
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gopt20

Optimization
A Journal of Mathematical Programming and Operations Research

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gopt20

Proper efficiency in linear fractional vector
optimization via Benson's characterization

N. T. T. Huong, C.-F. Wen, J.-C. Yao & N. D. Yen

To cite this article: N. T. T. Huong, C.-F. Wen, J.-C. Yao & N. D. Yen (2022): Proper efficiency
in linear fractional vector optimization via Benson's characterization, Optimization, DOI:
10.1080/02331934.2022.2041012

To link to this article:  https://doi.org/10.1080/02331934.2022.2041012

Published online: 22 Feb 2022.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gopt20
https://www.tandfonline.com/loi/gopt20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/02331934.2022.2041012
https://doi.org/10.1080/02331934.2022.2041012
https://www.tandfonline.com/action/authorSubmission?journalCode=gopt20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gopt20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/02331934.2022.2041012
https://www.tandfonline.com/doi/mlt/10.1080/02331934.2022.2041012
http://crossmark.crossref.org/dialog/?doi=10.1080/02331934.2022.2041012&domain=pdf&date_stamp=2022-02-22
http://crossmark.crossref.org/dialog/?doi=10.1080/02331934.2022.2041012&domain=pdf&date_stamp=2022-02-22


OPTIMIZATION
https://doi.org/10.1080/02331934.2022.2041012

Proper efficiency in linear fractional vector optimization
via Benson’s characterization

N. T. T. Huonga, C.-F. Wenb, J.-C. Yaoc and N. D. Yend

aDepartment of Mathematics, Faculty of Information Technology, Le Quy Don Technical University,
Hanoi, Vietnam; bCenter for Fundamental Science; and Research Center for Nonlinear Analysis and
Optimization, Kaohsiung Medical University, Kaohsiung, Taiwan; cCenter for General Education,
China Medical University, Taichung, Taiwan; dInstitute of Mathematics, Vietnam Academy of Science
and Technology, Hanoi, Vietnam

ABSTRACT
Linear fractional vector optimization problems are special
non-convex vector optimization problems. They were intro-
duced and first studied by E.U. Choo and D.R. Atkins in the
period 1982–1984. This paper investigates the properness in
the sense of Geoffrion of the efficient solutions of linear frac-
tional vector optimization problems with unbounded con-
straint sets. Sufficient conditions for an efficient solution to
be Geoffrion’s properly efficient solution are obtained via Ben-
son’s characterization [An improved definition of proper effi-
ciency for vector maximization with respect to cones. J Math
Anal Appl. 1979;71:232–241] of Geoffrion’s proper efficiency.
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1. Introduction

Introduced and firstly studied by Choo and Atkins [1–3], linear fractional vector
optimization problems (LFVOPs) have many applications in management sci-
ence and other fields. The problems have noteworthy properties and theoretical
importance.

Topological properties of the solution sets of those problems and monotone
affine vector variational inequalities have been studied by Choo and Atkins [2,3],
Benoist [4,5], Yen and Phuong [6], Hoa et al. [7–9], Huong et al. [10,11], and
other authors. Necessary and sufficient conditions for a feasible point to be
an efficient solution, stability properties, solution methods, and applications of
LFVOPs can be seen in [12–15]. Observe that linear fractional vector optimiza-
tion problems and generalized linear fractional vector optimization problems on
infinite-dimensional normed spaces were introduced and studied by Yen and
Yang [16].
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Geoffrion’s proper efficiency concept [17], which was proposed for vec-
tor optimization problems with the standard ordering cone (the non-negative
orthant of a Euclidean space), has been extended to the case of problems with
an arbitrary closed convex ordering cone by Borwein [18] and Benson [19]. Bor-
wein’s proper efficiency may differ from that of Geoffrion even if the ordering
cone is the standard one. In this situation, Benson’s concept of proper efficiency
[19], which coincides with that of Geoffrion when the ordering cone is the
standard one, deserves special attention.

It is well known that there is no difference between efficiency and Geoffrion’s
proper efficiency in linear vector optimization problem (see [[20, Corollary 3.1.1
and Theorem 3.1.4], [21, Remark 2.4]]). By using necessary and sufficient condi-
tions for efficiency in linear fractional vector optimization, Choo [1] has proved
that the efficient solution set of a solution of a LFVOP with a bounded constraint
set coincides with Geoffrion’s properly efficient solution set.

