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Abstract— This paper proposed a rate encoding binarized 

spiking neural network (B-SNN) model suited for in-

memory computing (IMC) implementation. While in most 

of the prior arts, due to the nature of spike represented 

unipolar format, the B-SNN were implemented using 

either complex or non-regular logic that is not suited for 

IMC and/or makes the network inflexible. In this work, we 

proposed a B-SNN model that permits the direct adoption 

of a unipolar format spike on the XNOR array, i.e., allows 

fully exploiting IMC's potential benefit based on the highly 

regular and simple array structure. Also, instead of 

indirectly taking the B-SNN  model from the trained BNN, 

we propose to train B-SNN directly using the surrogate 

gradient method with residual connections. The system 

simulation shows that our proposed trained network 

achieves reasonably good accuracy (59.11%) on CIFAR-

100 with very low inference latency (only 8 time-steps B-

SNN). 
Keywords—In-memory computing, Binary Spiking Neural 

Network, surrogate gradient  

I. INTRODUCTION  

 Multiply-addition-accumulation (MAC) has been the 
dominant computational workload for deep-neural-network 
(DNN) processors. This type of computation not only 
computing but memory intensive. Therefore, the conventional 
computer architecture with limited memory bandwidth and 
sequential computing nature is not ideal for AI applications. It 
is a real challenge to accommodate DNN in on-edge artificial-
intelligence (AI) devices like Internet-of-Thing (IoT) or 
mobile systems, which have strict resource and power 
consumption constraints.  

BNN, first introduced by M. Courbariaux et. al [1], is a 
type of network whose weights and inputs are represented by 
the bi-polar value ±1, simplifying the multiplication to be the 
bitwise function. BNN hence is particularly suited for 
resource- and area-constrained devices. Nonetheless, the BNN 
network size, compared to the conventional one, needs to be 
increased accordingly to compensate for the low-precision in 
bi-polar presentation. The latter could lead to the surging up 
of the number of memory access. In-memory computing 
(IMC), one of the recent revolutionized approaches to solving 
the current computer architecture's memory bottleneck [2]. 
This approach proposed to partially shift the processing from 
the central processing unit to the processing in-memory, 
which greatly reduces memory access and increases 

performance and energy efficiency. Nonetheless, the accuracy 
of BNNs strongly depends on the process variations, which 
could be quite severe in finer technologies [3].   

The spiking neural network has been recently introduced 
in [4], [5] with resilience, robustness, and fault tolerance 
capability against the process variation. Furthermore, 
binarized spiking neural network (B-SNN) is introduced with 
binary weights and binary spikes [6], [7], enabling the 
utilization of MAC within in-memory. The authors in these 
works introduced the conversion of the trained BNN model 
into B-SNN, where ReLU activation is normalized to be to IF 
spiking activity. Their proposed S-BNNs achieve comparable 
accuracy compared to BNN with equivalent network 
topologies. In [8], the author presents a directly supervised 
learning algorithm to train B-SNN with the temporal encoding 
method. Their evaluation obtained 97.0% and 87.3% 
misclassification accuracy for MNIST and Fashion MNIST, 
respectively. In [9], the author train the residual stochastic 
binary convolutional spiking neural network with hybrid 
spike-timing-dependent plasticity to achieve 66% for the 
CIFAR-10 dataset.  However, these techniques require a large 
number of time-steps (~100-300) for inference, which leads to 
high latency and limited energy efficiency on the actual 
hardware implementation. 

The surrogate gradient method is recently introduced to 
mitigate the inherent non-differentiability of spiking during 
the backpropagation training process. Studies in [10], [11] 
demonstrated that training the conventional spiking neural 
networks using surrogate gradients achieves reasonable 
accuracy using fewer time-steps. In this work, we proposed a 
novel method for B-SNN training that achieves an accuracy 
of 59.11% for CIFAR-100 with only 8 time-steps, 
approximating 13X lower than previous art (105 time-steps) 
in [6]. Furthermore, we propose a novel MAC model using 
only the XNOR array. Compared to the implementation in 
[12], where the possible product output belongs to the set of 
(0,+1,-1), therefore fundamental multiplication unit is realized 
using a non-standard dual output gate, i.e., more complex than 
XNOR gate. Our proposed model permits the full B-SNN 
model can be mapped to an existing common in-memory 
architecture based on the XNOR array. 

