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Optical analogs of pair production and annihilation in binary
waveguide arrays with a curved section
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We study theoretically and numerically the optical analogs of the relativistic quantum electron-positron
dynamic pair production (PP) and annihilation processes in a single binary waveguide array (BWA) consisting
of a curved section located between two straight sections at the input and output. Both of these processes can
be mimicked by the breakup of beams in the curved section, which plays the role of the external oscillating
field. Thanks to our scheme, we are able to observe not only the PP, but also annihilation in a single BWA with
a single input beam. Moreover, this scheme allows us to obtain the numerical results for PP and annihilation
probabilities by directly simulating beam propagation in binary waveguide arrays, and then compare them to
the theoretical results for the same discrete model. This kind of verification demonstrates the striking excellent
agreement between them in wide ranges of all relevant parameters. We also show that under certain conditions
the probabilities of these two processes based on the discrete model with binary waveguide arrays agree quite
well with those based on the truly continuous Dirac equation in quantum field theory.
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I. INTRODUCTION

A waveguide array (WA) is a remarkable system in which
to explore many unusual discrete photonic effects in classical
physics, such as discrete solitons [1–3], discrete diffrac-
tion [4], emission of diffractive resonant radiation [5], and so
on.

Moreover, WAs have attracted a great deal of attention
because they are able to provide a simple but efficient platform
to study nonrelativistic quantum mechanics effects, such as
Zener tunneling [6] and Bloch oscillations [3,7,8], because the
system of coupled-mode equations governing light propaga-
tion processes in WAs can be converted into the Schrödinger
equation. More remarkably, binary waveguide arrays (BWAs)
enable us to simulate relativistic quantum mechanics effects,
because under certain conditions the system of coupled-mode
equations in BWAs can be converted into the Dirac equation.
Thanks to that, several fundamental relativistic quantum phe-
nomena, such as Zitterbewegung [9], Klein tunneling [10–12],
Dirac solitons (DSs) [13], and the recently found topological
Jackiw-Rebbi (JR) states [14], have been simulated both the-
oretically and experimentally with the help of BWAs. The JR
state [15] is of primary importance in predicting the charge
fractionalization phenomenon, which in its turn is fundamen-
tal in the fractional quantum Hall effect [16]. Thanks to its
topological nature, the JR state in BWAs has been proved
to be extraordinarily robust even when strong disturbances
are applied to it [17]. This amazing feature can be used as
a potential way to robustly guide photonic signals in a tightly
packed network.

One extraordinary phenomenon in quantum electrodynam-
ics (QED) rooted in the Dirac equation and first proposed by
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Dirac is electron-positron pair production (PP). This process
(also well known as the Schwinger mechanism [18]) is based
on the quantum vacuum instability if an external electric field
is applied to it [19,20]. The PP process, as interpreted by
Dirac, is possible due to the existence of both negative-energy
and positive-energy levels of free electrons with the energy
gap 2mec2 between them [see Fig. 1(c)]. The vacuum (or
Dirac sea) is filled up by these electrons located on their
negative-energy levels (or states), similar to what happens
with the valence band of a semiconductor. This leads to an
amazing scenario in which an electron belonging to negative-
energy levels in the Dirac sea can jump to positive-energy
levels by absorbing an external electromagnetic (EM) field.
By doing so, two particles are created: one is the electron that
is now on the positive-energy levels, and the other is a hole
on negative-energy levels which has just been created in the
Dirac sea after the electron left the Dirac sea. This hole is the
positron with a positive charge—the first ever proposed and
subsequently found antimatter particle. This picture is quite
similar to the more familiar generation of an electron-hole pair
in semiconductors.