Recently, Huong et al. [21] have given sufficient conditions for an efficient
solution of a LFVOP with an unbounded constraint set to be Geoffrion’s prop-
erly efficient solution via a direct approach. The recession cone of the constraint
set and the derivatives of the scalar objective functions at the point in question
are used in these sufficient conditions. Two new theorems on Geoffrion’s prop-
erly efficient solutions of LFVOPs with unbounded constraint sets and seven
illustrative examples can be found in a subsequent paper [22] of these authors.
Provided that all the components of the objective function are properly fractional,
Theorem 3.2 from [22] gives sufficient conditions for the efficient solution set to
coincide with the Geoffrion properly efficient solution set. Allowing the objective
function to have some affine components, Theorem 3.4 of [22] states sufficient
conditions for an efficient solution to be Geoffrion’s properly efficient solution.

Verifiable sufficient conditions for an efficient point of a LFVOP to be a
Borwein’s properly efficient point have been obtained in [23].

In the present paper, sufficient conditions for an efficient solution of a LFVOP
with an unbounded constraint set to belong to Geoffrion’s properly efficient
solution set are obtained via Benson’s characterization of Geoffrion’s proper
efficiency. The conditions rely on the recession cone of the constraint set, the
derivatives of the scalar objective functions, and the tangent cone of the con-
straint set at the efficient solution. Our results complement Theorems 3.1 and
3.2 of [21], Theorems 3.2 and 3.4 of [22], and generalize the theorem of Choo
[1, p.218] to the case of LFVOPs with arbitrary polyhedral convex constraint sets.

This paper is dedicated to Prof. Phan Quoc Khanh, who has made remark-
able research works on proper solutions of vector optimization problems [24]
and approximate proper solutions of vector equilibrium problems [25], on the
occasion of his 75th birthday. It would be interesting to know what do the
Kuhn-Tucker properness of Type I and of Type II from [24, p.108] mean for
LFVOPs and for generalized linear fractional vector optimization problems on
infinite-dimensional normed spaces [16].
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The paper organization is as follows. Section 2 recalls some notations, def-
initions, and known results. Section 3 establishes the main result. Illustrative
examples are given in Section 4.

2. Preliminaries

We denote by N the set of the positive integers. The scalar product and the norm
in R

n are denoted, respectively, by 〈·, ·〉 and ‖ · ‖. Vectors in R
n are represented

by columns of real numbers in matrix calculations, but they are written as rows
of real numbers in the text. If A is a matrix, then AT stands for the transposed
matrix of A. Thus, for any x, y ∈ R

n, one has 〈x, y〉 = xTy.
LetM ⊂ R

n and x̄ ∈ M̄, where M̄ stands for the topological closure ofM. The
Bouligand-Severi tangent cone (see, e.g. [26, p.197]) ofM at x̄ is the set

T(x̄;M) := {v ∈ R
n : ∃{tk} ⊂ R+ \ {0}, tk → 0, ∃{vk} ⊂ R

n, vk → v,

x̄ + tkvk ∈ M ∀k ∈ N}.

If {xk} ⊂ M, xk 
= x̄ for all k, limk→∞ xk = x̄, and limk→∞ xk−x̄
‖xk−x̄‖ = v, then one

has v ∈ T(x̄;M). To verify this assertion, it suffices to set tk = ‖xk − x̄‖, vk =
xk−x̄

‖xk−x̄‖ , and note that xk = x̄ + tkvk for all k.
It is well known that T(x̄;M) is a closed cone, which may be non-convex ifM

is a non-convex set. WhenM is convex, one has T(x̄;M) = cone(M − x̄) with

coneQ = {λu : λ > 0, u ∈ Q}
for any Q ⊂ R

n and coneQ := coneQ.
A non-zero vector v ∈ R

n (see [27, p.61]) is said to be a direction of recession of
a non-empty convex setM ⊂ R

n if x + tv ∈ M for every t ≥ 0 and every x ∈ M.
The set composed by 0 ∈ R

n and all the directions v ∈ R
n \ {0} satisfying the last

condition, is called the recession cone of M and denoted by 0+M. If M is closed
and convex, then 0+M = {v ∈ R

n : ∃x ∈ M s.t. x + tv ∈ M forall t > 0}.
Lemma 2.1: [See, e.g. [21, Lemma 2.10]] Let C ⊂ R

n be closed and convex,
x̄ ∈ C, and let {xk} be a sequence in C \ {x̄} with limk→∞ ‖xk‖ = +∞. If
limk→∞ xk−x̄

‖xk−x̄‖ = z, then z ∈ 0+C.

