output of the training set) to the semantics of the root node and then
propagates the semantic target backwards through the program tree. At each
node, the algorithm calculates the desired semantics of the node so that when
we replace the subtree at this node by a new tree that has semantics equally to
the desired semantics, the semantics of entire individual will match the target
semantics. Figure 1.8 illustrates the process of using the semantic backpropa-
gation algorithm to calculate the desired semantics for the blue node N .

The semantic backpropagation technique is then used for designing sev-
eral genetics operators in GP [53,93]. Among these, Random Desired Opera-
tor (RDO) is the most effective operator. A parent is selected by a selection

4

For SA and DA, 20% and dynamic configurations often achieve the simplest
solutions.

Table 3.5: Average size of solutions
Pro GP RDO PP TS-S SA10 SA20 SAD DA10 DA20 DAD

F1 295.5 167.7+ 66.9+ 135.0+ 89.3+ 19.9+ 18.2+ 79.4+ 17.3+ 13.3+

F2 171.0 115.9+ 28.3+ 31.2+ 69.8+ 19.2+ 22.9+ 53.3+ 17.9+ 20.8+

F3 228.3 115.7+ 44.8+ 126.7+ 82.8+ 23.7+ 16.5+ 72.5+ 26.8+ 13.3+

F5 100.9 43.7+ 23.9+ 62.4+ 51.9+ 15.0+ 14.9+ 52.4+ 21.1+ 11.3+

F6 152.3 12.6+ 33.1+ 40.3+ 81.7+ 39.5+ 31.8+ 64.1+ 36.9+ 31.5+

F9 187.3 70.2+ 19.4+ 84.5+ 67.2+ 18.4+ 13.4+ 52.1+ 13.1+ 10.1+

F13 153.6 57.4+ 21.5+ 46.2+ 70.1+ 23.0+ 18.5+ 72.3+ 18.6+ 19.6+

F15 237.8 91.0+ 30.4+ 169.5+ 80.3+ 15.6+ 12.0+ 68.4+ 19.2+ 8.9+

F16 196.4 148.4+ 21.5+ 209.6 52.6+ 8.8+ 9.2+ 63.8+ 16.3+ 12.8+

F17 192 140.7+ 10.2+ 72.3+ 60.0+ 9.6+ 7.2+ 77.3+ 17.4+ 12.4+

F18 151.7 164.6 19.9+ 151.9 55.0+ 14.6+ 13.4+ 73.7+ 21.9+ 13.3+

F23 187.4 156.3 10.3+ 48.1+ 53.2+ 10.3+ 7.6+ 69.6+ 16.3+ 10.4+

F24 192.6 161.6 10.0+ 45.8+ 61.6+ 11.6+ 7.9+ 76.6+ 17.5+ 15.2+

F25 177.5 141.6+ 12.0+ 49.4+ 62.8+ 9.0+ 8.1+ 66.0+ 19.2+ 12.7+

F26 177.2 25.8+ 14.2+ 130.6+ 16.1+ 7.0+ 7.0+ 29.8+ 11.1+ 8.4+

The last metric we examine in this section is the average running time of the

Table 3.6: Average running time in seconds
Pro GP RDO PP TS-S SA10 SA20 SAD DA10 DA20 DAD

F1 3.6 18.7– 1.1+ 1.3+ 1.0+ 0.7+ 0.8+ 0.9+ 0.4+ 1.0+

F2 2.7 17.5– 1.1+ 0.7+ 1.4+ 0.6+ 0.7+ 1.3+ 0.8+ 0.5+

F3 2.7 15.9– 0.9+ 1.6+ 1.0+ 0.6+ 1.1+ 0.9+ 0.4+ 0.8+

F5 31.5 468.7– 6.9+ 20.4+ 16.4+ 6.1+ 3.1+ 20.5+ 9.3+ 8.6+

F6 14.5 70.2– 3.2+ 1.4+ 2.4+ 2.1+ 10.2+ 2.1+ 1.9+ 2.7+

F9 63.2 882.7– 15.0+ 27.7+ 16.6+ 6.4+ 8.5+ 18.5+ 7.2+ 10.5+

F13 77.7 773.1– 19.4+ 31.6+ 27.4+ 11.5+ 8.5+ 32.2+ 12.5+ 11.5+

F15 82.7 1232.6– 15.3+ 61.7+ 22.8+ 7.1+ 7.4+ 26.6+ 9.1+ 9.9+

F16 46.0 629.8– 7.0+ 55.7 7.2+ 3.4+ 5.3+ 15.3+ 5.9+ 7.0+

F17 8.4 45.5– 2.6+ 3.2+ 2.9+ 1.3+ 2.9+ 5.6+ 1.4+ 3.7+

F18 43.8 768.8– 10.2+ 40.4 12.9+ 6.3+ 8.1+ 19.1+ 9.1+ 11.5+

F23 4.1 35.2– 0.6+ 0.9+ 1.2+ 0.8+ 1.2+ 2.9+ 1.0+ 2.2+

F24 4.0 33.8– 0.6+ 1.0+ 1.3+ 0.5+ 1.1+ 2.8+ 0.4+ 0.8+

F25 4.0 32.4– 0.6+ 1.0+ 1.3+ 0.5+ 1.2+ 3.0 0.5+ 0.9+

F26 268.1 9334.5– 33.0+ 237.0 18.1+ 19.3+ 30.8+ 84.7+ 20.0+ 42.6+

tested systems. It can be observed Table 3.6 that both SA and DA run faster

21

Table 3.2: Mean of the best fitness
Pro GP RDO PP TS-S SA10 SA20 SAD DA10 DA20 DAD

