
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

XNOR-BSNN: In-Memory Computing Model for

Deep Binarized Spiking Neural Network

Abstract— This paper proposed a rate encoding binarized

spiking neural network (B-SNN) model suited for in-

memory computing (IMC) implementation. While in most

of the prior arts, due to the nature of spike represented

unipolar format, the B-SNN were implemented using

either complex or non-regular logic that is not suited for

IMC and/or makes the network inflexible. In this work, we

proposed a B-SNN model that permits the direct adoption

of a unipolar format spike on the XNOR array, i.e., allows

fully exploiting IMC's potential benefit based on the highly

regular and simple array structure. Also, instead of

indirectly taking the B-SNN model from the trained BNN,

we propose to train B-SNN directly using the surrogate

gradient method with residual connections. The system

simulation shows that our proposed trained network

achieves reasonably good accuracy (59.11%) on CIFAR-

100 with very low inference latency (only 8 time-steps B-

SNN).
Keywords—In-memory computing, Binary Spiking Neural

Network, surrogate gradient

I. INTRODUCTION

 Multiply-addition-accumulation (MAC) has been the
dominant computational workload for deep-neural-network
(DNN) processors. This type of computation not only
computing but memory intensive. Therefore, the conventional
computer architecture with limited memory bandwidth and
sequential computing nature is not ideal for AI applications. It
is a real challenge to accommodate DNN in on-edge artificial-
intelligence (AI) devices like Internet-of-Thing (IoT) or
mobile systems, which have strict resource and power
consumption constraints.

BNN, first introduced by M. Courbariaux et. al [1], is a
type of network whose weights and inputs are represented by
the bi-polar value ±1, simplifying the multiplication to be the
bitwise function. BNN hence is particularly suited for
resource- and area-constrained devices. Nonetheless, the BNN
network size, compared to the conventional one, needs to be
increased accordingly to compensate for the low-precision in
bi-polar presentation. The latter could lead to the surging up
of the number of memory access. In-memory computing
(IMC), one of the recent revolutionized approaches to solving
the current computer architecture's memory bottleneck [2].
This approach proposed to partially shift the processing from
the central processing unit to the processing in-memory,
which greatly reduces memory access and increases

performance and energy efficiency. Nonetheless, the accuracy
of BNNs strongly depends on the process variations, which
could be quite severe in finer technologies [3].

The spiking neural network has been recently introduced
in [4], [5] with resilience, robustness, and fault tolerance
capability against the process variation. Furthermore,
binarized spiking neural network (B-SNN) is introduced with
binary weights and binary spikes [6], [7], enabling the
utilization of MAC within in-memory. The authors in these
works introduced the conversion of the trained BNN model
into B-SNN, where ReLU activation is normalized to be to IF
spiking activity. Their proposed S-BNNs achieve comparable
accuracy compared to BNN with equivalent network
topologies. In [8], the author presents a directly supervised
learning algorithm to train B-SNN with the temporal encoding
method. Their evaluation obtained 97.0% and 87.3%
misclassification accuracy for MNIST and Fashion MNIST,
respectively. In [9], the author train the residual stochastic
binary convolutional spiking neural network with hybrid
spike-timing-dependent plasticity to achieve 66% for the
CIFAR-10 dataset. However, these techniques require a large
number of time-steps (~100-300) for inference, which leads to
high latency and limited energy efficiency on the actual
hardware implementation.

The surrogate gradient method is recently introduced to
mitigate the inherent non-differentiability of spiking during
the backpropagation training process. Studies in [10], [11]
demonstrated that training the conventional spiking neural
networks using surrogate gradients achieves reasonable
accuracy using fewer time-steps. In this work, we proposed a
novel method for B-SNN training that achieves an accuracy
of 59.11% for CIFAR-100 with only 8 time-steps,
approximating 13X lower than previous art (105 time-steps)
in [6]. Furthermore, we propose a novel MAC model using
only the XNOR array. Compared to the implementation in
[12], where the possible product output belongs to the set of
(0,+1,-1), therefore fundamental multiplication unit is realized
using a non-standard dual output gate, i.e., more complex than
XNOR gate. Our proposed model permits the full B-SNN
model can be mapped to an existing common in-memory
architecture based on the XNOR array.

The remainder of this paper is structured as follows.
Section II present the training B-SNN with surrogate gradient.
Section III details the B-SNN inference IMC model. The
experiment evaluation and results comparison is presented in
Section IV. Finally, Section V concludes the paper.