For any x̄ ∈ K, whereK is a convex set, one has 0+K ⊂ TK(x̄). Consider linear
fractional functions fi : R

n → R, i = 1, . . . ,m, of the form

fi(x) = aTi x + αi

bTi x + βi
,

where ai ∈ R
n, bi ∈ R

n,αi ∈ R, and βi ∈ R. Let K be a polyhedral convex set, i.e.
there exist p ∈ N, a matrix C = (cij) ∈ R

p×n, and a vector d = (di) ∈ R
p such

that K = {x ∈ R
n : Cx ≤ d}.
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We assume that bTi x + βi > 0 for all i ∈ I and x ∈ K, where I := {1, . . . ,m}.
Put f (x) = (f1(x), . . . , fm(x)) and let

� = {x ∈ R
n : bTi x + βi > 0, ∀i ∈ I}.

Clearly, � is open and convex, K ⊂ �, and f is continuously differentiable on�.
The linear fractional vector optimization problem (LFVOP) given by f and K is
formally written as

(VP) Minimize f (x) subject to x ∈ K.

Definition 2.2: A point x ∈ K is said to be an efficient solution (or a Pareto
solution) of (VP) if (f (K) − f (x)) ∩ (−R

m+ \ {0}) = ∅, where R
m+ denotes the

non-negative orthant in R
m. One calls x ∈ K a weakly efficient solution (or a

weak Pareto solution) of (VP) if (f (K) − f (x)) ∩ (−intRm+) = ∅, where intRm+
abbreviates the topological interior of R

m+.

The efficient solution set (resp., the weakly efficient solution set) of (VP) are
denoted, respectively, by E and Ew.

Lemma 2.3: [See, e.g. [[12, Lemma 8.1], [13]] ] Let ϕ(x) = aTx+α
bTx+β

be a linear frac-
tional function defined by a, b ∈ R

n and α,β ∈ R. Suppose that bTx + β 
= 0 for
every x ∈ K0, where K0 ⊂ R

n is an arbitrary polyhedral convex set. Then, one has

ϕ(y) − ϕ(x) = bTx + β

bTy + β
〈∇ϕ(x), y − x〉,

for any x, y ∈ K0, where ∇ϕ(x) denotes the Fréchet derivative of ϕ at x.

Definition 2.4: [See [17, p.618]] One says that x̄ ∈ E is Geoffrion’s properly effi-
cient solution of (VP) if there exists a scalar M>0 such that, for each i ∈ I,
whenever x ∈ K and fi(x) < fi(x̄) one can find an index j ∈ I such that fj(x) >

fj(x̄) and Ai,j(x̄, x) ≤ M with Ai,j(x̄, x) := fi(x̄)−fi(x)
fj(x)−fj(x̄) .

For LFVOPs, the ordering cone is the standard one. So, the notion of properly
efficient solution in the sense of Benson [19] is as follows.

Definition 2.5: [[19, Def. 2.4]] An element x̄ ∈ K is called a Benson properly
efficient solution of (VP) if

cone(f (K) + R
m
+ − f (x̄)) ∩ (−R

m
+) = {0}. (1)

The Benson properly efficient solution set of (VP) is denoted by EBe. Since (1)
surely yields (f (K) − f (x̄)) ∩ (−R

m+) = {0}, property (1) implies that x̄ ∈ E.
Applying [19, Theorem 3.2] to (VP), we get the following result.
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Proposition 2.6: One has EGe = EBe, i.e. the Benson properly efficient solution set
of (VP) coincides with the Geoffrion properly efficient solution set of that problem.

The equality EGe = EBe allows us to use the criterion (1) to verify whether x̄ is
a properly efficient solution of (VP) in the sense of Geoffrion, or not. Sometimes,
checking (1) is easier than checking the condition in Definition 2.4. The next
theorem belongs to Choo [1].

Proposition 2.7: [See [1, p.218]] If K is bounded, then E = EGe.

The following lemma was suggested with full proof by one of the two anony-
mous referees of this paper. Thanks to this lemma, the original proof of our main
result can be significantly shortened.