F1 0.47 0.07+ 1.60– 0.97– 0.52 0.89– 1.30– 0.41 0.97– 1.17–

F2 0.08 0.02+ 0.17– 0.16– 0.09 0.16– 0.19– 0.09 0.15– 0.17–

F3 1.91 0.06+ 4.45– 1.79 1.08+ 2.33 4.12– 0.96+ 2.2 3.58–

F5 0.01 0.01 0.01– 0.01 0.01+ 0.01– 0.01– 0.01 0.01 0.01

F6 0.12 0.00+ 0.23– 0.26– 0.09 0.07+ 0.06+ 0.05+ 0.03+ 0.01+

F9 0.51 0.05+ 1.26– 0.91– 0.06+ 0.83 1.88– 0.13+ 0.37 1.04–

F13 0.03 0.03 0.03+ 0.04– 0.03 0.03+ 0.03+ 0.03+ 0.03+ 0.03+

F15 0.38 0.32 0.51– 0.37 0.35 0.48– 0.49– 0.35 0.46– 0.48–

F16 0.41 0.11+ 1.03– 0.40 0.17+ 0.22+ 0.22+ 0.14+ 0.17+ 0.18+

F17 0.47 0.39+ 0.52– 0.51– 0.48– 0.52– 0.53– 0.46 0.50– 0.51–

F18 0.4 0.13+ 1.32– 0.42 0.19+ 0.27+ 0.30 0.15+ 0.16+ 0.17+

F23 0.82 0.22+ 1.20– 0.94 0.65+ 0.87 0.98– 0.45+ 0.52+ 0.57+

F24 1.68 0.88+ 2.05– 1.93– 1.7 1.99– 2.05– 1.51+ 1.83– 1.93–

F25 0.91 0.56+ 1.19– 1.13– 0.90 1.11– 1.11– 0.84+ 1.01– 1.04–

F26 1.51 1.51 1.53– 1.50+ 1.52 1.53– 1.53– 1.51 1.52– 1.52–

Table 3.4: Median of testing error
Pro GP RDO PP TS-S SA10 SA20 SAD DA10 DA20 DAD

F1 1.69 3.16– 1.76 1.35+ 1.28+ 1.05+ 1.44+ 0.80+ 1.68+ 1.95

F2 0.30 0.36– 0.25+ 0.26+ 0.27+ 0.25+ 0.24+ 0.28 0.26+ 0.26+

F3 10.17 1.92+ 8.00 6.66 4.41+ 5.44+ 5.44+ 4.38+ 4.67+ 5.68+

F5 0.01 0.01 0.01 0.01+ 0.01+ 0.01 0.01 0.01+ 0.01 0.01

F6 0.01 0.00+ 0.01 0.01 0.00 0.00+ 0.00+ 0.00+ 0.00+ 0.00+

F9 0.31 0.01+ 2.18 0.33 0.06+ 0.73 3.44– 0.01+ 0.01+ 1.40

F13 0.03 0.03 0.03+ 0.03 0.03 0.03+ 0.03+ 0.03+ 0.03+ 0.03+

F15 2.19 2.18 2.18 2.19 2.18 2.18+ 2.18+ 2.2 2.18 2.18+

F16 0.75 0.29+ 1.28 0.83 0.27+ 0.27+ 0.28+ 0.26+ 0.23+ 0.26+

F17 0.61 0.66– 0.57+ 0.58+ 0.60 0.57+ 0.58+ 0.59 0.57+ 0.57+

F18 0.36 0.14+ 1.60– 0.45 0.21+ 0.29+ 0.32+ 0.16+ 0.17+ 0.18+

F23 1.44 1.19 1.30 1.14+ 0.65+ 0.87+ 0.99+ 0.52+ 0.51+ 0.53+

F24 2.69 9.69– 2.14+ 2.41 2.42 2.10+ 2.04+ 2.31 2.08+ 1.97+

F25 1.77 3.91 1.21+ 1.34+ 1.26+ 1.13+ 1.13+ 1.30+ 1.30+ 1.34+

F26 1.04 1.03 1.02+ 1.03 1.02+ 1.02+ 1.02+ 1.03 1.02+ 1.02+

The main objective for performing bloat control is to reduce the complexity
of the solutions. To validate if SA and DA achieve this objective, we recorded
the size of the final solution and presented it in Table 3.5. The table shows that
all tested methods achieve the goal to find simpler solutions compared to GP.

20

Figure 1.8: An example of calculating the desired semantics.
scheme, and a random subtree subTree is chosen. The semantic backpropaga-
tion algorithm is used to identify the desired semantics of subTree. After that,
a procedure is called to search in a pre-defined library of trees for a newTree

that is the most semantically closest to the desired semantics. Finally, newTree
is replaced for subTree to create a new individual.