II. PROPOSED B-SNN USING SURROGATE GRADIENT

In this section, we proposed directly training B-SNN with

the surrogate gradient method. In our model, the weights of

B-SNN are represented in bipolar format (i.e., ±1) [13]. In

the general SNN model using the Integrated-and-Fired (IF)

model, the membrane potential 𝑢𝑖
𝑡,𝑙

 at i-th neuron time-step 𝑡
at intermediate layer 𝑙-th is defined as follows:

𝑢𝑖
𝑡,𝑙 = 𝑢𝑖

𝑡−1,𝑙 +∑𝑤𝑖𝑗𝑜𝑗
𝑡,𝑙

𝑀

𝑗=1

 (1)

Where 𝑀 denotes the number of pre-synaptic neurons,

𝑜𝑗
𝑡,𝑙 is the pre-synaptic spike in the 𝑗-th neuron, 𝑤𝑖𝑗 is the

weight that links the pre-and the post-neurons. If the

membrane potential 𝑢𝑖
𝑡,𝑙

surpasses the firing threshold 𝜃, the

IF model generates a binary spike output 𝑜𝑖
𝑡,𝑙. In this work,

we use soft reset, i.e., the membrane potential is subtracted
by a threshold if a neuron is fired. In the output layer, the

membrane potential 𝑢𝑖
𝑇,𝐿

in the output layer 𝐿 at final time-

step 𝑇, is accumulated without firing, calculates probability
distribution after softmax function without information loss
[10]. From the accumulated membrane potential, the cross-
entropy loss for B-SNN is defined as

𝐿 = −∑𝑦𝑖𝑙𝑜𝑔(
𝑒𝑢𝑖

𝑇,𝐿

∑ 𝑒𝑢𝑘
𝑇,𝐿

𝐶
𝑘=1

)

𝐶

𝑖=1

 (2)

Here, 𝑌 = (𝑦1 , 𝑦2,… , 𝑦𝐶) is a label vector, and 𝑇 is a
total number of time-steps. The partially derivative of the loss

function with respect to the membrane potential 𝑢𝑖
𝑡,𝑙

 at the

layer 𝑙 is defined as follows

𝜕𝐿

𝜕𝑢𝑖
𝑡,𝑙 =

𝜕𝐿

𝜕𝑜𝑖
𝑡,𝑙

𝜕𝑜𝑖
𝑡,𝑙

𝜕𝑢𝑖
𝑡,𝑙 +

𝜕𝐿

𝜕𝑢𝑖
𝑡+1,𝑙

𝜕𝑢𝑖
𝑡+1,𝑙

𝜕𝑢𝑖
𝑡,𝑙 (3)

Due to the non- differentiable spiking activities,
𝜕𝑜𝑖

𝑡,𝑙

𝜕𝑢𝑖
𝑡,𝑙 does

not exist. To deal with this problem, the authors in [10]
introduce an approximate gradient (i.e., surrogate gradient)
for SNN training, which is expressed as follows

 𝜕𝑜𝑖
𝑡,𝑙

𝜕𝑢𝑖
𝑡,𝑙 = 𝛿 𝑚𝑎𝑥 {0, 1 − |

𝑢𝑖
𝑡,𝑙 − 𝜃

𝜃
|} (4)

Here, 𝛿 is a damping factor for back-propagated gradients,
which is empirically set to 0.3 for stable training [10].
Algorithm 1 presented below demonstrates our procedure for
training B-SNN with binary weights. Note that our B-SNN
does not binarize the first and the last layer as in some previous
works (BNN [13], B-SNN [6]). Except for the full-precision
weights in the first layer 𝑤1, and the last layer 𝑤𝐿, the dot-

product computation 𝑥𝑡,𝑙 at layer 𝑙 -th (in Conv block as
shown in Fig. 1) between the weights and the pre-synaptic
spike is equal to

 𝑥𝑡,𝑙 = 𝛼𝑤𝑖𝑗
𝑏,𝑙{𝑜𝑗

𝑡,𝑙−1 + 𝑓𝑜𝑗
𝑡,𝑙−2} (5)

Where 𝛼 is a scaling factor and 𝑤𝑖𝑗
𝑏,𝑙

 is binary weights that

link layer 𝑙 − 1 to layer 𝑙. In (5) we also apply the identity
mapping technique for residual connections in [9] to our
model. The convolutional layer 𝑙 receives residual
connections from the pre-synaptic spike in layers 𝑙 − 1 and

𝑙 − 2 . The index 𝑓 represents the residual connection
(𝑖. 𝑒. 𝑓 = 1 implies the presence of the residual connection,
otherwise 𝑓 = 0). The input data is encoded using rate
encoding, supported by the Poisson Generator function [10].
The batch normalization (BN) is set with two parameters:
variance 𝜎, and learn parameters 𝜇 and are updated during the
training process.

