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Abstract: In this paper, we synthesize the sinusoidal biased proportional navigation guidance (PNG) law for enhancing
the survivability of anti-ship missiles against the interception of anti-air missiles (AAM). The magnitude and frequency
of the sinusoidal acceleration can be seen as trajectory design parameters of the guidance law. The closed-form solution
of the command acceleration is found to show how the key parameters influence the performance of the guidance law.
To evaluate the influence of trajectory design parameters as well as dynamics parameters on both the miss distance and
the survivability of anti-ship missiles, we use the homing loop model which consists of the canonical fifth-order binomial
dynamics and the proposed guidance law. The simulation is implemented in Matlab based on the homing model for
drawing the miss distance curves of both anti-ship missiles and anti-air missiles. The simulation results show that the
magnitude, frequency, and time constants greatly influence the miss distance and survivability of the anti-ship missiles
(ASM). Finally, the suggestions for choosing suitable parameters are also presented.
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1. INTRODUCTION

The theoretical studies and practical applications have
so far shown that the optimal evasive maneuver strategy
for evaders is either wavy in the plane or barrel roll in
space [4-6]. The studies [7-8] theoretically demonstrated
that the optimal evasive maneuver of the ASM will be
similar to weaving maneuver in the plane or barrel roll
maneuver in the space if there is no information about the
anti-air threats. In the work [9] the 3-dimensional biased
PNG law has been derived by adding a biased term to the
command of PNG law to generate barrel-roll maneuvers.
The impact angle control law with sinusoidal evasive
maneuver is shown in [10]. The barrel-roll frequency in
[9], the magnitude and frequency of the sinusoidal
acceleration in [10] can be seen as the trajectory design
parameters to shape the maneuver type. The numerical
simulations in [9-10] have shown that both the biased
PNG law and the impact angle control law can increase
the survivability of the ASM against anti-air threats.
However, the additional term or the sinusoidal
acceleration to the construction of the guidance
command can make the miss distance between the ASM
and the target ship increase. Therefore, it is necessary to
evaluate the influence of the trajectory design parameters
on the ASM's miss distance. In addition, the guidance
system dynamics used in the simulations of [9-10] are the
first-order lag. The disadvantage of this model is that the
miss distance can be seriously underestimated [1]. Thus,
it is necessary to have a more accurate guidance system
model in order to evaluate the perpormance of the
guidance law.

In this paper, we first synthesize a guidance law of the
ASM to generate weaving maneuvers in the horizontal
plane in Section 2. The guidance command consists of a
control command term that needs to be figured out to
guide the ASM to the target ship and a sinusoidal
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acceleration term that generates the weaving maneuver.
By solving the energy optimal control problem with the
terminal constraint, we obtain the sinusoidal biased PNG
law. The trajectory design parameters are the magnitude
and frequency of the sinusoidal acceleration. In Section
3, we derive a closed-form solution for the ASM’s
acceleration. The canonical fifth-order binomial homing
loop model with the proposed guidance law is presented
in Section 4. The simulation analysis of the influence of
trajectory design parameters, the parameters of guidance
system dynamics, the initial conditions on the ASM's
miss distance, and the survivability is shown in Section
5. Finally, the concluding remarks are given in Section 6.

2. GUIDANCE SYNTHESIS FOR EVASIVE
MANEUVER OF ANTI-SHIP MISSILES

2.1 Engagement formulation

The problem consists of two entities: an ASM (denoted
as M) and a target ship (denoted as 7). The M —-T
engagement geometry in the horizontal plane is depicted
in Fig. 1. In this figure, the Ox axis is aligned with the
initial line of sight and the Oy is perpendicular to it. We
assume that the target ship is stationary and is located at
(x,¥-). The ASM travels at a constant velocity V),
with a flight-path angle v . The ASM’s acceleration
vector is perpendicular to its velocity vector, denoted as
n,, . The range between the ASM and target ship and the

line of sight angle are denoted as R, and A,

respectively. y,,, is a relative separation between the



ASM and the target ship.
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Fig. 1. The engagement geometry between the anti-ship
missile and the target ship in the horizontal plane.