Lemma 2.8: For any non-empty subset A of R
m, one has

cone(A + R
m
+) ∩ (−R

m
+) = {0} (2)

if and only if

cone(A) ∩ (−R
m
+) = {0}. (3)

Proof: The implication (2) ⇒ (3) is clear because A ⊂ A + R
m+. To prove the

reverse implication, suppose to the contrary that (3) holds, but there are a vector
v ∈ −R

m+, v 
= 0, a sequence {tk} of positive real numbers, and sequences {rk} ⊂
R
m+, {ak} ⊂ A, such that v = limk→∞[tk(ak + rk)]. Setting uk = tkrk for all k ∈

N, we have {uk} ⊂ R
m+ and

v = lim
k→∞

(tkak + uk). (4)

If the sequence {uk} is bounded,wemay assume that it converges to someu ∈ R
m+.

From (4), it follows that

lim
k→∞

(tkak) = v − u ∈ −R
m
+ \ {0} − R

m
+ = −R

m
+ \ {0}.

Since limk→∞(tkak) ∈ cone(A), this contradicts (3).
If {uk} is unbounded, we may assume that limk→∞ ‖uk‖ = +∞, uk 
= 0 for

all k, and limk→∞ uk
‖uk‖ = z, where ‖z‖ = 1. Then, by (4),

0 = lim
k→∞

v
‖uk‖ = lim

k→∞

(
tk

‖uk‖a
k + uk

‖uk‖

)
.

Therefore, −z = limk→∞(
tk

‖uk‖a
k) ∈ cone(A). Since −z ∈ −R

m+, this comes in
conflict with (3) and completes the proof. �
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3. Sufficient conditions for the Geoffrion proper efficiency

In this section, wewill establish a new theoremon theGeoffrion proper efficiency
LFVOPs. It is proved by using the criterion of Benson for the Geoffrion proper
efficiency, which has been recalled in Proposition 2.6.

Note that some objective functions of (VP) may be linear (affine, to be more
precise), i.e. onemay have fi(x) = aTi x + αi for some i ∈ I. Let I1 := {i ∈ I : bi 
=
0}. Then, bi = 0 and βi = 1 for all i ∈ I0, where I0 := I \ I1.

Theorem 3.1: Assume that x̄ ∈ E. If K is bounded, then x̄ ∈ EGe. In the case where
K is unbounded, if the regularity assumptions{

There is no z ∈ T(x̄;K) \ {0} such that,
〈∇fi(x̄), z〉 = 0 for all i ∈ I

(5)

and {
For any z ∈ (0+K) \ {0}, aTi z > 0 for all i ∈ I0
and bTi z > 0 for all i ∈ I1,

(6)

are satisfied, then x̄ ∈ EGe.

One referee of this paper has given a nice proof for Theorem 3.1, which is
shorter than our original proof. Upon the advice of the handlingAssociate Editor,
we will present the shorter proof. As noted by the referee, the next statement was
used in the original proof of Theorem 3.1.

Lemma 3.2: If for some u ∈ T(x̄;K) \ {0}, where x̄ ∈ K, one has 〈∇fi(x̄), u〉 ≤ 0
for all i ∈ I and at least one inequality is strict, then x̄ is not efficient.

Proof: Assume that x̄ ∈ K and there is u ∈ T(x̄;K) \ {0} such that 〈∇fi(x̄), u〉 ≤
0 for all i ∈ I and at least one inequality is strict. As K is a polyhedral convex
set, there exists a number τ > 0 such that [x̄, x̄ + τu] ⊂ K. Hence, for any fixed
t ∈ (0, τ ], by Lemma 2.3 one has

fi(x̄ + tu) − fi(x̄) = bTi x̄ + βi

bTi (x̄ + tu) + βi
〈∇fi(x̄), tu〉 (∀i ∈ I). (7)

Since bTi x + βi > 0 for all x ∈ K and i ∈ I, our assumption and (7) imply that

fi(x̄ + tu) ≤ fi(x̄) (∀i ∈ I),

where at least one inequality is strict. Then, we have x̄ /∈ E. �

In the proof below, the symbol ‘→’ signifies ‘converges to’ as k tends to ∞.
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Proof: If K is bounded, then by Proposition 2.7 one has x̄ ∈ EGe. Now, consider
the situation whereK is unbounded. Suppose to the contrary that x̄ /∈ EGe. Then,
according to Proposition 2.6, Lemmas 2.8 and 2.3, we can find a sequence {tk} of
positive real numbers and a sequence {xk} ⊂ K such that

vi := lim
k→∞

[tk(fi(xk) − fi(x̄))]

= lim
k→∞

[
bTi x̄ + βi

bTi xk + βi
〈∇fi(x̄), tk(xk − x̄)〉

]
≤ 0 (∀i ∈ I), (8)

in which at least one inequality is strict. Due to the last property, there is no loss
of generality to assume that xk 
= x̄ for all k ∈ N. Putting vki = tk(fi(xk) − fi(x̄))
for all i ∈ I and k ∈ N, we observe by (8) that vi = limk→∞ vki for all i ∈ I.