Algorithm 1 The direct B-SNN training algorithm

using surrogate gradient

Input: input 𝑋, label vector 𝑌

Output: parameters in layer 𝑛: 𝑤1 , 𝑤𝐿, 𝛼 , 𝑤𝑖𝑗
𝑏,𝑙

, 𝜃

1: function IF (𝑢, 𝐼)
3: for 𝑡 = 1 𝑡𝑜 𝑇 do

4: 𝑢𝑡 = 𝑢𝑡−1 + 𝐼(𝑡)
5: end for

6: if 𝑢𝑡 ≤ 𝜃

7: 𝑜𝑖
𝑡 = 0

8: else

9: 𝑜𝑖
𝑡 = 1

10: 𝑢𝑡 = 𝑢𝑡 − 𝜃

11: end if
12: end function

In the Training: % Forward:

1: for 𝑙 = 1 do

2: for 𝑡 = 1 𝑡𝑜 𝑇 do

3: 𝑜𝑡 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 (𝑋)
4: 𝑥𝑡,1 = 𝑤1𝑜𝑡
5: 𝑦𝑡,1 =

𝑥𝑡,1−𝜇

𝜎

6: end for

7: 𝑜𝑖
𝑡,1 ← IF (𝑢1, 𝑦𝑡,1)

8: end for

9: for 𝑙 = 2 𝑡𝑜 𝐿 − 1 do

10: for 𝑡 = 1 𝑡𝑜 𝑇 do

11: 𝑥𝑡,𝑙 = 𝛼𝑤𝑖𝑗
𝑏,𝑙{𝑜𝑗

𝑡,𝑙−1 + 𝑓𝑜𝑗
𝑡,𝑙−2}

12:
 𝑦𝑡,𝑙 =

𝑥𝑡,𝑙−𝜇

𝜎

13: end for

14: 𝑜𝑖
𝑡,𝑙 ← IF (𝑢𝑙 , 𝑦𝑡,𝑙)

15: end for

16: for 𝑙 = 𝐿 do
17: for 𝑡 = 1 𝑡𝑜 𝑇 do

18: 𝑥𝑡,𝐿 = 𝑤𝐿𝑜𝑡,𝐿−1

19: 𝑦𝑡,𝐿 =
𝑥𝑡,𝐿 − 𝜇

𝜎

20: 𝑢𝑡,𝐿 = 𝑢𝑡−1,𝐿 + 𝑦𝑡,𝐿

21: end for

22: end for

23: % Calculate the loss and back-propagation

24: 𝐿 ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐿𝑜𝑠𝑠(𝑌, 𝑢𝑇,𝐿)

25:
𝜕𝐿

𝜕𝑢𝑖
𝑡,𝑙 ,

𝜕𝐿

𝜕𝑜𝑖
𝑡,𝑙 ← 𝐴𝑢𝑡𝑜𝑔𝑟𝑎𝑑

C
o

n
v

B
N IF

Residual Block

+

O
t,l-1

O
t,l-2

Fig. 1. Residual connections from layer 𝑙 − 2, 𝑙 − 1 to 𝑙 [9]

III. PROPOSED BINARIZED SPIKING NEURAL NETWORK

MODEL BASED ON THE IN-MEMORY XNOR ARRAY

This section proposes a MAC model for the accumulated

bit-wise product in B-SNN inference using the XNOR cell

circuit, which is common in the IMC model as shown in

Algorithm 2.