From Fig. 1, we can see that if the flight-path angle is
small, equations of motion of the missile can be stated as
following:

i=V, (1)
v =V @)
vo=ny IV, 3)

The command aceleration of the ASM is contructed as
following:

My =ng+ng, “4)

where 7. is a term that needs to be found to guide the

ASM to the target ship, n, is a sinusoidal acceleration

to generate weaving maneuver with a magnitude of %
and a frequency of @ . The sinusoidal acceleration can
be expressed as follows:

ny =ksinot. %)
Let a, =sinewt and a. =coswt, yields
as =wag; . =—0dy. (6)

The homing time 7 can be evaluated by integrating
both sides of Eq. (1) in the interval time [0,7], yields

T =(xp=x) 1V, (7
where, x, =x(0) and x, =x(T).
The state vector of the ASM — target ship engagement
is defined as bellows:
x=[y v a aC]T' (3
The state space equations can be obtain as following:

x=Ax+Bn_., 9)
where
ov, 0 0 0
0 0 i 0 L
A= 2 , B=|V, | (10)
0 0 0 o 0
0 0 -o O 0

We pose the optimal control problem to find n. that

minimizes the following cost function:
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(11)

subject to the system Eq. (9) with the terminal constraint
(the miss distance is zero):
y(T)=yp. (12)
By solving the optimal control problem, we can obtain
an energy optimization guidance law which satisfies the
condition is the miss distance is zero. And, it is expected
that the guidance law produces the weaving maneuver.

1er ,
J_EIO l/lcdt,

2.2 Synthesis of evasive maneuver guidance law
We use the following transformation [2-3], which can
be considered as the new state variable of the system:
2(1) = CO(T, 1)x(2), (13)
where ®(7,¢) is the transition matrix associated with the
system, Eq. (9) and satisfying
O(T,1)=-®(T.DA, ®(T.T)=1, (14)
the matrix C is chosen to satisfy the constraint Eq. (12)
as
C=[1 0 0 o] (15)
Derivating both sides of (13) and using Egs. (9) and
(14), yields
z(t)y=F(t)n,, (16)
where
F(t)=C®(T,?)B. 17
Because z(T)=y(T), an equivalent reduced-order
problem of the preceding optimal control problem is the
minimization of the cost function (11) subject to the
scalar dynamics and the terminal constraint, Egs. (16)
and (12), respectively.
The Hamiltonian of the problem is

1
H(p,nc,1) = pF(t)n, —5”(2;, (18)
where p(¢) is the co-state variable.
The optimal condition is
OoH
—=pF(t)-n. =0,
on, pE(t)—n, (19)
yielding
n. = F(t)p. (20)
The adjoint equation is
d OH
LT, @1)
dt oz
yielding
p = p, =const. (22)
By using Egs. (16), (20), and (22), we have:
:=FX0)p, (23)

Integrating both sides of Eq. (23) in the interval time
[£,T], we obtain:

2(T) - z(t) = [ [ F (t)dt} Po. (24)
Let
G = F*(vyr,

from Eq (24), yields

(25)



po =G (O[2(T)~z(0)]. (26)

Using Eqgs. (20), (22), and (26), we obtain n,. as
follows:

n.=F(@)G" (t)[z(T) —z(t)]. 27

Substituting Eq. (27) into Eq. (4), we derive the

formula of n,, according to the state vector x(¢) as

follows:
ny, =M@)x(t)+ N (), (28)
where
M(t) =-F()G ' (1)CP(T,¢) (29)
N(@)=F(t)G™' ()Cx(T) + ka. (30)

The state transition matrix ®(7,¢) is given by the

following:
OT.0)=0T-1)=L"{(s1-A)"}. 31)
Let 7, =T —t is the time to go, we have
1 ¢12 ¢13 ¢14
0 ¢23 ¢Z4
O(T,1)=D(t,,)= ) ) 32
2o o g g Y
0 0 ¢43 ¢44
where
k(1-cosat,,)
¢, = VMtgo’ #s =—2g’
@
k(wt,, —sinawt,,) ksinat,,
14 — 602 s Y23 T COVM ’
k(1-coswt,,)
Py = —_—, Py = @y = cOS oy,
oV,
by =@, =sinaort,,.

From Eq. (17), F(¢,) is determined as follows:

go

F(,)=Co(,)B = % =t (33)

go*
M

Substituting Eq. (33) into Eq. (25), we obtain G(z,,)

as
3

tg

0o, 20
G(tgo):—J.th (1, ), =5
From Egs. (29) and (30), M(z,,) and N(z,) are

calculated as follows:

_%[1 ¢12 ¢13 ¢14]

go

(34

M(z, )=

o (35)
3

=—yp +kas.
go
Substituting Egs. (35) and (36) into Eq. (28), after

some algebraic manipulation, yields

NG,

go

(36)

3
ny :lT[(yF _y)_VMl//tg()]-’-

go
o’t;, +3cosot,, -3 3sin wt,, -3t

+ “ ka,.

kag + %

2.2
o't o't

(37
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From Fig.1 and y,, <<R

™ >

the line of sight angle
can be approximated as

Yr—)

Vet

go

g=2m _
RTM

where V. is the closing velocity.

