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This article proposes an approach based on a feedforward neural network (FFNN-SM) and computational
simulations to rapidly predict thermal cycles in multi-layer single-bead walls fabricated during wire arc
additive manufacturing (WAAM). First, a finite element (FE)-based model for thermal simulation in the
WAAMed part was developed. Second, a FFNN-SM was trained and validated using the data generated
from thermal simulations with different heat input levels (Q). The results reveal that the developed
FFNN-SM enables a accurate prediction of the temperature evolution with a global R2 value higher than
98% and within only 40 s.

© 2022 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.

1. Introduction

Wire plus arc additive manufacturing (WAAM) which uses an
arc source and a metallic wire to depose layers of metals, is becom-
ing the most suitable AM technology for producing large-size parts
[1]. This technique has many advantages, such as an elevated depo-
sition rate, flexible building volume, high material deposition effi-
ciency, and low cost of equipment investment [2]. However, one of
the most important issues related to WAAM is the high heat accu-
mulation and complex thermal evolution during the deposition,
which strongly affects the microstructures and mechanical proper-
ties of the as-built components [3]. These effects are generally
investigated using experimental and numerical methods. However,
due to the high experimental costs and extensive computation
times in simulations, only a limited number of experimental tests
and simulations have been conducted, while the interaction of pro-
cess parameters in WAAM is complex [4].

To overcome the challenges mentioned above, recently, surro-
gate models (SM) based on machining learning techniques have
been developed to quickly predict the thermal history in AM pro-
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cesses. For instance, Mozaffar et al. [5] and Pham et al. [6] built
SMs for predicting the thermal history in directed energy deposi-
tion (DED) based on recurrent neural network (RNN) and artificial
neural network (ANN). Roy et al. [7] also proposed an ANN-based
SM for predicting the thermal temperature evolution in fused fila-
ment fabrication (FFF). The SM was trained and validated using the
thermal data generated from the thermal simulation model. These
authors demonstrated that the developed SM has a high prediction
performance and low computational cost.

To the best of the authors’ knowledge, there is not yet an SM for
predicting the thermal history in the WAAM process. Inspired by
previous works [5-8], we developed an FFNN-SM to rapidly predict
the temperature evolution of any point in the part manufactured
with different levels of heat input (Q). The developed model can
be used for real-time monitoring and optimization of the WAAM
process.

2. Methodology

Fig. 1 depicts the principle of the WAAM process considered in
this study and the steps for developing an FFNN-SM to predict the
thermal evolution in a WAAMed thin wall.

The WAAM process uses a gas metal arc welding (GMAW)
source (Fig. 1a). The wall was built by depositing six layers from
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Fig. 1. (a) Schema of the GMAW-AM process, (b) deposition path for building the thin wall, (c) thermal simulation based on the FE method, (d) data generation, (e) FFNN-SM

training and validation, and (f) evaluation of the accuracy of FFNN-SM.
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Fig. 2. (a) Goldak heat source model, (b) describing the input features of FFNN-SM,
and (c) the points used to compare the thermal temperature cycles.

an SS316L substrate with a size of 200 x 80 x 10 mm and an
SS316L wire, and using the zig-zag deposition method (Fig. 1b).
To develop the FFNN-SM, a finite element (FE)-based model for
thermal simulation in the WAAM of a thin wall was first developed
(Fig. 1c). The thermophysical properties of SS316L reported in [9],
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and Goldak’s heat source model (Fig. 2a) [10] were chosen for the
numerical simulations. The thermal simulations of the WAAM pro-
cess were conducted using ANSYS software.