First, we analyze with 𝑓 = 0 on steps (11-12) in

Algorithm 1. We have the IF model now is expressed as

𝑰𝒏𝒕𝒆𝒈𝒓𝒂𝒕𝒊𝒐𝒏: 𝑢𝑖
𝑡,𝑙 = 𝑢𝑖

𝑡−1,𝑙 +
𝛼

𝜎
{∑𝑤𝑖𝑗

𝑏,𝑙

𝑀

𝑗=1

𝑜𝑗
𝑡,𝑙−1 −

𝜇

𝛼
}

𝑭𝒊𝒓𝒊𝒏𝒈: 𝑜𝑖
𝑡,𝑙 = {

1, if 𝑢𝑖
𝑡,𝑙 > 𝜃

0, otherwise

𝑹𝒆𝒔𝒆𝒕: 𝑢𝑖
𝑡,𝑙 = 𝑢𝑖

𝑡,𝑙 − 𝜃

(6)

To summarize (6), for every time-step, the membrane

potential 𝑢𝑖
𝑡,𝑙

is accumulated with 𝛼 𝜎⁄ {∑ 𝑤𝑖𝑗
𝑏,𝑙𝑀

𝑗=1 𝑜𝑗
𝑡,𝑙−1 −

𝜇
𝛼⁄ } , then compared with threshold 𝜃 for firing decision.

After firing, the membrane is subtracted by 𝜃 in the reset

phase.

We can reformulate the integration phase in (6) as

𝑢̂𝑖
𝑡,𝑙 = 𝑢̂𝑖

𝑡−1,𝑙 +∑𝑤𝑖𝑗
𝑏,𝑙

𝑀

𝑗=1

𝑜𝑗
𝑡,𝑙−1 −

𝜇

𝛼
 (7)

In (7), 𝑢̂𝑖
𝑡,𝑙

 is the membrane potential transformation, 𝜃 =
(𝜎 ∙ 𝜃)

𝛼⁄ is a threshold transformation.

To compute the MAC operation ∑ 𝑤𝑖𝑗
𝑏,𝑙𝑀

𝑗=1 𝑜𝑗
𝑡,𝑙−1

, the prior

works [14] proposed to separate the calculation into negative

and positive phases of weight. In detail, 𝑀 weights 𝑤𝑖𝑗
𝑏,𝑙

 are

divided into 𝑀1 negative weights 𝑤𝑖𝑗
−𝑏 (-1) and 𝑀2 positive

weights 𝑤𝑖𝑗
+𝑏 (+1). Then, the MAC is seperated into two sub-

MAC operation ∑ 𝑤𝑖𝑗
−𝑏𝑀1

𝑗=1 𝑜𝑗
𝑡,𝑙−1

 and ∑ 𝑤𝑖𝑗
+𝑏𝑀2

𝑗=1 𝑜𝑗
𝑡,𝑙−1

. The

MAC product 𝑠𝑖
𝑡,𝑙

 in B-SNN synapse can be derived as

follows.

 𝑠𝑖
𝑡,𝑙 =∑𝑤𝑖𝑗

𝑏,𝑙

𝑀

𝑗=1

𝑜𝑗
𝑡,𝑙−1

=∑𝑤𝑖𝑗
−𝑏

𝑀1

𝑗=1

𝑜𝑗
𝑡,𝑙−1 +∑𝑤𝑖𝑗

+𝑏

𝑀2

𝑗=1

𝑜𝑗
𝑡,𝑙−1

= −∑|𝑤𝑖𝑗
−𝑏|

𝑀1

𝑗=1

∧ 𝑜𝑗
𝑡,𝑙−1 +∑𝑤𝑖𝑗

+𝑏

𝑀2

𝑗=1

∧ 𝑜𝑗
𝑡,𝑙−1

(8)

As can be seen from (8), the direct implementation by

AND functions with separation into the positive and negative
sub-MAC. However, the hardwired separation in the circuit

level means that the circuit is not reconfigurable or

upgradable when there is a change in the network models

(e.g., problem changes or retraining). This rigid design

essentially has little meaning in practice. Therefore, take the

fact that 𝑤𝑖𝑗
±𝑏 = ±1, we further transform the first and the

second MAC product component to be

Algorithm 2 Proposed B-SNN inference model for IMC

implementation.