, (38)

Derivating both sides of Eq. (38) with noting
dt,, =—dt and using Eq. (2), yields
e =) -y,

Vet '

Finally, the guidance law is obtained by substituting
Eq. (39) into Eq. (37) as follows:

n, =3W. i+

2,2
o°t,, +3cosmt,, —3

ﬂ’,:

(39

3sinwt,, —3wt

2.2
't

go
ag + ka.

a)zt;

(40)

As expected, the synthesized guidance law Eq. (40) is

sinusoidal biased PNG law. The command acceleration

consists of two terms: the PNG's acceleration which

guides the ASM to the target ship and a function of

sinusoidal and cosinusoidal acceleration (sinusoidal
biased term) that produces the weaving maneuver.

3. CLOSED-FORM SOLUTION

From Fig.1, the relative acceleration can be linearized
as follows:

Vo =1y, 41)
Substituting Eq. (40) into Eq. (41) and integrating its
both sides, we have:

Yo = =3V A+ h(D), (42)
where h(f) is the negative part of the integral of the
sinusoidal biased term, and after some algebraic
manipulations , we obtain:

kcoswt 3ksinwl 3ksinwt
h(t) = -— +— +C,
w o (T-t) o (T-1)
with C, is the constant of integration.

Substituting Eq. (38) into Eq. (42) yields the following
first-order time-varying differential equation:

Dty at)yy = ho),

(43)

(44)
where

a(t) = i 45

=T_; (45)

The Eq. (44) has the following solution [1]:

Yy = €XP |:—j a(t)dl:| {j. h(t)exp |:j a(t)dt:|dt +C, } (46)

where C, is the second constant of integration.
C, and C, can be found by using initial conditions
as follows:
Y (0)=0
Vo (0) =V, HE,

(47)
(43)



where V,, is the ASM’s velocity and HE is the heading

error in radians.
The closed-form solution for the ASM’s acceleration
is derived after some algebraic manipulations as follows:

3ksin T - 3kaT -3’ TV, HE

n,, =ksinot + T

(T -1).

(49)

This solution will be used as an input of the AAM's

homing loop for evaluating the influence of trajectory
design parameters on the AAM's miss distance.

4. HOMING LOOP MODEL

The ASM’s canonical fifth-order binomial homing
loop model with the proposed guidance law is shown in
Fig.2.
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Fig. 2. The ASM’s homing loop model

In this homing loop model, we can see that there are
three error sources that can produce miss distance: i) the
initial heading error; ii) the sinusoidal and cosinusoidal
accelerations characterized by the magnitude & and
frequency o ; iii) the dynamics of guidance system
characterized by the time constant 7, .

Let us consider the engagement between the AAM and
the ASM. The AAM has the canonical fifth-order
binomial dynamics and uses the PNG law to intercept the
ASM which uses the proposed guidance law. The AAM’s
homing loop model is shown in Fig.3.

Miss =y (T 1)

Dysies Noise
__________ Seeker Filter
) l
>
1+STAAM/5 I+s7,,/5
el e |
(1 + STAAM / 5)
Flight-Control Guidance
System System

Fig. 3. The AAM’s homing loop model

5. SIMULATION ANALYSIS

5.1 Investigating the flight characteristics of the ASM
under the application of the proposed guidance law

We simulate the nonlinear engagement between the
ASM and the target ship and examine its properties under
a variety of circumstances. The simulation conditions are:
(x),2,)=1(0,0), (x,y.)=(7000,0), V, =250m/s,
k=5g, w=02xrad/s, 7=05s, HE=-20deg.

Fig. 4 shows the ASM’s trajectories for different
frequencies. As expected, those trajectories are the waves
and the miss distance is close to zero. We also can see
that the ASM’s trajectory provided by using the proposed
guidance law oscillates around the trajectory given by
using the PNG law.