1.4 Statistical Hypothesis Test
In Chapter 2, we propose the use of a statistic hypothesis test to analyse the

error vectors of individuals competing in a tournament. Practically, a Wilcoxon
signed-rank test is employed the experiments. The Wilcoxon signed-rank test is
a non-parametric statistical hypothesis test used when comparing two related
samples to assess whether their population mean ranks differ [43]. In practice,
the p_value is often calculated from the test. The p_value is defined as the prob-
ability of obtaining a result equal to or more extreme than what was actually
observed, when the null hypothesis is true [100].

1.5 Conclusion
Chapter 1 presents the knowledge directly related to the research of the dis-

sertation. Firstly, a more detailed GP introduction has been given. Next, some
foundation concepts of the dissertation including the semantics of a program,
semantic distance and vector errors of the program are also presented. Then,
the semantic backpropagation algorithm is introduced. Finally, the chapter
presents a statistical hypothesis test.

5

Chapter 2

TOURNAMENT SELECTION USING

SEMANTICS

2.1 Introduction
Selection mechanism plays a very important role in GP performance. Among

several selection techniques, tournament selection is often considered the most
popular. Standard tournament selection randomly selects a set of individuals
from the population, and the individual with the best fitness value is chosen
as the winner. However, an opportunity exists to enhance tournament selec-
tion as the standard approach ignores finer-grained semantics which can be
collected during GP program execution. In this chapter, we introduce the use
of a statistical test into GP tournament selection that utilizes information from
the individual’s error vector, and three variants of the selection strategy are
proposed.

2.2 Tournament Selection based on Semantics
This section presents three statistics tournament selection techniques using

a statistical hypothesis test.

Algorithm 3: Statistics Tournament Selection with Random
Input: Tournament size: TourSize, Critical value: alpha.
Output: The winner individual.
A←− RandomIndividual();
for i← 1 to TourSize do

B ←− RandomIndividual();
sample1←− Error(A);
sample2←− Error(B);
p_value←− Testing(sample1, sample2);
if p_value <alpha then

A←− GetBetterF itness(A,B);
else

A←− GetRandom(A,B);
end

end
The winner individual ←−A ;

6

Table 3.1: Evolutionary parameter values
Parameters Value

Population size 500

Generations 100

Tournament size 3

Crossover, mutation probability 0.9; 0.1

Function set +,−, ∗, /, sin, cos
Terminal set X1, X2, ..., Xn

Initial Max depth 6

Max depth 17

Max depth of mutation tree 15

Raw fitness root mean squared error on all fitness cases

Trials per treatment 30 independent runs for each value

Elitism Copy the best individual to the next generation.

and DA (referred to as DAD) was also tested in which the individuals with the
size greater than the average of the population are selected for pruning. The
newTree was grown from sTree with the max depth of 2. We used a pre-defined
library of 1000 subprograms with max depth of 2. Wilcoxon signed rank test
with the confidence level of 95% is used across all the result tables in this
chapter. All symbols in the result tables are set the same Chapter 2.

3.4 Performance Analysis
This section analyses the performance of the proposed methods using four

popular metrics: training error, testing error, solution size and running time.
Training error is first analyzed in this section. The mean of the best fitness

values in the training process across 30 runs is presented in Table 3.2. This
table shows that the training error of SA and DA is often better than that
of GP, PP and TS-S, especially with configurations 10%. This result is very
impressive since the previous researches showed that bloat control methods
often negatively affect the ability of GP to fit the training data.

The second metric is the generalization ability of the tested methods through
comparing their testing error. The median of these values was calculated and
shown in Table 3.4. The table shows that SA and DA outperform GP on the
unseen data, especially 20% and dynamic configurations. Perhaps, the reason
for the convincing result of them on the testing data is that these techniques
obtain smaller fitness and simple solutions (Table 3.5) than the other methods.

19

lessen GP code bloat and enhance its ability to fit the training data. This
technique is called Desired Approximation (DA). Algorithm 7 describes DA.

Algorithm 7: Desired Approximation
Input: Population size: N , Number of pruning: k%.
Output: a solution of the problem.
i←− 0;
P0 ←− InitializePopulation();
Estimate fitness of all individuals in P0;
repeat

i←− i+ 1;
P′i ←− GenerateNextPop(Pi−1);
pool←− get k% of the largest individuals of P′i;
Pi ←− P′i − pool;
foreach I ′ ∈ pool do

subTree←− RandomSubtree(I ′);
D ←− DesiredSemantics(subTree);
newTree←− SemanticApproximation(D);
I ←− Substitute(I ′, subTree, newTree);
Pi ←− Pi ∪ I;

Estimate fitness of all individuals in Pi;
until Termination condition met ;
return the best-so-far individual;

The structure of Algorithm 7 is very similar to that of SA. The main differ-
ence is in the second loop. First, the desired semantics of subTree is calculated
by using the semantic backpropagation algorithm instead of the semantics of
subTree. Second, newTree is grown to approximate the desired semantics D of
subTree instead of its semantics S.

3.3 Experimental Settings
We tested SA and DA on twenty-six regression problems with the same

dataset of Chapter 2 (Table 2.1). The GP parameters used in our experiments
are shown in Table 3.1. The raw fitness is the root mean squared error. For
each problem and each parameter setting, 30 runs were performed.