The remainder of this paper is structured as follows. 
Section II present the training B-SNN with surrogate gradient. 
Section III details the B-SNN inference IMC model. The 
experiment evaluation and results comparison is presented in 
Section IV. Finally, Section V concludes the paper.  



II. PROPOSED B-SNN USING SURROGATE GRADIENT 

In this section, we proposed directly training B-SNN with 

the surrogate gradient method. In our model, the weights of 

B-SNN are represented in bipolar format (i.e., ±1) [13].  In 

the general SNN model using the Integrated-and-Fired (IF) 

model, the membrane potential 𝑢𝑖
𝑡,𝑙

 at i-th neuron time-step 𝑡 
at intermediate layer 𝑙-th is defined as follows:  

𝑢𝑖
𝑡,𝑙 = 𝑢𝑖

𝑡−1,𝑙 +∑𝑤𝑖𝑗𝑜𝑗
𝑡,𝑙

𝑀

𝑗=1

 (1) 

Where 𝑀  denotes the number of pre-synaptic neurons,  

𝑜𝑗
𝑡,𝑙  is the pre-synaptic spike in the 𝑗-th neuron, 𝑤𝑖𝑗  is the 

weight that links the pre-and the post-neurons. If the 

membrane potential 𝑢𝑖
𝑡,𝑙

surpasses the firing threshold 𝜃, the 

IF model generates a binary spike output 𝑜𝑖
𝑡,𝑙. In this work, 

we use soft reset, i.e., the membrane potential is subtracted 
by a threshold if a neuron is fired. In the output layer, the 

membrane potential 𝑢𝑖
𝑇,𝐿

in the output layer 𝐿 at final time-

step 𝑇, is accumulated without firing, calculates probability 
distribution after softmax function without information loss 
[10]. From the accumulated membrane potential, the cross-
entropy loss for B-SNN is defined as 

𝐿 = −∑𝑦𝑖𝑙𝑜𝑔(
𝑒𝑢𝑖

𝑇,𝐿

∑ 𝑒𝑢𝑘
𝑇,𝐿

𝐶
𝑘=1

)

𝐶

𝑖=1

 (2) 

 

Here, 𝑌 = (𝑦1 , 𝑦2,… , 𝑦𝐶)  is a label vector, and 𝑇  is a 
total number of time-steps. The partially derivative of the loss 

function with respect to the membrane potential 𝑢𝑖
𝑡,𝑙

 at the 

layer 𝑙 is defined as follows 

𝜕𝐿

𝜕𝑢𝑖
𝑡,𝑙 =

𝜕𝐿

𝜕𝑜𝑖
𝑡,𝑙

𝜕𝑜𝑖
𝑡,𝑙

𝜕𝑢𝑖
𝑡,𝑙 +

𝜕𝐿

𝜕𝑢𝑖
𝑡+1,𝑙

𝜕𝑢𝑖
𝑡+1,𝑙

𝜕𝑢𝑖
𝑡,𝑙  (3) 

Due to the non- differentiable spiking activities, 
𝜕𝑜𝑖

𝑡,𝑙

𝜕𝑢𝑖
𝑡,𝑙 does 

not exist. To deal with this problem, the authors in [10] 
introduce an approximate gradient (i.e., surrogate gradient) 
for SNN training, which is expressed as follows 

 𝜕𝑜𝑖
𝑡,𝑙

𝜕𝑢𝑖
𝑡,𝑙 = 𝛿 𝑚𝑎𝑥 {0, 1 − |

𝑢𝑖
𝑡,𝑙 − 𝜃

𝜃
|} (4) 