So far, there are two main mechanisms of PP with the
participation of an EM field: the one when a time-independent
ultrastrong electric field is applied [18], and dynamic PP when
a time-dependent electric field is needed [21–25]. The time-
independent mechanism is often interpreted as a tunneling
process of a particle through a classically forbidden region,
like the Klein tunneling effect [26]. This mechanism has yet to
be demonstrated experimentally due to the extremely negligi-
ble PP rate with electrostatic fields available in the laboratory.
Meanwhile, dynamic PP, which was first proposed in Ref. [21]
with an oscillating (or time-varying) spatially homogeneous
electric field, has recently attracted a great deal of attention
thanks to the advent of more and more intense lasers, which
can help to realize the purely laser-induced PP at the antinodes
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FIG. 1. (a) Scheme of a BWA made of two different types of
waveguide. (b) The BWA has a curved section located between two
straight sections. The curved section has the period �, length L, and
amplitude of modulation A0. A beam is launched into the BWA at the
angle θ . (c) Dispersion relation curves (or minibands) ω± for BWAs
and ε± for the continuous model. Parameters: σ = 1 and κ = 1.

created by two laser beams propagating in opposite directions.
Several other laser-based ways to observe the PP have been
proposed [27,28]. However, the demonstration of the purely
laser-induced PP still represents an experimental challenge.

So as with other relativistic quantum effects mentioned
above, there is a strong desire to create experimentally ac-
cessible analogs of PP. Actually, several systems have been
implemented for investigating matter waves, condensed mat-
ter, and optical analogs of PP [29–33]. In Ref. [30], an
experimental configuration with graphene was proposed to
test the Schwinger mechanism. In Ref. [31], the optical ana-
log of the dynamic PP was investigated theoretically and
numerically with a BWA consisting of a curved section at
the input that is later connected to a straight section. The
curved section in BWAs is needed to mimic the action of the
external oscillating field in the dynamic PP. Subsequently, this
idea has been experimentally realized in Ref. [33]. In these
works [31,33], a Gaussian beam launched into the BWAs
in the vicinity of the so-called Bragg angle represents the
electrons belonging to the negative-energy state in the Dirac
sea. After passing through the curved section, the Gaussian
beam breaks up into two beams belonging to the positive-
energy and negative-energy levels, thus the dynamic PP is
mimicked via this beam breakup. However, this PP can be
shown only qualitatively in Refs. [31,33] when the PP rate
can be visually changed by varying some parameters such as
the period and amplitude of the curved section. The PP rate in
Refs. [31,33] cannot be verified quantitatively, because after
launching a single Gaussian beam into BWAs, at least two
beams with various intensity ratios (these beams belong to
various energetic branches) will always occur immediately,
even without the curved section. In other words, the Gaussian
beam breakup always happens with or without the curved
section. This makes the quantitative study of PP, which is also
demonstrated through the beam breakup, quite problematic in
Refs. [31,33].

To overcome the above-mentioned challenge, in this work
we propose to use BWAs with a curved section not at the very
beginning, but in the middle. So when a beam is launched
into the system, two beams are separated distinctly in space

after splitting at the beginning. In this way, the beam breakup
happening later in the curved section in the middle of BWAs
is only due to the PP or annihilation. Physically speaking,
it corresponds to the relevant situation in which an external
field turns on and turns off again, allowing to have well-
defined asymptotic states. Thanks to this, we can achieve three
aims in this work: (i) first, we can unambiguously calculate
the probability of the dynamic PP and annihilation through
the beam propagation simulation, then compare them with the
theoretical ones for verification; (ii) second, we can observe
not only the PP, but also annihilation in a single BWA with
a single input beam; (iii) third, we can compare the results
for the PP and annihilation obtained through two models (the
discrete model based on BWAs, and the continuous model
in free space). As mentioned above, the PP happens when
an electron jumps up from the negative-energy state into the
positive-energy state as described by Dirac. Meanwhile, an-
nihilation (or recombination) is the opposite process when
an electron jumps down from the positive-energy state into
the negative-energy state. In this work, the PP and annihi-
lation probabilities obtained by direct beam simulations are
demonstrated to be in striking excellent agreement with the
theoretical results based on the discrete model in BWAs. We
also use Dirac solitons at input instead of Gaussian beams,
because DSs can overcome some shortages of a Gaussian
beam when the incidence angle is close to the Bragg angle
(this problem has been discussed in Ref. [12]). So, with DSs,
we are able to verify the PP and annihilation probabilities in
very wide ranges of parameters. Moreover, we also show that
in certain parameter ranges, the results for PP and annihilation
probabilities based on the discrete model agree very well with
those results based on the truly Dirac continuous model in free
space.