Thanks to Lemma 2.1, by choosing a subsequence of {xk} if necessary, it
suffices to consider three cases only:

(C1) xk → x̄ and xk−x̄
‖xk−x̄‖ → u ∈ T(x̄;K) \ {0}.

(C2) xk → x̂ ∈ K, x̂ 
= x̄.
(C3) ‖xk‖ → +∞ and xk−x̄

‖xk−x̄‖ → z ∈ 0+K \ {0}.

As for {tk}, we may assume either

(S1) tk(xk − x̄) → 0; or
(S2) tk(xk − x̄) → w 
= 0; or
(S3) tk‖xk − x̄‖ → +∞.

Consider the case (C1) first. If the situation (S1) occurs, it follows from (8) that
vi = 0 for all i ∈ I, which is impossible. In the situation (S2), we deduce from (8)
that

0 ≥ vi
‖w‖ = lim

k→∞
vki

tk‖xk − x̄‖ = lim
k→∞

[
bTi x̄ + βi

bTi xk + βi

〈
∇fi(x̄),

xk − x̄
‖xk − x̄‖

〉]

= 〈∇fi(x̄), u〉

for all i ∈ I, in which at least one inequality is strict. Then, by Lemma 3.2, x̄ is not
efficient. If the situation (S3) happens, one has

0 = lim
k→∞

vki
tk‖xk − x̄‖ = lim

k→∞

[
bTi x̄ + βi

bTi xk + βi

〈
∇fi(x̄),

xk − x̄
‖xk − x̄‖

〉]

= 〈∇fi(x̄), z〉

for all i ∈ I. This is in contradiction with the assumption (5).
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Now, let us consider the case (C2). Select an index i0 ∈ I such that vi0 < 0.
According to (8), we have

0 > vi0 = lim
k→∞

[tk(fi0(x
k) − fi0(x̄))]. (9)

Since

lim
k→∞

(fi0(x
k) − fi0(x̄)) = fi0(x̂) − fi0(x̄),

from (9) it follows that {tk} cannot have any subsequence converging to 0. Since
x̂ − x̄ ∈ T(x̄;K) \ {0}, the assumption (5) implies that 〈∇fi1(x̄), x̂ − x̄〉 
= 0 for
some i1 ∈ I. By (8),

0 ≥ vi1 = lim
k→∞

[
bTi1 x̄ + βi1

bTi1x
k + βi1

〈∇fi1(x̄), tk(x
k − x̄)〉

]
. (10)

As

lim
k→∞

[
bTi1 x̄ + βi1

bTi1x
k + βi1

〈∇fi1(x̄), x
k − x̄〉

]
= bTi1 x̄ + βi1

bTi1 x̂ + βi1
〈∇fi1(x̄), x̂ − x̄〉 
= 0,

by (10) we can assert that {tk} does not have any subsequence converging to
+∞. Therefore, by considering a subsequence if necessary, we may assume
that {tk} converges to some t̄ > 0. Since f (xk) → f (x̂), from (8) it follows that
f (x̂) − f (x̄) = t̄−1v Since v ≤ 0 and vi0 < 0, this shows that x̄ is not efficient.

Finally, consider the case (C3). Suppose that the situation (S1) occurs. If i ∈ I0,
then

vi = lim
k→∞

[tk(fi(xk) − fi(x̄))] = lim
k→∞

[aTi (tk(xk − x̄))] = 0.

Since tk‖xk − x̄‖ → 0 under (S1) and ‖xk‖ → +∞, we must have tk → 0. For
every i ∈ I1, as bTi z > 0 by the assumption (6), it holds that

vi = lim
k→∞

⎡
⎢⎣ bTi x̄ + βi

bTi (xk−x̄)
‖xk−x̄‖ + bTi x̄+βi

‖xk−x̄‖

〈
∇fi(x̄), tk

xk − x̄
‖xk − x̄‖

〉⎤⎥⎦

= bTi x̄ + βi

bTi z
lim
k→∞

[〈
∇fi(x̄), tk

xk − x̄
‖xk − x̄‖

〉]
= 0. (11)