In this study, the FFNN-SM architecture was obtained using a
trial-and-error approach. The model has four hidden layers, and
the number of neurons is 70, 35, 35, and 18 for the first, second,
third, and fourth-hidden layer, respectively. The model output is
the temperature T at each mesh point (Fig. 1c), and the model
input q is composed of five basic parameters, including the mesh
point coordinates (X, ¥p, zp), time t, and heat input Q (Fig. 2b). In
addition, to improve the performance of the FFNN-SM, other
additional features, including the coordinates of the arc source
- i.e., the coordinates of the Goldak heat source model origin
(Xa» Ya» Zaq), the distances from the mesh point to the arc source
in x, y, and z-directions (d,, d,. d;), and the distance from the
mesh point to the side faces of the substrate (d; d,, ds dp), as
explained in [7] and in Fig. 2b. Based on a trial-and-error method
and the SHapley Additive exPlanation (SHAP) method [11], the
following inputs were finally chosen for the model, q = {x,, yp,
Zp, t, Q X4, Za, dq, and dy}, because of their essential contributions
to the prediction.

The data used to train and validate the FFNN-SM were gener-
ated from two simulations with two heat input levels, that is
Q = 288 and 432 J/mm, while the travel speed was constant. For
each simulation, there are 26,777,520 mesh points. Therefore, the
data points used to train and validate the FFNN-SM are
53555040. The model accuracy was evaluated with Q = 331, 346,
and 389 J/mm. The metric used to evaluate the model accuracy is
R?, Eq. (1), where N, is the size of the testing dataset, Treyn.sm 1S
the predicted temperature, T is the simulation temperature, and
T is the mean simulation temperature. In particular, the tempera-
ture evolution obtained by the FFNN-SM and the simulation was
compared in detail at three points {P;, P, and P;} - the middle
points of the layers Ly, Ly, and Lg, respectively (Fig. 2c).

, N2
Ny
pnt (TFFNN—SMU) - Té’g)
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Fig. 3. (a) Training and validation losses of FFNN-SM and the comparison between the simulated and predicted temperature evolution at the point P,: (b) Q; = 331, (c)
Q; = 346, and (d) Q3 = 389 J/mm.
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Fig. 4. Comparison between the simulated and predicted temperature evolution at the points P1 (a, ¢, €) and P3 (b, d, f) in the cases of (a, b) Q; = 331, (¢, d) Q, = 346, and (e, f)

Q3 = 389 J/mm.
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3. Results and discussion

As shown in Fig. 3a, it can be seen that the FFNN-SM converges
relatively rapidly after approximately 150 epochs because no fur-
ther decrease in the cross-validation training loss is observed. This
indicates that there is neither overfitting nor underfitting of the
model and confirms the model reliability. The global R? (RZ) and
the R? of the temperature peak (R3) in all test cases reached 99.9%
and higher than 96%, respectively (Fig. 3b-d), demonstrating the
good accuracy of the FFNN-SM prediction capability.

Fig. 4 shows the comparison between the temperature evolu-
tions obtained from FFNN-SM and the FM simulation for two
points: P; and Ps in three cases (Q;, Q2, and Qs). It can be seen that
the FFNN-SM can accurately describe the thermal cycles of these
points in the sense that both the temperature peaks and cooling
cycles are precisely reproduced. The values of Ré and Rf, calculated
for these points are consistently higher than 98% and 97%,
respectively.

In terms of the computational time, the time required to train
the FFNN-SM is approximately 3.5 h using GPU computing. How-
ever, after training, the FFNN-SM only takes 40 s to predict the
whole temperature field, compared to 4.5 h for the FE model. This
means the FFNN-SM enables considerably reducing computational
time and making it possible to perform a large amount of data in a
relatively short time. Therefore, when a large number of simula-
tions need to be performed to predict thermal cycles in the WAAM
process, the FFNN-SM with high accuracy can be used to replace
the FE model.

4. Conclusions

This work developed an FFNN-SM to estimate the tempera-
ture field with different heat inputs in the WAAM process of
thin walls using the simulation data. It is shown that the sur-
rogate model can accurately estimate the thermal field evolu-
tions of any mesh point with a global R? value higher than
98%. Both temperature peaks during deposition and cooling
cycles of the points can be captured perfectly by the surrogate
model. Without considering the data generation and training,
the execution time is only 40 s, compared to about 4.5 h
needed for a FE simulation. In future works, it is expected that
this method can be applied to other problems relevant to the
AM fields, such as predicting thermal-induced stresses and
deformation during the WAAM process or the residual distor-
tion of final parts.
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