We compared SA and DA with standard GP (referred to as GP), Prune and
Plant (PP) [2], TS-S and RDO [93]. The probability of PP operator was set to
0.5. For SA and DA, 10% and 20% of the largest individuals in the population
were selected for pruning. The corresponding versions were shorted as SA10,
SA20, DA10 and DA20. Moreover, a dynamic version of SA (shortened as SAD)

18

The first proposed method is called Statistics Tournament Selection with Random

and shortened as TS-R. The main objective of TS-R is to promote the seman-
tic diversity of GP population compared to standard tournament selection.
Algorithm 3 presents the detailed description of TS-R. The process of TS-R is
similar to standard tournament selection. However, instead of using the fitness
value for comparing, a statistical test is applied to the error vector of these
individuals. For a pair of individuals, if the test shows that the individuals
are different, then the individual with better fitness value is considered as the
winner. Conversely, if the test confirms that two individuals are not different,
a random individual is selected from the pair. After that, the winner is tested
against other individuals in the tournament size.

The second proposed tournament selection is called Statistics Tournament Se-

lection with Size and shortened as TS-S. TS-S is similar to TS-R in the objective
of promoting diversity. Moreover, TS-S also aims at reducing the code growth
in GP population. In TS-S, if two individuals involved in the test are not sta-
tistically different, then the smaller individual will be the winner.

Algorithm 4: Statistics Tournament Selection with Size
Input: Tournament size: TourSize, Critical value: alpha.
Output: The winner individual.
A←− RandomIndividual();
for i← 1 to TourSize do

B ←− RandomIndividual();
sample1←− Error(A);
sample2←− Error(B);
p_value←− Testing(sample1, sample2);
if p_value <alpha then

A←− GetBetterF itness(A,B);
else

A←− GetSmallerSize(A,B);
end

end
The winner individual ←−A ;

The third tournament selection method is called Statistics Tournament Selection

with Probability and shorted as TS-P. Algorithm 5 presents the algorithm of TS-
P. This technique is different from TS-R and TS-S in which it does not rely on
the critical value to decide the winner. Instead, TS-P uses the p_value as the
probability to select the winner. In other words, the better fitness individual

7

is selected with the probability of 1− p_value while the worse fitness individual
has the probability of p_value to be selected.

Algorithm 5: Statistics Tournament Selection with Probability
Input: Tournament size: TourSize.
Output: The winner individual.
A←− RandomIndividual();
for i← 1 to TourSize do

B ←− RandomIndividual();
sample1←− Error(A);
sample2←− Error(B);
p_value←− Testing(sample1, sample2);
A←− GetBetterWithProbability(A,B, p_value);

end
The winner individual ←−A ;

2.3 Experimental Settings
In order to evaluate the proposed methods, we tested them on a large num-

ber of problems including twenty-six regression problems and the noisy version
of them. The detailed description is presented in Table 2.11. The GP parameters
used for our experiments are shown in Table 2.2. The raw fitness is the mean
of absolute errors on all fitness cases. In all experiment, three popular values
of tournament size (referred to as tour-size hereafter) including 3, 5 and 7 were
tested2. The critical value in Wilcoxon test is set to 0.05. For each problem and
each parameter setting, 100 runs were performed.

We employ the Friedman’s test and a post-hoc analysis on the results in all
result tables in the following sections. In the tables, if the result of a method
is significantly better than GP with standard tournament selection (GP), this
result is marked + at the end. Conversely, if it is significantly worse compared
to GP, this result is marked − at the end. Additionally, if it is the best (lowest)
value, it is printed underline, and if the result of a method is better than that
of GP, it is printed bold face.

2.4 Results and Discussions
We divided our experiment into three sets. The first set aims at investigating

the performance of three variants of semantic tournament selection based on

1Since the space limitation, we only show the results of 15 problems in this summary,
2and only show in this chapter the results with tour-size=3 and tour-size=7.

8

as close to s as possible. Let q = (q1, q2, ...qn) be the semantics of sTree, then the
semantics of newTree is p = (θ · q1, θ · q2, ..., θ · qn). To approximate s, we need to
find θ so that the squared Euclidean distance between two vectors s and p is
minimal. In other words, we need to minimize function f(θ) =

∑n
i=1(θ · qi − si)

2

with respect to θ. The quadratic function f(θ) achieves the minimal value at θ∗

calculated in Equation 3.1:

θ∗ =

∑n
i=1 qisi∑n
i=1 q

2
i

(3.1)

After finding θ∗, newTree = θ∗ · sTree is grown, and this tree is called the ap-
proximate tree of the semantic vector s.

Based on SAT, we continuously propose two techniques for reducing code
bloat in GP. The first technique is called Subtree Approximation (SA). After gener-
ating the next population, k% largest individuals in the population are selected
for pruning. Next, for each selected individual, a random subtree is chosen and
replaced by an approximate tree of smaller size. The approximate tree is grown
so that the semantics of it is the most similar to the semantics of the selected
subtree. Algorithm 6 presents this technique in detail.