We have thus arrived at a contradiction that v = 0. In the situation (S2), setting
wk = tk(xk − x̄), we get wk → w 
= 0. Note that

wk = tk(xk − x̄) = [tk‖xk − x̄‖] xk − x̄
‖xk − x̄‖ . (12)

So, tk‖xk − x̄‖ = ‖wk‖ → ‖w‖. Therefore, passing (12) to the limit as k → ∞
yields w = ‖w‖z. Since z ∈ 0+K \ {0}, this implies that w ∈ 0+K \ {0}. If i ∈ I0,
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then vi = limk→∞[aTi (tk(xk − x̄))] = aTi w. Since vi ≤ 0 and w ∈ 0+K \ {0}, in
view of (6), I0 = ∅. Thus, I1 = I. Observe that under (C3) and (S2), tk xk−x̄

‖xk−x̄‖ →
0. Therefore, for each i ∈ I = I1, the expression (11) holds true. Again we arrive
at a contradiction that v = 0. In the situation (S3), for i ∈ I0 we have

0 = lim
k→∞

vki
tk‖xk − x̄‖ = lim

k→∞
aTi (xk − x̄)
‖xk − x̄‖ = aTi z.

By (6), I0 = ∅. Hence, I1 = I. Again, by choosing a subsequence of if necessary,
we have to distinguish only three situations for {tk}:

(a) tk → 0;
(b) tk → t̄ > 0;
(c) tk → +∞.

Under (a), expression (11) implies vi = 0 for all i ∈ I which is a contradiction
because v 
= 0. Under (b),

0 ≥ vi
t̄

= lim
k→∞

vki
t̄

= lim
k→∞

⎡
⎢⎣ tk

t̄
bTi x̄ + βi

bTi (xk−x̄)
‖xk−x̄‖ + bTi x̄+βi

‖xk−x̄‖

〈
∇fi(x̄),

xk − x̄
‖xk − x̄‖

〉⎤⎥⎦

= bTi x̄ + βi

bTi z
〈∇fi(x̄), z〉

for all i ∈ I. Therefore, 〈∇fi(x̄), z〉 ≤ 0 for all i ∈ I and at least one inequality is
strict because bTi z > 0 by (6) and bTi x̄ + βi > 0. By Lemma (3.2), x̄ is not efficient.
Under (c), one has

0 = lim
k→∞

vki
tk

= lim
k→∞

⎡
⎢⎣ bTi x̄ + βi

bTi (xk−x̄)
‖xk−x̄‖ + bTi x̄+βi

‖xk−x̄‖

〈
∇fi(x̄),

xk − x̄
‖xk − x̄‖

〉⎤⎥⎦

= bTi x̄ + βi

bTi z
〈∇fi(x̄), z〉

for all i ∈ I, which contradicts (5) because z ∈ (0+K) \ {0} ⊂ T(x̄;K) \ {0}.
The proof is complete. �

4. Illustrative examples

To show the usefulness of Theorem 3.1, we will apply it to some examples, which
were analysed in [21] by other results and methods.
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Example 4.1: [See [3, Example 2]] Consider problem (VP) with

K = {x = (x1, x2) ∈ R
2 : x1 ≥ 2, 0 ≤ x2 ≤ 4},

f1(x) = −x1
x1 + x2 − 1

, f2(x) = −x1
x1 − x2 + 3

.

It is well known that E = Ew = {(x1, 0) : x1 ≥ 2} ∪ {(x1, 4) : x1 ≥ 2}. Since
I1 = I and 0+K = {v = (v1, 0) : v1 ≥ 0}, condition (6) is fulfilled. For any x =
(x1, x2) ∈ K, one has

∇f1(x) =

⎛
⎜⎝

−x2 + 1
(x1 + x2 − 1)2

x1
(x1 + x2 − 1)2

⎞
⎟⎠ , ∇f2(x) =

⎛
⎜⎝

x2 − 3
(x1 − x2 + 3)2−x1
(x1 − x2 + 3)2

⎞
⎟⎠ .

So, for any x̄ ∈ {(x̄1, 0) : x̄1 ≥ 2} ∪ {(x1, 4) : x1 ≥ 2} and v = (v1, v2) ∈ R
2, one

sees that {〈∇f1(x̄), v〉 = 0
〈∇f2(x̄), v〉 = 0 ⇐⇒

{
v1 = 0,
v2 = 0.

Hence, condition (5) is satisfied for any x̄ ∈ E. Thus, by Theorem3.1we can assert
that EGe = E.