1: PARAMETERS: 𝑤𝑖𝑗
𝑏,𝑙

, 𝜃, 𝑀, 𝑀1, 𝜇, 𝛼

2: INPUT: 𝑜𝑗
𝑡,𝑙−1

3: OUTPUT: 𝑜𝑖
𝑡,𝑙

 Δ In-memory MAC computation

4: for 𝑡 ← 1 𝑡𝑜 𝑇 do

5: for 𝑗 ← 1 𝑡𝑜 𝑀 do

6: 𝑑𝑜𝑡𝑖
𝑡,𝑙 =∑𝑤𝑖𝑗

𝑏,𝑙⊕𝑜𝑗
𝑡,𝑙−1

𝑀

𝑗=1

7: end for

8: end for

 Δ Accumulation phase
9: for 𝑡 ← 1 𝑡𝑜 𝑇 do

10: 𝑢̂𝑖
𝑡,𝑙 = 𝑢̂𝑖

𝑡−1,𝑙 + 𝑑𝑜𝑡𝑖
𝑡,𝑙 − [𝑀1 +

𝜇

𝛼
]

11: end for

 Δ Firing & reset phase

12: for 𝑡 ← 1 𝑡𝑜 𝑇 do

13: if 𝑢̂𝑖
𝑡,𝑙 > 𝜃 then

14: 𝑜𝑖
𝑡,𝑙 ← 1

15: 𝑢̂𝑖
𝑡,𝑙 ← 𝑢̂𝑖

𝑡,𝑙 − 𝜃

16: else

17: 𝑜𝑖
𝑡,𝑙 ← 0

18: 𝑢̂𝑖
𝑡,𝑙 = 𝑢̂𝑖

𝑡−1,𝑙 + 𝑑𝑜𝑡𝑖
𝑡,𝑙 − [𝑀1 +

𝜇

𝛼
]

19: end if
20: end for

{

−∑|𝑤𝑖𝑗

−𝑏|

𝑀1

𝑗=1

∧ 𝑜𝑗
𝑡,𝑙−1 =∑(1− 𝑜𝑗

𝑡,𝑙−1)

𝑀1

𝑗=1

−𝑀1

 =∑(1 + 𝑤𝑖𝑗
−𝑏) ⊕ 𝑜𝑗

𝑡,𝑙−1

𝑀1

𝑗=1

−𝑀1

∑𝑤𝑖𝑗
+𝑏

𝑀2

𝑗=1

∧ 𝑜𝑗
𝑡,𝑙−1 =∑𝑤𝑖𝑗

+𝑏⊕𝑜𝑗
𝑡,𝑙−1

𝑀2

𝑗=1

(9)

Finally, if 𝑤𝑖𝑗
𝑏,𝑙

 are encoded in unipolar number (-1 into 0,

1 into 1), 𝑠𝑖
𝑡,𝑙

 from (8) can be expressed as

𝑠𝑖
𝑡,𝑙 =∑(1+𝑤𝑖𝑗

−𝑏)⊕ 𝑜𝑗
𝑡,𝑙−1

𝑀1

𝑗=1

−𝑀1

+ ∑𝑤𝑖𝑗
+𝑏 ⊕𝑜𝑗

𝑡,𝑙−1

𝑀2

𝑗=1

=∑𝑤𝑖𝑗
𝑏,𝑙⊕𝑜𝑗

𝑡,𝑙−1

𝑀

𝑗=1

−𝑀1

(10)

Express of 𝑠𝑖
𝑡,𝑙 allows computing MAC (𝑑𝑜𝑡𝑖

𝑡,𝑙) as
mentioned in Algorithm 2 using bit-wise operation, which can
be realized entirely using IMC XNOR array as proposed in

[3], [15]. Then, the MAC product is biased by 𝑀1 +
𝜇

𝛼
 before

compared with 𝜃 for firing decision.

Pre- synaptic

spikes

Post- synaptic

spikes

Column Decoder

(M input neurons)

Rows

Connect-

ions

XNOR

cell

B- SNN

subarray

IF

IF

IF

O
t,l-1

1

O
t,l-1

O
t,l-1

O
t,l-1

O
t,l

O
t,l

O
t,l

w
b,l

w
b,l

2

j

M
N,M

1,1

1

i

N

O
t,l-1

O
t,l-1

O
t,l-1

O
t,l-1

1 2 j M

O
t,l

O
t,l

O
t,l

1

i

N

Fig. 2. B-SNN model and mapping onto in-memory architecture using

XNOR cells array.

 Suppose the residual connection exists (𝑓 = 1). Exploiting
the fact that the weights are shared between spiking in l-1

(𝑜𝑗
𝑡,𝑙−1

) and l-2 layers(𝑜𝑗
𝑡,𝑙−2), so the MAC operation in step

(6) in Algorithm 2 now consists of two MAC components.