Algorithm 6: Subtree Approximation
Input: Population size: N , Number of pruning: k%.
Output: a solution of the problem.
i←− 0;
P0 ←− InitializePopulation();
Estimate fitness of all individuals in P0;
repeat

i←− i+ 1;
P′i ←− GenerateNextPop(Pi−1);
pool←− get k% of the largest individuals of P′i;
Pi ←− P′i − pool;
foreach I ′ ∈ pool do

subTree←− RandomSubtree(I ′);
S ←− Semantics(subTree)
newTree←− SemanticApproximation(S);
I ←− Substitute(I ′, subTree, newTree);
Pi ←− Pi ∪ I;

Estimate fitness of all individuals in Pi;
until Termination condition met ;
return the best-so-far individual;

The second technique attempts to achieve two objectives simultaneously:

17

Chapter 3

SEMANTIC APPROXIMATION FOR

REDUCING CODE BLOAT

3.1 Introduction
Code bloat is a phenomenon in Genetic Programming (GP) characterized

by the increase in individual size during the evolutionary process without a cor-
responding improvement in fitness. Bloat negatively affects GP performance,
since large individuals are more time consuming to evaluate and harder to inter-
pret. This chapter introduces a semantic approximation technique that allows
to grow a (sub)tree being semantically approximate to a given target seman-
tics. Based on that, two approaches for reducing GP code bloat are introduced.
The bloat control methods are tested on a large set of regression problems
and a real-world time series forecasting. Experimental results show that these
methods improve GP performance and specifically reduce code bloat.

3.2 Methods
This section introduces a novel proposed approach to grow for a tree of

approximate semantics to the target semantics. This approach is called the
Semantic Approximation Technique (SAT).

Let s = (s1, s2, ..., sn) be the target semantics, then the objective of SAT is to
grow a tree in the form: newTree = θ · sTree so that the semantics of newTree is

Figure 3.1: An example of Semantic Approximation

16

statistical analysis in comparison with standard tournament selection. The sec-
ond set attempts to improve the performance of the semantic selection strategy
through its combination with a state of the art semantic crossover operator [93].
The third set of experiments examines the performance of the strategies on
noisy instances of the problems.

Table 2.1: Problems for testing statistics tournament selection techniques
Abbreviation Name features Training Testing

A. Benchmarking Problems

F1 korns-11 5 20 20

F2 korns-12 5 20 20

F3 korns-14 5 20 20

F4 vladislavleva-2 1 100 221

F5 vladislavleva-4 5 500 500

F6 vladislavleva-6 2 30 93636

F7 vladislavleva-8 2 50 1089

F8 korns-1 5 1000 1000

F9 korns-2 5 1000 1000

F10 korns-3 5 1000 1000

F11 korns-4 5 1000 1000

F12 korns-11 5 1000 1000

F13 korns-12 5 1000 1000

F14 korns-14 5 1000 1000

F15 korns-15 5 1000 1000

B. UCI Problems

F16 airfoil_self_noise 5 800 703

F17 casp 9 100 100

F18 ccpp 4 1000 1000

F19 wpbc 31 100 98

F20 3D_spatial_network 3 750 750

F21 protein_Tertiary_Structure 9 1000 1000

F22 yacht_hydrodynamics 6 160 148

F23 slump_test_Compressive 7 50 53

F24 slump_test_FLOW 7 50 53

F25 slump_test_SLUMP 7 50 53

F26 Appliances_energy_prediction 26 5000 9235

2.4.1 Performance Analysis of Statistics Tournament Selection
This subsection analyses the performance of three statistics tournament

selection methods and compares them with GP and semantics in selection (SiS)

9

Table 2.2: Evolutionary Parameter Values.
Parameters Value

Population size 500

Generations 100

Tournament size 3, 5, 7

Crossover, mutation probability 0.9; 0.1

Function set +,−, ∗, /, sin, cos
Terminal set X1, X2, ..., Xn

Initial Max depth 6

Max depth 17

Max depth of mutation tree 15

Raw fitness mean absolute error on all fitness cases

Trials per treatment 100 independent runs for each value

Elitism Copy the best individual to the next generation.

by Galvan-Lopez et al [29].
The first metric is the mean best fitness values on the training data and

presented in Table 2.3. This table shows that three new selection methods did
not help to improve the performance of GP on the training data. By contrast,
the training error of standard tournament selection is often significantly better
than that of statistics tournament selections. This result is not very surprising

Table 2.3: Mean of best fitness with tour-size=3 (left) and 7 (right)
Pro GP SiS TS-R TS-S TS-P GP SiS TS-R TS-S TS-P