Example 4.2: [See [8, p.483]] Consider problem (VP) where n = m = 3,

K = {x ∈ R
3 : x1 + x2 − 2x3 ≤ 1, x1 − 2x2 + x3 ≤ 1,

− 2x1 + x2 + x3 ≤ 1, x1 + x2 + x3 ≥ 1},

and

fi(x) = −xi + 1
2

x1 + x2 + x3 − 3
4

(i = 1, 2, 3).

According to [8], one has

E = Ew = {(x1, x2, x3) : x1 ≥ 1, x3 = x2 = x1 − 1}
∪ {(x1, x2, x3) : x2 ≥ 1, x3 = x1 = x2 − 1}
∪ {(x1, x2, x3) : x3 ≥ 1, x2 = x1 = x3 − 1}. (13)

Since 0+K = {v = (τ , τ , τ) : τ ≥ 0} and I1 = I, it is easy to verify that condi-
tion (6) is satisfied. Now, setting p(x) = (x1 + x2 + x3 − 3

4)
2, one has

∇f1(x) = 1
p(x)

(
−x2 − x3 + 1

4
, x1 − 1

2
, x1 − 1

2

)
,

∇f2(x) = 1
p(x)

(
x2 − 1

2
,−x1 − x3 + 1

4
, x2 − 1

2

)
,
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∇f3(x) = 1
p(x)

(
x3 − 1

2
, x3 − 1

2
,−x1 − x2 + 1

4

)
.

Given any x̄ ∈ E and v = (τ , τ , τ) ∈ 0+K, by (13) we see that one of the following
situationsmust occur: (i) x1 ≥ 1, x3 = x2 = x1 − 1 ; (ii) x2 ≥ 1, x3 = x1 = x2 −
1; (iii) x3 ≥ 1, x2 = x1 = x3 − 1. If (i) occurs (resp., (ii), or (iii) occurs), then the
equality 〈∇f1(x̄), v〉 = 0 (resp., 〈∇f2(x̄), v〉 = 0, or 〈∇f3(x̄), v〉 = 0) means that
1
4τ = 0. Thus, condition (5) is fulfilled for any x̄ ∈ E, and we have EGe = E by
Theorem 3.1.

Example 4.3: [See [8, pp.479–480]] Consider problem (VP) where n = m,m ≥
2,

K =
{
x ∈ R

m : x1 ≥ 0, x2 ≥ 0, . . . , xm ≥ 0,
m∑
k=1

xk ≥ 1

}
,

and

fi(x) = −xi + 1
2∑m

k=1 xk − 3
4

(i = 1, . . . ,m).

Note that 0+K = R
m+. Setting q(x) = (

∑m
k=1 xk − 3

4)
2, we have

∇fi(x) = 1
q(x)

⎛
⎝xi − 1

2
, . . . ,−

∑
k
=i

xk + 1
4
, . . . , xi − 1

2

⎞
⎠

where the expression −∑k
=i xk + 1
4 is the i th component of ∇fi(x). Hence, the

equality EGe = E can be proved by using Theorem 3.1 similarly as it has been
done in the preceding example.

Example 4.4: [See [21, Example 2.6]] Consider the problem (VP) where

K = {x = (x1, x2) ∈ R
2 : x1 ≥ 0, x2 ≥ 0},

f1(x) = −x2, f2(x) = x2
x1 + x2 + 1

.

As it has been shown in [21], E = {(x1, 0) : x1 ≥ 0} and EGe = ∅. To check the
conditions in Theorem 3.1, note that I0 = {1}, I1 = {2}, a1 = (0,−1)T, b2 =
(1, 1)T, and 0+K = K. For every efficient solution x̄ = (x̄1, 0), x̄1 > 0, one has

∇f1(x̄) = (0,−1)T, ∇f2(x̄) =
⎛
⎝ 0

1
x̄1 + 1

⎞
⎠ ,

and TK(x̄) = {v = (v1, v2) : v1 ∈ R, v2 ≥ 0}. Hence (5) and (6) are violated
if one chooses v = (1, 0) ∈ (0+K) \ {0} ⊂ TK(x̄) \ {0}. For x̄ = (0, 0) we have
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TK(x̄) = R
2+. Conditions (5) and (6) are violated if one chooses v = (1, 0). The

violation of the regularity conditions in Theorem 3.1 is a reason for x̄ /∈ EGe.