 

Here, 𝛿 is a damping factor for back-propagated gradients, 
which is empirically set to 0.3 for stable training [10].  
Algorithm 1 presented below demonstrates our procedure for 
training B-SNN with binary weights. Note that our B-SNN 
does not binarize the first and the last layer as in some previous 
works (BNN [13], B-SNN [6]). Except for the full-precision 
weights in the first layer 𝑤1, and the last layer 𝑤𝐿, the dot-

product computation 𝑥𝑡,𝑙  at layer 𝑙 -th (in Conv block as 
shown in Fig. 1) between the weights and the pre-synaptic 
spike is equal to 

 𝑥𝑡,𝑙 = 𝛼𝑤𝑖𝑗
𝑏,𝑙{𝑜𝑗

𝑡,𝑙−1 + 𝑓𝑜𝑗
𝑡,𝑙−2} (5) 

 

Where 𝛼 is a scaling factor and 𝑤𝑖𝑗
𝑏,𝑙

 is binary weights that 

link layer 𝑙 − 1 to layer 𝑙. In (5) we also apply the identity 
mapping technique for residual connections in [9] to our 
model. The convolutional layer 𝑙  receives residual 
connections from the pre-synaptic spike in layers 𝑙 − 1 and 

𝑙 − 2 . The index 𝑓  represents the residual connection 
(𝑖. 𝑒. 𝑓 = 1 implies the presence of the residual connection, 
otherwise 𝑓 = 0 ). The input data is encoded using rate 
encoding, supported by the Poisson Generator function [10]. 
The batch normalization (BN) is set with two parameters: 
variance 𝜎, and learn parameters 𝜇 and are updated during the 
training process. 

Algorithm 1  The direct B-SNN training algorithm 

using surrogate gradient 

Input: input 𝑋, label vector 𝑌 

Output: parameters in layer 𝑛: 𝑤1 , 𝑤𝐿, 𝛼 , 𝑤𝑖𝑗
𝑏,𝑙

, 𝜃 

1: function IF (𝑢, 𝐼) 
3:     for 𝑡 = 1 𝑡𝑜 𝑇 do 

4:         𝑢𝑡 = 𝑢𝑡−1 + 𝐼(𝑡) 
5:     end for 

6:     if  𝑢𝑡 ≤ 𝜃 

7:          𝑜𝑖
𝑡 = 0 

8:     else 

9:          𝑜𝑖
𝑡 = 1 

10:          𝑢𝑡 = 𝑢𝑡 − 𝜃 

11:     end if 
12: end function 

In the Training: % Forward: 

1: for 𝑙 = 1 do  

2:    for 𝑡 = 1 𝑡𝑜 𝑇 do  

3:       𝑜𝑡 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 (𝑋) 
4:       𝑥𝑡,1 = 𝑤1𝑜𝑡  
5:       𝑦𝑡,1 =

𝑥𝑡,1−𝜇

𝜎
 

6:     end for 

7: 𝑜𝑖
𝑡,1 ← IF (𝑢1, 𝑦𝑡,1) 

8:  end for 

9: for 𝑙 = 2 𝑡𝑜 𝐿 − 1 do 

10:     for 𝑡 = 1 𝑡𝑜 𝑇 do 

11:       𝑥𝑡,𝑙 = 𝛼𝑤𝑖𝑗
𝑏,𝑙{𝑜𝑗

𝑡,𝑙−1 + 𝑓𝑜𝑗
𝑡,𝑙−2} 

12: 
      𝑦𝑡,𝑙 =

𝑥𝑡,𝑙−𝜇

𝜎
 

13:     end for 

14: 𝑜𝑖
𝑡,𝑙 ← IF (𝑢𝑙 , 𝑦𝑡,𝑙) 