F1 2.01 1.91 2.74– 2.98– 2.70– 1.46 1.50 2.29– 3.13– 2.29–

F2 0.24 0.24 0.39– 0.56– 0.31– 0.23 0.22 0.35– 0.55– 0.26–

F3 5.19 4.94 6.62– 6.36– 6.15– 4.62 3.62 5.66– 6.29– 4.93–

F5 0.126 0.133– 0.130 0.126 0.127 0.124 0.126 0.129 0.127 0.123

F6 0.44 0.46 0.76– 0.99– 0.59– 0.33 0.31 0.62– 1.09– 0.48–

F9 1.48 1.50– 1.98 1.96 1.32 1.62 1.90 1.42+ 2.30– 1.66

F13 0.87 0.87 0.89– 0.88– 0.88– 0.88 0.89 0.89– 0.89– 0.88+

F15 2.55 2.85 2.64 2.45 2.61 2.17 2.33 2.23 2.29 2.37

F16 9.74 9.13 10.19 9.83 10.39 8.04 8.15 8.77 8.40 8.65

F17 3.69 3.75 4.05– 4.11– 3.97– 3.39 3.46 3.89– 4.11– 3.82–

F18 10.62 11.51 11.61 11.43 12.04 9.72 9.07 11.05 9.41 10.06

F23 4.24 4.36 5.35– 4.66 5.01– 3.47 3.47 4.58– 7.22– 4.18–

F24 8.99 9.18 10.73– 10.91– 10.35– 8.08 8.05 10.22– 12.14– 9.47–

F25 4.98 5.00 6.18– 6.69– 5.86– 4.47 4.44 5.79– 7.18– 5.40–

F26 52.00 52.14 52.10 52.18– 52.07 51.77 51.84 51.97 52.09– 51.94

10

Table 2.11: Average running time with tour-size=3 (left) and 7 (right)
Pro GP neatGP TS-S RDO TS-RDO GP neatGP TS-S RDO TS-RDO

F1 4 863– 1+ 32– 10– 3 863– 2+ 34– 9–

F2 3 501– 1+ 29– 10– 2 501– 1+ 32– 10–

F3 4 831– 1+ 29– 11– 2 831– 2 32– 11–

F5 20 177– 18 690– 556– 24 177– 25 627– 595–

F6 3 522– 1+ 104– 85– 17 522– 2+ 142– 86–

F9 49 584– 36 1762– 1430– 53 584– 71 1755– 1556–

F13 69 396– 36+ 1697– 1235– 69 396– 61 1530– 1259–

F15 54 672– 48 1478– 1228– 50 672– 74– 1390– 1255–

F16 27 1081– 32 1195– 1050– 39 1081– 58 1602– 1072–

F17 9 398– 4+ 137– 65– 8 398– 6 192– 67–

F18 36 821– 37 1782– 1282– 40 821– 62– 2293– 1406–

F23 5 365– 2+ 68– 31– 3 365– 2 81– 31–

F24 4 367– 1+ 53– 30– 3 367– 2 103– 28–

F25 4 395– 1+ 53– 27– 4 395– 2 78– 25–

F26 522 408 484 40 389– 35 838– 474 408 614–39 577– 41 971–

The last experimental result analysed in this chapter is the average running
time of the five methods. Apparently, TS-S is often the fastest system among
all tested methods, especially with tour-size=3. This is not surprising since the
code growth of TS-S’s population is much less than GP. For TS-RDO, although
it is slower than GP, its execution time has been considerably reduced compared
to RDO. Besides, the time complexity of the statistics tournament selection
methods is T (n) = O(k.n.log(n)), consequently, the selection step of them is
slower than that of GP. It is possible to further reduce the computational time
of TS-S by conducting the statistical test on only a subset of the fitness cases.

2.5 Conclusion
In this chapter, we proposed three variations of tournament selection that

employ statistical analysis of these semantic vectors to select the winner for the
mating pool. The proposed techniques aim at enhancing the semantic diversity
and reducing the code bloat in GP population. In the experimental results, we
observed that the proposed techniques especially TS-S was better than standard
tournament selection and neatGP in improving GP generalisation and reducing
GP code growth. The combined method, TS-RDO improves GP performance
compared with TS-S and RDO. Additionally, these proposed methods have a
good ability to perform well on noisy problems.

15

ing error is mostly achieved by TS-RDO on all problems with both values of
the tournament size. For TS-S, the performance of it is also robust and more
consistent than on the noiseless data.

Table 2.9: Average of solutions size with tour-size=3 (left) and 7 (right)
Pro GP neatGP TS-S RDO TS-RDO GP neatGP TS-S RDO TS-RDO

F1 280 124+ 121+ 238+ 78+ 286 124+ 100+ 219+ 56+

F2 169 60+ 35+ 174– 80+ 160 60+ 37+ 167– 47+

F3 263 112+ 124+ 153+ 59+ 262 112+ 98+ 169+ 48+

F5 89 12+ 53+ 49+ 23+ 91 12+ 42+ 46+ 13+

F6 167 45+ 50+ 40+ 20+ 137 45+ 37+ 50+ 18+

F9 166 62+ 73+ 53+ 36+ 227 62+ 74+ 74+ 37+

F13 169 49+ 32+ 142+ 22+ 161 49+ 29+ 113+ 17+

F15 155 58+ 112+ 53+ 40+ 157 58+ 84+ 45+ 35+

F16 200 103+ 152+ 279– 186+ 262 103+ 203+ 326– 165+

F17 207 62+ 50+ 207+ 106+ 230 62+ 39+ 247– 81+

F18 160 71+ 119+ 305– 196– 226 71+ 132+ 380– 178+

F23 160 55+ 56+ 245– 118+ 204 55+ 24+ 286– 84+

F24 164 68+ 45+ 240– 97+ 220 68+ 20+ 291– 46+

F25 170 63+ 31+ 227– 92+ 226 63+ 22+ 265– 63+

F26 161 40+ 107+ 70+ 50+ 249 40+ 107+ 58+ 29+

Table 2.10: Median of testing error with tour-size=3 (left) and 7 (right)
Pro GP neatGP TS-S RDO TS-RDO GP neatGP TS-S RDO TS-RDO