Example 4.5: [See [21, Example 4.7]] Consider problem (VP) withm = 3, n =
2,

K = {x = (x1, x2) ∈ R
2 : x1 ≥ 0, x2 ≥ 0},

f1(x) = −x1 − x2, f2(x) = x2
x1 + x2 + 1

, f3(x) = x1 − x2.

According to [21], E = {x = (x1, x2) : x1 ≥ 0, x2 ≥ 0, x2 < x1 + 1}, while
Ew = {x = (x1, x2) : x1 ≥ 0, x2 ≥ 0, x2 ≤ x1 + 1}.

Let us prove that EGe = ∅. Taking any x̄ = (x̄1, x̄2) ∈ E, one has x̄1 ≥ 0, x̄2 ≥ 0
and x̄2 < x̄1 + 1. Since (1, 1) ∈ 0+K, we see that xp := x̄ + p(1, 1) belongs to K
for any p ∈ N. One has f1(xp) < f1(x̄) and f2(xp) > f2(x̄), while f3(xp) = f3(x̄). As
observed in Section 2, we will have x̄ /∈ EGe if for every scalar M>0 there exist
x ∈ K and i ∈ I with fi(x) < fi(x̄) such that, for all j ∈ I satisfying fj(x) > fj(x̄),
one hasAi,j(x̄, x) > M. For each p ∈ N, we choose i = 1. Then, fi(xp) < fi(x̄) and
j = 2 is the unique index in I satisfying fj(xp) > fj(x̄).Moreover, for (i, j) = (1, 2),
we have

Ai,j(x̄, xp) = A1,2(x̄, xp) = f1(x̄) − f1(xp)
f2(xp) − f2(x̄)

= −x̄1 − x̄2 − (−x̄1 − x̄2 − 2p)
x̄2+p

x̄1+x̄2+1+2p − x̄2
x̄1+x̄2+1

= 2(x̄1 + x̄2 + 1 + 2p)(x̄1 + x̄2 + 1)
x̄1 + 1 − x̄2

.

Since x̄1 ≥ 0, x̄2 ≥ 0 and x̄2 < x̄1 + 1, one has limp→∞ A1,2(x̄, xp) = +∞. So,
for every M>0, there exist p ∈ N and i ∈ I with fi(xp) < fi(x̄) such that, for all
j ∈ I satisfying fj(xp) > fj(x̄), one has Ai,j(x̄, xp) > M. This proves that x̄ /∈ EGe.

The fact thatEGe = ∅ can also be proved by using Proposition 2.6. Indeed, take
an element x̄ = (x̄1, x̄2) ∈ E and construct the sequence {xp} ⊂ K as above. We
need to show that (1) is not satisfied. For every p ∈ N, choosing up = (0, 0, 0) ∈
R
3+ and tp = 1

p , one has

lim
p→∞ tp(f (xp) + up − f (x̄)) = lim

p→∞
1
p

⎛
⎝f1(x̄ + p(1, 1)) − f1(x̄)
f2(x̄ + p(1, 1)) − f2(x̄)
f3(x̄ + p(1, 1)) − f3(x̄)

⎞
⎠

= lim
p→∞

1
p

⎛
⎜⎜⎝

−2p
p(x̄1 + 1 − x̄2)

(x̄1 + x̄2 + 1 + 2p)(x̄1 + x̄2 + 1)
0

⎞
⎟⎟⎠ =

⎛
⎝−2

0
0

⎞
⎠ ∈ −R

3
+.
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This means that cone(f (K) + R
m+ − f (x̄)) ∩ (−R

m+) 
= {0}. Thus x̄ is not Ben-
son’s properly efficient solution of (VP). So, by Proposition 2.6, x̄ /∈ EGe. Since
x̄ ∈ E can be chosen arbitrarily, we can assert that EGe = ∅.

Now, let us check the regularity conditions (5) and (6) in Theorem 3.1.
One has I0 = {1, 3}, I1 = {2}, and 0+K = K = R

2+. Since ∇f1x̄) = (−1,−1)
and ∇f3(x̄) = (1,−1) for every x̄ = (x̄1, x̄2) ∈ E, one simultaneously has
〈∇f1(x̄), z〉 = 0 and 〈∇f3(x̄), z〉 = 0 for z = (z1, z2) ∈ T(x̄;K) \ {0} only if z =
(0, 0). So, (5) is fulfilled for all x̄ ∈ E. However, choosing i = 3 and z = (1, 1) ∈
(0+K) \ {0}, one has i ∈ I0 and aTi z = 0. Hence, (6) is violated.
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