15: end for 

16: for 𝑙 = 𝐿 do 
17:     for 𝑡 = 1 𝑡𝑜 𝑇 do 

18:       𝑥𝑡,𝐿 = 𝑤𝐿𝑜𝑡,𝐿−1 

19:       𝑦𝑡,𝐿 =
𝑥𝑡,𝐿 − 𝜇

𝜎
 

20:        𝑢𝑡,𝐿 = 𝑢𝑡−1,𝐿 + 𝑦𝑡,𝐿 

21: end for 

22: end for 

23: % Calculate the loss and back-propagation 

24: 𝐿 ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐿𝑜𝑠𝑠(   𝑌, 𝑢𝑇,𝐿) 

25: 
𝜕𝐿

𝜕𝑢𝑖
𝑡,𝑙  ,

𝜕𝐿

𝜕𝑜𝑖
𝑡,𝑙  ← 𝐴𝑢𝑡𝑜𝑔𝑟𝑎𝑑 

C
o

n
v

B
N IF

Residual Block

+

O
t,l-1

O
t,l-2

 
Fig. 1.  Residual connections from layer 𝑙 − 2, 𝑙 − 1 to 𝑙  [9] 



III. PROPOSED BINARIZED SPIKING NEURAL NETWORK 

MODEL BASED ON THE IN-MEMORY XNOR ARRAY 

This section proposes a MAC model for the accumulated 

bit-wise product in B-SNN inference using the XNOR cell 

circuit, which is common in the IMC model as shown in 

Algorithm 2.  

First, we analyze with 𝑓 = 0  on steps (11-12) in 

Algorithm 1. We have the IF model now is expressed as 

 

𝑰𝒏𝒕𝒆𝒈𝒓𝒂𝒕𝒊𝒐𝒏: 𝑢𝑖
𝑡,𝑙 = 𝑢𝑖

𝑡−1,𝑙 +
𝛼

𝜎
{∑𝑤𝑖𝑗

𝑏,𝑙

𝑀

𝑗=1

𝑜𝑗
𝑡,𝑙−1 −

𝜇

𝛼
} 

𝑭𝒊𝒓𝒊𝒏𝒈: 𝑜𝑖
𝑡,𝑙 = {

1, if 𝑢𝑖
𝑡,𝑙 > 𝜃

0, otherwise
 

𝑹𝒆𝒔𝒆𝒕: 𝑢𝑖
𝑡,𝑙 = 𝑢𝑖

𝑡,𝑙 −  𝜃 

 

      

(6) 

 

To summarize (6), for every time-step, the membrane 

potential 𝑢𝑖
𝑡,𝑙

is accumulated with 𝛼 𝜎⁄ {∑ 𝑤𝑖𝑗
𝑏,𝑙𝑀

𝑗=1 𝑜𝑗
𝑡,𝑙−1 −

𝜇
𝛼⁄ } , then compared with threshold 𝜃  for firing decision. 

After firing, the membrane is subtracted by 𝜃  in the reset 

phase.  

We can reformulate the integration phase in (6) as 
 

𝑢̂𝑖
𝑡,𝑙 = 𝑢̂𝑖

𝑡−1,𝑙 +∑𝑤𝑖𝑗
𝑏,𝑙

𝑀

𝑗=1

𝑜𝑗
𝑡,𝑙−1 −

𝜇

𝛼
 (7) 

 

In (7),  𝑢̂𝑖
𝑡,𝑙

 is the membrane potential transformation, 𝜃 =
(𝜎 ∙ 𝜃)

𝛼⁄   is a threshold transformation.  