𝑑𝑜𝑡𝑖
𝑡,𝑙 =∑𝑤𝑖𝑗

𝑏,𝑙 ⊕𝑜𝑗
𝑡,𝑙−1

𝑀

𝑗=1

+∑𝑤𝑖𝑗
𝑏,𝑙⊕𝑜𝑗

𝑡,𝑙−2

𝑀

𝑗=1

 (11)

For hardware implementation, we can compute the first

and second MAC in (11) in the same hardware model using

the technique of the shared weight in a time-interleaved

manner. Specifically, the time-step 𝑡 is divided into two time

slots 𝜏1 and 𝜏2. We can execute the computation of the first

MAC in the time slot 𝜏1, and store their product in the analog

buffer (e.g., a simple capacitive buffer). After that, the second

MAC is performed in the time slot 𝜏2 and subsequently added

into the first MAC product's pre-stored in the buffer. As a

result, the residual connections do not increase the hardware

complexity for the proposed IMC model in Algorithm 2.
The final proposed B-SNN subarray model size (𝑁,𝑀)

with pre-synaptic spikes 𝑜1
𝑡,𝑙−1, 𝑜2

𝑡,𝑙−1, … 𝑜𝑀
𝑡,𝑙−1

 (𝑗 = 1 ÷𝑀),

and post-synaptic spikes 𝑜1
𝑡,𝑙 , 𝑜2

𝑡,𝑙 , … 𝑜𝑁
𝑡,𝑙(𝑖 = 1 ÷𝑁) of the

output neurons shown in Fig. 2. In the 𝑖 − 𝑡ℎ row connection
(red line in Fig. 2) is described the MAC between the synaptic

weight 𝑤𝑖𝑗
𝑏,𝑙

 and the pre-synaptic spikes 𝑜𝑗
𝑡,𝑙−1

∑ 𝑤𝑖𝑗
𝑏,𝑙⊕𝑜𝑗

𝑡,𝑙−1𝑀
𝑗=1 , which is presented in step (6) in

Algorithm 2. In this topology, the synaptic weight 𝑤𝑖𝑗
𝑏,𝑙 links

pre-synaptic spike 𝑜𝑗
𝑡,𝑙

 with the post-synaptic spike 𝑜𝑖
𝑡,𝑙

 (𝑖, 𝑗 is

a row and column index, respectively). In detail, the pre-
synaptic spikes of a given layer are applied to the column
decoder. The bit-wise products between pre-synaptic spikes
with the respective weights stored in a row are summed up and
then accumulated in the IF model. If the firing condition in
Algorithm 2 is satisfied, the post-synaptic spikes are generated
for the next layer processing.

IV. RESULTS AND DISCUSSION

We evaluate our method on CIFAR-100 [16] , consisting

of 60,000 images with 100 categories that are divided into

50,000 for training and 10,000 for testing. All images are

RGB color images whose size is 32x32. The B-SNN

architecture on training is VGG11 (with the residual mapping

schedule applied for every 3 consecutive layers: 1-2-3, 2-3-4,

3-4-5, 4-5-6, 5-6-7, 7-8-9 as depicted in Fig. 1).

TABLE I. CLASSIFICATION ACCURACY OF B-SNN MODEL ON THE

CIFAR-100 TEST SET

Net. Structure Bit width Accuracy (%) Timesteps

8-layer CNN [7] binary 62.02 300

15-layer CNN [6]a binary 62.00 105

Spiking CNN [17] ternary 55.64 N.A

11-layer CNN [18] (0, ±1) 55.95 8

11-layer CNN (ours) binary 59.11 8

a. There is the baseline accuracy of BNN-SNN conversion without early exit optimization

Our results are shown in Table 1. In comparison with the

most representative recent reports on the same dataset: BNN

to B-SNN conversion [6] [7], a conventional SNN with

ternary bit width in [17], and an SNN with 11-layer CNN

based weight quantization (0, ±1) in [18].

In comparison to the prior B-SNN, although the

misclassification accuracy in these works is slightly better

than ours trained B-SNN (by 2.89% [6] and 2.91% [7]), our

spiking time-steps is much lower (8 compared to 105 and

300). The latter leads to not only lower inference latency but

also a significant reduction in energy consumption.

In comparison with [17], and [18] our model exhibits

better classification accuracy (by 3.47% [17] and 3.16%

[18]). From the hardware implementation perspective, the B-

SNN essentially is highly energy-and area-efficient and

suited for the edge-AI device compared to the ternary SNN

and the weight quantization (0, ±1) SNN.