F1 9.68 13.1– 5.88+ 10.3 7.99 9.19 13.1– 5.13+ 10.2 6.53+

F2 0.92 0.84 0.81 1.17– 1.01– 0.90 0.84 0.79+ 1.14– 0.92

F3 29.6 32.2 15.9+ 7.06+ 6.28+ 34.8 32.2 16.8+ 7.30+ 6.28+

F5 0.14 0.14 0.139+ 0.141– 0.14 0.14 0.14 0.137+ 0.14 0.14

F6 2.14 2.19 2.10 4.03– 1.36+ 2.22 2.19 2.07+ 2.71 1.39+

F9 5.52 5.68 5.34 5.19 5.04 5.49 5.68 5.24 4.98+ 5.10+

F13 0.90 0.90 0.90+ 0.91 0.90 0.90 0.90 0.90+ 0.90 0.90+

F15 5.01 6.21– 5.07 4.15+ 4.12+ 4.20 6.21– 4.13 4.13+ 4.12+

F16 36.4 36.3 37.2 12.0+ 11.4+ 34.5 36.3 37.5 12.1+ 11.55+

F17 5.61 5.45 5.42+ 6.41– 5.34+ 5.70 5.45 5.30+ 6.55– 5.26+

F18 48.3 52.9– 46.6 37.8+ 36.8+ 48.0 52.9– 46.3 38.6+ 36.7+

F23 8.84 9.15 5.81+ 8.96 6.07+ 7.52 9.15– 9.19– 9.29– 6.01+

F24 20.2 19.1 17.1+ 23.7 16.5+ 22.7 19.1 16.9+ 29.1 16.0+

F25 9.36 9.42 8.38+ 14.8– 8.00+ 9.58 9.42 8.50+ 13.9– 7.38+

F26 46.25 46.58 46.23 46.26 46.16 46.83 46.58 46.61 46.72 46.62

14

since the statistics tournament selection techniques impose less pressure on the
improving training error compared to standard tournament selection.

The second metric used in the comparison is the generalisation ability of the
tested methods. The median of testing error was calculated, and the results
are shown in Table 2.4. We can see that the testing error of three statistics
tournament selection are often smaller than that of GP. Among three statistics
tournament selection, the performance of TS-S is the best on the testing data.

Table 2.4: Median of testing error with tour-size=3 (left) and 7 (right)
Pro GP SiS TS-R TS-S TS-P GP SiS TS-R TS-S TS-P

F1 8.55 9.06 5.31+ 3.93+ 6.68+ 11.3 10.2 6.13+ 3.97+ 6.18+

F2 0.96 0.99 0.88 0.81+ 0.92 0.98 1.00 0.89+ 0.82+ 0.98

F3 33.4 34.2 15.7 + 14.2+ 16.7 + 33.4 34.2 14.8 + 13.5+ 16.7 +

F5 0.135 0.137– 0.136 0.131 0.135 0.135 0.135 0.135 0.130+0.131

F6 1.78 1.45 1.89 1.90 1.63 1.34 1.21 1.64 1.97 1.62

F9 1.66 1.63 1.61 1.58+ 1.57 1.71 1.66 1.59+ 1.59+ 1.61

F13 0.88 0.88 0.87 0.87+ 0.88 0.88 0.88 0.87+ 0.87+ 0.88

F15 4.95 5.32 5.14 4.74 4.90 4.23 4.43 4.32 3.92 4.68

F16 20.9 20.8 27.1 25.5 27.8 18.8 23.7 24.6 24.5 24.2

F17 4.99 4.93 4.90 4.78+ 4.87 4.93 4.99 4.91 4.70+ 4.88

F18 8.72 9.07 10.1 10.1 11.1 8.70 8.31 10.3 8.79 8.88

F23 7.74 7.24 7.99 5.89+ 7.90 6.65 7.37 6.63 8.04– 6.01

F24 16.7 18.4 15.8 14.9+ 18.1 17.5 18.3 15.5+ 13.3+ 16.4

F25 8.70 8.44 8.31 7.99+ 8.48 8.89 8.43 7.99+ 8.40+ 8.46+

F26 46.05 46.14 46.04 46.04+ 46.14 50.33 47.94 49.67 48.54+ 47.18

The third metric is the average size of their solutions. These values are
presented in Table 2.5. While the solutions found by SiS are often as complex
as those found GP, the solutions found by statistics tournament selection are
simpler than those of GP and SiS. Especially, the size of the solutions of TS-S
is always much smaller than that of GP on all problems. This provides a reason
partially explaining why the performance of TS-S on the testing data is better
than other techniques in Table 2.4 following the Occam Razor principle [75].