To compute the MAC operation ∑ 𝑤𝑖𝑗
𝑏,𝑙𝑀

𝑗=1 𝑜𝑗
𝑡,𝑙−1

, the prior 

works [14] proposed to separate the calculation into negative 

and positive phases of weight. In detail, 𝑀 weights 𝑤𝑖𝑗
𝑏,𝑙

 are 

divided into 𝑀1  negative weights 𝑤𝑖𝑗
−𝑏  (-1) and 𝑀2  positive 

weights  𝑤𝑖𝑗
+𝑏  (+1). Then, the MAC is seperated into two sub-

MAC operation ∑ 𝑤𝑖𝑗
−𝑏𝑀1

𝑗=1 𝑜𝑗
𝑡,𝑙−1

 and ∑ 𝑤𝑖𝑗
+𝑏𝑀2

𝑗=1 𝑜𝑗
𝑡,𝑙−1

. The 

MAC product  𝑠𝑖
𝑡,𝑙

 in B-SNN synapse can be derived as 

follows. 

 

    𝑠𝑖
𝑡,𝑙 =∑𝑤𝑖𝑗

𝑏,𝑙

𝑀

𝑗=1

𝑜𝑗
𝑡,𝑙−1

 

=∑𝑤𝑖𝑗
−𝑏

𝑀1

𝑗=1

𝑜𝑗
𝑡,𝑙−1 +∑𝑤𝑖𝑗

+𝑏

𝑀2

𝑗=1

𝑜𝑗
𝑡,𝑙−1

 

= −∑|𝑤𝑖𝑗
−𝑏|

𝑀1

𝑗=1

∧ 𝑜𝑗
𝑡,𝑙−1 +∑𝑤𝑖𝑗

+𝑏

𝑀2

𝑗=1

∧ 𝑜𝑗
𝑡,𝑙−1

 

 

(8)  

As can be seen from (8), the direct implementation by 

AND functions with separation into the positive and negative 
sub-MAC. However, the hardwired separation in the circuit 

level means that the circuit is not reconfigurable or 

upgradable when there is a change in the network models 

(e.g., problem changes or retraining). This rigid design 

essentially has little meaning in practice. Therefore, take the 

fact that 𝑤𝑖𝑗
±𝑏 = ±1, we further transform the first and the 

second MAC product component to be  

Algorithm 2  Proposed B-SNN inference model for IMC 

implementation. 

1: PARAMETERS: 𝑤𝑖𝑗
𝑏,𝑙

, 𝜃, 𝑀, 𝑀1, 𝜇, 𝛼 

2: INPUT: 𝑜𝑗
𝑡,𝑙−1

 

3: OUTPUT: 𝑜𝑖
𝑡,𝑙 

 Δ In-memory MAC computation 

4: for 𝑡 ← 1 𝑡𝑜 𝑇 do 

5:     for 𝑗 ← 1 𝑡𝑜 𝑀 do 

6:                 𝑑𝑜𝑡𝑖
𝑡,𝑙 =∑𝑤𝑖𝑗

𝑏,𝑙⊕𝑜𝑗
𝑡,𝑙−1

𝑀

𝑗=1

 

7:     end for 

8: end for 

 Δ Accumulation phase  
9: for 𝑡 ← 1 𝑡𝑜 𝑇 do 

10:         𝑢̂𝑖
𝑡,𝑙 = 𝑢̂𝑖

𝑡−1,𝑙 + 𝑑𝑜𝑡𝑖
𝑡,𝑙 − [𝑀1 +

𝜇

𝛼
] 

11: end for 

 Δ Firing & reset phase 

12: for 𝑡 ← 1 𝑡𝑜 𝑇 do 

13:       if   𝑢̂𝑖
𝑡,𝑙 > 𝜃 then 

14:            𝑜𝑖
𝑡,𝑙 ← 1 

15:            𝑢̂𝑖
𝑡,𝑙 ← 𝑢̂𝑖

𝑡,𝑙 − 𝜃 

16:       else 

17:            𝑜𝑖
𝑡,𝑙 ← 0 

18:            𝑢̂𝑖
𝑡,𝑙 = 𝑢̂𝑖

𝑡−1,𝑙 + 𝑑𝑜𝑡𝑖
𝑡,𝑙 − [𝑀1 +

𝜇

𝛼
] 

19:     end if 
20: end for 

  

 

 

{
 
 
 
 

 
 