Fig. 5 indicates that the command acceleration
oscillates at @ . The maximum value of the command
required by the proposed guidance law is much larger
than those required by the PNG law.
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Fig. 4. The ASM’s trajectories for different frequencies
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Fig. 5. The ASM’s command for different frequencies

5.2 Investigating the influence of trajectory design
parameters on the ASM’s miss distance.

The simulations are implemented by using the ASM's
homing loop model described in Fig.2. Fig. 6 shows the



ASM’s miss distance (M.D) for different magnitudes. As
can be seen from the figure, a larger magnitude makes an
increasing value in the peak of the miss distance.
Similarly, the higher the frequency is, the larger the peak
of the miss distance is, shown in Fig. 7. In addition, the
figure reveals the peak of the miss distance strongly
depends on the time constant of the guidance system.
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Fig. 6. The ASM’s M.D for different magnitude.
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Fig. 7. The ASM’s M.D for different frequency.
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Fig. 8. The ASM’s M.D for different time constants.
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Fig. 8 indicates that the smaller the time constant is, the
smaller the peak of the miss distance is.

Thus, to reduce the ASM’s miss distance, we must
choose small magnitude and small frequency. However,
to generate the best weaving maneuver against the
AAM's interception, the proposed guidance law requires
a larger magnitude and a right frequency (this will be
analyzed in the next simulations). In this case, the time
constant is chosen to be small enough to keep the miss
distance within the allowable limit. As can be seen from
Fig. 8, when the ASM's time constant is 0.1s, the miss
distance is almost zero. If the ASM's time constant
increases, the miss distance also increases.

5.3 Evaluating the survivability of the ASM with
proposed guidance law against AAM’s interception

In this section, we examine the survivability of the
ASM against interception of the AAM via the AAM's
miss distance caused by the ASM's weaving maneuver.
The simulations are implemented by using the AAM's
homing loop model described in Fig.3.

The fact that the ASM can be intercepted by the AAM
at any time during its flight. It is assumed that at a time
t,qs (during the ASM's flight), the AAM begins homing

to the ASM with a flight time period 7,,,, <7, —
For each time ¢

tASM .
the simulation program is run with

ASM >
different values of T,,,, . The ASM's flight time period
also has any value within its limit (7, <7, )- Thus,

we continually run the simulation program with different
values of T, . Fig. 9 displays the mean of the AAM's

miss distance according to the ASM's different flight time
period. It is clear that the evasive maneuver of the ASM
with the proposed guidance law causes a larger miss
distance for the AAM than the PNG law. In other words,
there is a higher value in the survivability increases when
the ASM performs an evasive maneuver according to the
proposed guidance law.

Now, we run all the above programs to obtain the mean
of the AAM's miss distance according to the weaving
magnitude ( £ ) and weaving frequency ( @,,, ) with
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Fig. 9. Mean of the AAM’s M.D according to
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Fig. 11. Mean of the AAM’s M.D according to @,y,, .

different AAM's time constants (z,,,, ), shown in Fig. 10

and Fig. 11. The simulation results show that the mean of
the AAM's M.D always increases when we rise the
ASM's weaving magnitude, shown in Fig. 10. Fig. 11
shows that the ASM with both very low and very high
weaving frequencies produces a small miss distance for
the AAM. In between the two extremes, the mean of the
AAM's miss distance increases. From the figure, we also
can see that when the product of the AAM's time constant
and the ASM's weaving frequency is approximately 0.7,
the mean of the AAM's miss distance will reach a
maximum. In other words, there exists a frequency such
that the ASM's survivability achieves the highest. In
addition, it should be noted that the AAM's time constant
greatly influences the ASM's survivability. As can be
seen from Fig. 11, when the AAM's time constant is equal
to 0.1 s, the ASM's survivability is close to zero. The
higher the AAM's time constant is, the more up of the
ASM's survivability is.

6. CONCLUSIONS

In this paper, we synthesized a sinusoidal biased PNG
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law. A closed-form solution for the command
acceleration of the proposed guidance law was derived,
making a crucial contribution when we examine the
influence of the trajectory design parameters on the
AAM's miss distance, thereby evaluating the ASM's
survivability. The simulation results demonstrate that the
weaving magnitude and the weaving frequency of the
ASM, the time constant of both the ASM and the AAM
greatly influence the ASM's survivability and ability to
hit the target. The curves of miss distance are meaningful
in the preliminary system design. They aid system
designers to rapidly predict the performance of a system
given a minimum of information. The results also reveal
that the guidance system designer must confront in
choosing the acceptable guidance system parameters
(trajectory design parameters and time constant) to
satisfy the trade-offs between the ASM's survivability
and its miss distance.
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