We also measured the semantic distance between parents and their children
of GP, SiS and TS-S and presented in Table 2.6. This information shows the
ability of a method to discover different areas in the search space. Apparently,
both SiS and TS-S maintained higher semantic diversity compared to GP. TS-S
and SiS preserved better semantic diversity than GP on 24 and 22 problems,

11

Table 2.5: Average of solution’s size with tour-size=3 (left) and 7 (right)
Pro GP SiS TS-R TS-S TS-P GP SiS TS-R TS-S TS-P

F1 280 276 244 121+ 238+ 286 292 264 100+ 259

F2 169 170 130+ 35+ 148+ 160 173 150 37+ 169

F3 263 270 262 124+ 277 262 276 278 98+ 277

F5 89 78 91 53+ 105 91 85 93 42+ 111

F6 167 156 141+ 50+ 159 137 151 134 37+ 145

F9 166 141 129+ 73+ 140 227 176+ 161+ 74+ 166+

F13 169 146 119+ 32+ 135+ 161 152 117+ 29+ 152

F15 155 132 147 112+ 163 157 150 133 84+ 156

F16 200 184 193 152+ 189 262 252 260 203+ 276

F17 207 182 168 50+ 165 230 220 192 39+ 192

F18 160 150 165 119+ 165 226 207 206 132+ 203

F23 160 159 132+ 56+ 134+ 204 200 149+ 24+ 155+

F24 164 168 115+ 45+ 137 220 195 131+ 20+ 155+

F25 170 167 111+ 31+ 138+ 226 205 132+ 22+ 157+

F26 161 129 159 107+ 156 249 213 226 107+ 211

respectively. These results show that TS-S achieved one of its objective in
enhancing semantic diversity of GP population.

Table 2.6: Average semantic distance with tour size=3. Bold indicates the
value of SiS and TS-S is greater than the value of GP.

Pro GP SiS TS-S Pro GP SiS TS-S

F1 2.42 8.93 3.76 F16 71.08 101.43 78.42

F2 0.42 1.60 0.43 F17 60.91 13.52 136.99

F3 7.01 19.73 5.02 F18 105.55 366.87 123.34

F5 0.07 0.63 0.10 F23 42.25 29.08 53.12

F6 0.99 1.58 1.03 F24 43.10 44.05 80.74

F9 8.79 16.88 8.86 F25 37.19 17.49 41.42

F13 2.81 3.86 10.69 F26 54.86 56.66 78.18

F15 10.36 12.28 12.79

Overall, the proposed methods find simpler solutions and generalize better
on unseen data even though they do not improve the training error. Particularly,
the solutions found by TS-S are much less complex than those of GP. Moreover,
the generalization ability of TS-S is also better compared to GP and SiS.

12

2.4.2 Combining Semantic Tournament Selection with Semantic Crossover
We present an improvement of TS-S performance by combining this tech-

nique with RDO [93], and the resulting method is called TS-RDO. TS-RDO
is compared with TS-S, neatGP [112], RDO [93] and GP. The results of these
methods on the testing data are shown in Table 2.8. It can be seen that the
combined method, TS-RDO improved the performance of TS-S and RDO. TS-
RDO achieved the best result among the five tested techniques.

Table 2.8: Median of testing error with tour-size=3 (left) and 7 (right)
Pro GP neatGP TS-S RDO TS-RDO GP neatGP TS-S RDO TS-RDO

F1 8.55 12.5– 3.93+ 8.91 4.19+ 11.3 12.5 3.97+ 8.88 4.52+

F2 0.96 0.84+ 0.81+ 1.17– 0.97 0.98 0.84+ 0.82+ 1.19– 0.96

F3 33.4 32.2 14.2+ 3.73+ 1.61+ 33.4 32.2 13.5+ 5.92+ 1.87+

F5 0.135 0.135 0.131 0.14 0.14 0.135 0.135 0.131 0.14 0.14–

F6 1.78 1.74 1.90 0.00+ 0.00+ 1.34 1.74– 1.97 0.00+ 0.00+

F9 1.66 2.41 1.58 0.01+ 0.11+ 1.71 2.41 1.59 0.23+ 0.23+

F13 0.88 0.87 0.87+ 0.88 0.87 0.88 0.87+ 0.87+ 0.88 0.87+

F15 4.95 5.92 4.74 3.24+ 3.24+ 4.23 5.92– 3.92 3.24+ 3.24+

F16 20.9 33.7– 25.5 6.11+ 5.75+ 18.8 33.7– 24.5 6.46+ 5.91+

F17 4.99 4.95 4.78+ 5.50– 4.85 4.93 4.95 4.70+ 5.63– 4.74+

F18 8.72 28.49– 10.18 3.56+ 3.56+ 8.70 28.49– 8.79 3.63+ 3.61+

F23 7.74 8.44 5.89+ 5.72 4.32+ 6.65 8.44– 8.04– 6.84 4.03+

F24 16.7 17.7 14.9+ 22.2– 14.8 17.5 17.7 13.3+ 23.3 14.3+

F25 8.70 8.89 7.99+ 12.2– 8.13 8.89 8.89 8.40+ 16.0– 7.07+

F26 46.05 47.26 46.05 46.75 45.84 50.33 47.26 47.63 46.10 45.40+

In terms of the complexity, the average size of the solutions is presented in
Table 2.9. TS-RDO is the best technique regarding to the solutions size. This
method achieved the best result on most problems.

Overall, TS-RDO improves the testing error, and further reduces the size
of the solutions compared to TS-S. Moreover, this technique performs better
than both RDO and neatGP, two recently proposed methods for improving GP
performance and reducing GP code bloat.

2.4.3 Performance Analysis on The Noisy Data
This subsection investigates the performance of five methods in Subsec-

tion 2.4.2 on the noisy data. The testing error on the noisy data is shown in
Table 2.10. It can be observed from this table that TS-RDO performs slightly
more consist on the noisy data compared to the noiseless data. The best test-

13