 
 
−∑|𝑤𝑖𝑗

−𝑏|

𝑀1

𝑗=1

∧ 𝑜𝑗
𝑡,𝑙−1 =∑(1− 𝑜𝑗

𝑡,𝑙−1)

𝑀1

𝑗=1

−𝑀1

                       =∑(1 + 𝑤𝑖𝑗
−𝑏) ⊕ 𝑜𝑗

𝑡,𝑙−1

𝑀1

𝑗=1

−𝑀1

∑𝑤𝑖𝑗
+𝑏

𝑀2

𝑗=1

∧ 𝑜𝑗
𝑡,𝑙−1 =∑𝑤𝑖𝑗

+𝑏⊕𝑜𝑗
𝑡,𝑙−1

𝑀2

𝑗=1

 

 

(9) 

 

Finally, if 𝑤𝑖𝑗
𝑏,𝑙

 are encoded in unipolar number (-1 into 0, 

1 into 1), 𝑠𝑖
𝑡,𝑙

 from (8) can be expressed as  

𝑠𝑖
𝑡,𝑙 =∑(1+𝑤𝑖𝑗

−𝑏)⊕ 𝑜𝑗
𝑡,𝑙−1

𝑀1

𝑗=1

−𝑀1 

+ ∑𝑤𝑖𝑗
+𝑏 ⊕𝑜𝑗

𝑡,𝑙−1

𝑀2

𝑗=1

=∑𝑤𝑖𝑗
𝑏,𝑙⊕𝑜𝑗

𝑡,𝑙−1

𝑀

𝑗=1

−𝑀1       

(10) 

 

Express of 𝑠𝑖
𝑡,𝑙 allows computing MAC ( 𝑑𝑜𝑡𝑖

𝑡,𝑙)  as 
mentioned in Algorithm 2 using bit-wise operation, which can 
be realized entirely using IMC XNOR array as proposed in 

[3], [15]. Then, the MAC product is biased by 𝑀1 +
𝜇

𝛼
 before 

compared with  𝜃 for firing decision.  
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Fig. 2.  B-SNN model and mapping onto in-memory architecture using 

XNOR cells array. 

 Suppose the residual connection exists (𝑓 = 1). Exploiting 
the fact that the weights are shared between spiking in l-1 

(𝑜𝑗
𝑡,𝑙−1

) and l-2 layers(𝑜𝑗
𝑡,𝑙−2), so the MAC operation in step 

(6) in Algorithm 2 now consists of two MAC components. 

𝑑𝑜𝑡𝑖
𝑡,𝑙 =∑𝑤𝑖𝑗

𝑏,𝑙 ⊕𝑜𝑗
𝑡,𝑙−1

𝑀

𝑗=1

+∑𝑤𝑖𝑗
𝑏,𝑙⊕𝑜𝑗

𝑡,𝑙−2

𝑀

𝑗=1

 (11) 

 

For hardware implementation, we can compute the first 

and second MAC in (11) in the same hardware model using 

the technique of the shared weight in a time-interleaved 

manner. Specifically, the time-step 𝑡 is divided into two time 

slots 𝜏1 and 𝜏2. We can execute the computation of the first 

MAC in the time slot 𝜏1, and store their product in the analog 

buffer (e.g., a simple capacitive buffer). After that, the second 

MAC is performed in the time slot 𝜏2 and subsequently added 

into the first MAC product's pre-stored in the buffer. As a 

result, the residual connections do not increase the hardware 

complexity for the proposed IMC model in Algorithm 2.  
The final proposed B-SNN subarray model size (𝑁,𝑀) 

with pre-synaptic spikes  𝑜1
𝑡,𝑙−1, 𝑜2

𝑡,𝑙−1, … 𝑜𝑀
𝑡,𝑙−1

 (𝑗 = 1 ÷𝑀), 

and post-synaptic spikes 𝑜1
𝑡,𝑙 , 𝑜2

𝑡,𝑙 , … 𝑜𝑁
𝑡,𝑙(𝑖 = 1 ÷𝑁 ) of the 

output neurons shown in Fig. 2. In the 𝑖 − 𝑡ℎ row connection 
(red line in Fig. 2) is described the MAC between the synaptic 

weight 𝑤𝑖𝑗
𝑏,𝑙

 and the pre-synaptic spikes 𝑜𝑗
𝑡,𝑙−1

  