V. CONCLUSION AND DISCUSSION

This paper proposes a novel and effective method for

direct training B-SNN, which greatly shrinks the memory

space and time-steps for inference. Our model could achieve

reasonably good accuracy with the CIFAR-100 dataset while

requires much fewer time steps compared to other B-SNN

models. Furthermore, we propose the IMC MAC model for

B-SNN, which allows performing MAC operation in-

memory using only the XNOR array. The proposal IMC

MAC model and the proposed B-SNN together greatly

simplify the hardware implementation and pave the way for

ultra-low-power deep neural network applied in edge-AI
applications.

REFERENCES

[1] M. Courbariaux and et al., "Binarized neural networks: Training deep

neural networks with weights and activations constrained to+ 1 or-1,"

arXiv preprint arXiv, 2016.

[2] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh and E. Eleftheriou,

"Memory devices and applications for in-memory computing," Nature

nanotechnology, pp. 529-544, 2020.

[3] T. Pham, Q. Trinh, I. Chang and M. Alioto, "STT-MRAM

Architecture with Parallel Accumulator for In-Memory Binary Neural

Networks," in 2021 IEEE International Symposium on Circuits and

Systems (ISCAS), 2021.

[4] X. She, Y. Long and S. Mukhopadhyay, "Improving robustness of

reram-based spiking neural network accelerator with stochastic spike-

timing-dependent-plasticity," in International Joint Conference on

Neural Networks (IJCNN), 2019.

[5] W. Guo, M. Fouda, A. Eltawil and K. Salama, "Neural Coding in

Spiking Neural Networks: A Comparative Study for Robust

Neuromorphic Systems," Frontiers in Neuroscience, 2021.

[6] S. Lu and A. Sengupta, "Exploring the connection between binary and

spiking neural networks," Frontiers in Neuroscience, p. 535, 2020.

[7] Y. Wang, Y. Xu, R. Yan and H. Tang, "Deep spiking neural networks

with binary weights for object recognition," IEEE Transactions on

Cognitive and Developmental Systems, 2020.

[8] S. Kheradpisheh, M. Mirsadeghi and T. Masquelier, "BS4NN:

Binarized Spiking Neural Networks with Temporal Coding and

Learning," arXiv preprint arXiv:2007.04039, 2020.

[9] G. Srinivasan and K. Roy, "Restocnet: Residual stochastic binary

convolutional spiking neural network for memory-efficient

neuromorphic computing," Frontiers in neuroscience, p. 13, 2019.

[10] Y. Kim and P. Panda, "Revisiting Batch Normalization for Training

Low-latency Deep Spiking Neural Networks from Scratch," arXiv

preprint arXiv:2010.01729, 2020.

[11] Y. Wu and L. Deng, et al, "Direct training for spiking neural networks:

Faster, larger, better," in In Proceedings of the AAAI Conference on

Artificial Intelligence, 2019.

[12] P. Chuang, P. Tan, C. Wu and J. Lu, "A 90nm 103.14 TOPS/W binary-

weight spiking neural network CMOS ASIC for real-time object

classification," in ACM/IEEE Design Automation Conference (DAC),

2020.

[13] M. Rastegari, V. Ordonez, J. Redmon and A. Farhadi, "Xnor-net:

Imagenet classification using binary convolutional neural networks,"

in European conference on computer vision , 2016.

[14] J. Yu and K. Kim, et al., "Accurate and efficient stochastic computing

hardware for convolutional neural networks," in 2017 IEEE

International Conference on Computer Design (ICCD), 2017.

[15] M. Abu Lebdeh, H. Abunahla, B. Mohammad and M. Al-Qutayri, "An

Efficient Heterogeneous Memristive xnor for In-Memory

Computing," IEEE Transactions on Circuits and Systems I: Regular

Papers, pp. 2427-2437, 2017.

[16] A. Krizhevsky and G. Hinton, "Learning multiple layers of features

from tiny images.," 2009.

[17] S. Esser and P. Merolla, et al, "Convolutional networks for fast,

energy-efficient neuromorphic computing," in Proceedings of the

national academy of sciences, 2016.

[18] L. Deng and Y. Wu, et al, "Comprehensive snn compression using

admm optimization and activity regularization," arXiv preprint arXiv,

2019.