∑ 𝑤𝑖𝑗
𝑏,𝑙⊕𝑜𝑗

𝑡,𝑙−1𝑀
𝑗=1 , which is presented in step (6) in 

Algorithm 2. In this topology, the synaptic weight 𝑤𝑖𝑗
𝑏,𝑙 links 

pre-synaptic spike 𝑜𝑗
𝑡,𝑙

 with the post-synaptic spike 𝑜𝑖
𝑡,𝑙

 (𝑖, 𝑗 is 

a row and column index, respectively). In detail, the pre-
synaptic spikes of a given layer are applied to the column 
decoder. The bit-wise products between pre-synaptic spikes 
with the respective weights stored in a row are summed up and 
then accumulated in the IF model. If the firing condition in 
Algorithm 2 is satisfied, the post-synaptic spikes are generated 
for the next layer processing. 

IV. RESULTS AND DISCUSSION 

We evaluate our method on CIFAR-100 [16] , consisting 

of 60,000 images with 100 categories that are divided into 

50,000 for training and 10,000 for testing. All images are 

RGB color images whose size is 32x32. The B-SNN 

architecture on training is VGG11 (with the residual mapping 

schedule applied for every 3 consecutive layers: 1-2-3, 2-3-4, 

3-4-5, 4-5-6, 5-6-7, 7-8-9 as depicted in Fig. 1). 

TABLE I.  CLASSIFICATION ACCURACY OF  B-SNN MODEL ON THE 

CIFAR-100 TEST SET 

Net. Structure Bit width       Accuracy (%) Timesteps 

8-layer CNN [7] binary 62.02 300 

15-layer CNN [6]a binary 62.00 105 

Spiking CNN [17] ternary 55.64 N.A 

11-layer CNN [18] (0, ±1) 55.95 8 

11-layer CNN (ours) binary 59.11 8 

a. There is the baseline accuracy of  BNN-SNN conversion without early exit optimization 

 

Our results are shown in Table 1. In comparison with the 

most representative recent reports on the same dataset: BNN 

to B-SNN conversion [6] [7], a conventional SNN with 

ternary bit width in [17], and an SNN with 11-layer CNN 

based weight quantization (0, ±1 ) in [18]. 

In comparison to the prior B-SNN, although the 

misclassification accuracy in these works is slightly better 

than ours trained B-SNN (by 2.89% [6]  and 2.91%  [7]), our 

spiking time-steps is much lower (8 compared to 105 and 

300). The latter leads to not only lower inference latency but 

also a significant reduction in energy consumption. 

In comparison with [17], and  [18] our model exhibits 

better classification accuracy (by 3.47% [17] and 3.16% 

[18]). From the hardware implementation perspective, the B-

SNN essentially is highly energy-and area-efficient and 

suited for the edge-AI device compared to  the ternary SNN 

and the weight quantization (0, ±1 ) SNN.  

V. CONCLUSION AND DISCUSSION 

This paper proposes a novel and effective method for 

direct training B-SNN, which greatly shrinks the memory 

space and time-steps for inference. Our model could achieve 

reasonably good accuracy with the CIFAR-100 dataset while 

requires much fewer time steps compared to other B-SNN 

models. Furthermore, we propose the IMC MAC model for 

B-SNN, which allows performing MAC operation in-

memory using only the XNOR array. The proposal IMC 

MAC model and the proposed B-SNN together greatly 

simplify the hardware implementation and pave the way for 

ultra-low-power deep neural network applied in edge-AI 
applications.  
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