II. THEORETICAL BACKGROUND

A. Quantum-optical analogy

In this section, let us briefly focus on the theoretical
background and the main theoretical results for the electron-
positron PP and annihilation processes for both the discrete
model with BWAs and the truly continuous Dirac model
in free space. Suppose we have a BWA consisting of two
different types of alternating waveguides with a curved
section in the middle, as shown schematically in Figs. 1(a)
and 1(b). Now we move from the fixed laboratory frame
(where the array is curvy) to the waveguide reference frame
(where the array appears to be straight) by using the Kramers-
Henneberger transformation [34] to better analyze the light
propagation process in BWAs. By doing so, light evolution in
the continuous-wave regime in BWAs with Kerr nonlinearity
can be described by the following dimensionless coupled-
mode equations:

i
dan(z)

dz
+ κ

[
an+1e−i�(z) + an−1ei�(z)

]

− (−1)nσan + γ |an|2an = 0, (1)

where an is the electric amplitude in the waveguide with posi-
tion number n, z is the longitudinal spatial coordinate, κ and
2σ are the coupling coefficient and the propagation mismatch
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between two adjacent waveguides in the arrays, respectively,
and γ is the Kerr nonlinear coefficient of waveguides. In the
linear regime (γ = 0), Eq. (1) are totally equivalent to Eqs. (5)
in Ref. [31], whereas in a straight BWA [�(z) = 0], Eq. (1)
are exactly the same as Eqs. (1) in Ref. [13]. The phase �(z)
in Eq. (1) takes into account the bending of the BWA axis as
follows [31]:

�(z) = 2πnsaẋ0(z)

λ
, (2)

where ns is the refractive index of the BWA substrate at the
excitation wavelength λ, a is the spacing between two adja-
cent waveguides, and ẋ0(z) = dx0(z)/dz is the derivative of
the axis bending profile x0(z). Suppose that Z1 is the length
of the straight section at the input of the BWA and L is the
curved section length. In this work, like in Refs. [31,33], let
us take a specific sinusoidal axis bending profile obeying the
law x0(z) = −A0cos[2π (z − Z1)/�] in the interval Z1 � z �
Z1 + L with period � and amplitude A0 [see Fig. 1(b)]. In
this case, the dimensionless phase in the curved section is
� = �0sin[2π (z − Z1)/�] with

�0 = 4π2nsaA0

λ�
. (3)

In straight BWAs and in the linear regime, by making the
following ansatz for a plane wave:

an(Q) ∼ exp[i(Qn − ωz)], (4)

one can obtain the following dispersion relations for
Eq. (1) [35]:

ω±(Q) = ±
√

σ 2 + 4κ2cos2Q, (5)

where Q = qa is the normalized dimensionless wave number
of the plane wave, and q is its wave number. For the sake of
brevity, Q is referred to just as a wave number later. Obviously,
Q ∼ θ , where θ is the beam inclination angle with respect
to the z-axis and represents the phase difference between
adjacent waveguides.

Now let us use two assumptions: (i) the phase is small
enough such that |�| � π/2 for the whole curved section;
(ii) the input beam is broad enough and excited at the input
around the Bragg angle θB = λ/(4nsa). With the first assump-
tion we get exp(±�) � 1 ± �. The second assumption lets us
have the wave number around QB = π/2, which is necessary
to convert the discrete Eq. (1) into the Dirac equation. Now
one can set �1(n) = (−1)na2n and �2(n) = i(−1)na2n−1, in-
troduce the continuous transverse coordinate ξ instead of n,
and the two-component spinor �(ξ, z) = (�1, �2)T , which
satisfies the one-dimensional (1D) nonlinear Dirac equation in
relativistic quantum mechanics:

i∂z� = −iκσ̂x∂ξ� − 2κ�(z)σx� + σ σ̂z� − γ G, (6)

where σ̂x and σ̂z are the standard Pauli matrices, and the
Kerr nonlinearity is taken into account via the last terms G ≡
(|�1|2�1, |�2|2�2)T . In a straight BWA (� = 0), Eq. (6)
is exactly the same as Eq. (7) in Ref. [13]. Meanwhile, in
the linear regime (γ = 0), Eq. (6) is equivalent to Eq. (7)
in Ref. [31]. Note that to obtain the canonical form of
the Dirac equation, one needs to introduce formal changes:
z → t, ξ and n → x, κ → c (light speed), σ → mc2/h̄, and

2� → eAx/(h̄c). Now it is clear that Eq. (6) describes the
evolution of an electron with mass m and charge e under the
action of the external vectorial potential A = (Ax, 0, 0) [or
the external time-varying electric field Ex(t ) = −∂Ax(t )/∂t].
This external field is homogeneous in space (x or n) because
the bending in BWAs is invariant in n and x [see Fig. 1(b)].
Because z → t (i.e., the longitudinal spatial coordinate z of
the BWA is interpreted as time variable t), it is also clear that
ω in Eq. (4) and ω± in Eq. (5) can be interpreted as frequency
(or energy).

The dispersion relations (5) are obtained for the linear
discrete coupled-mode Eq. (1) in BWAs without bending.
Similarly, by using the ansatz � ∼ exp[i(kξ − εz)] for the
linear Eq. (6) without an external field, one can obtain dis-
persion relations for a free relativistic electron [see Eq. (10) in
Ref. [31]]:

ε±(k) = ±
√

σ 2 + κ2k2. (7)

It is clear that if we write Q = ±π/2 + k/2 and if k is small
enough, then Eq. (5) is approximately reduced to Eq. (7). That
is the reason why we need to launch beams around the Bragg
angle (when Q � π/2) to convert discrete Eq. (1) into the
Dirac equation (6).

Because z → t , it is also clear that ω and ε can be in-
terpreted as energy (or frequency). In Fig. 1(c) we plot two
branches for ω± (solid curves for BWAs) and two branches
for ε± (dashed curves for the continuous model). The two
upper branches ω+ and ε+ [red curves in Fig. 1(c)] are called
positive-energy (or electron) branches. Meanwhile, the two
lower branches ω− and ε− [green curves in Fig. 1(c)] are
called negative-energy (or positron) branches. So, for the
discrete model we get two minibands (ω±), and for the con-
tinuous model we also get two minibands (ε±). It is also clear
in Fig. 1(c) that around the so-called Dirac point Q � ±π/2
these two models coincide with each other quite well.

B. Probability for electron-positron pair production
and annihilation

The two values ω± defined by Eq. (5) turn out to be the
two eigenvalues of two corresponding Bloch modes of Eq. (1)
in linear BWAs without bending [31]. One Bloch mode with
ω+ belongs to the positive-energy state, and the other with
ω− belongs to the negative-energy state. In straight BWAs
(� = 0) the transition between these two states is impossible.
However, in the presence of the external oscillating electric
field (� �= 0), this transition can be realized. By projecting an
arbitrary state in a curved BWA in the linear regime (when
γ = 0) onto the Bloch modes basis, one can obtain a system
of equations for r+(z) and r−(z), which are the occupation
amplitudes of the positive-energy and negative-energy states,
respectively [31]:

i
d

dz

(
r−
r+

)
= M(z)

(
r−
r+

)
, (8)

where the 2 × 2 matrix M(z) has the following four real com-
ponents [31]:

M11(z) = −M22(z) = σ 2 + 4κ2cos(Q)cos[Q − �(z)]

ω+(Q)
, (9)
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M12(z) = M21(z) = 2κσ {cos(Q) − cos[Q − �(z)]}
ω+(Q)

. (10)

From Eqs. (8)–(10) one can easily show that

i
d|r−|2

dz
= −i

d|r+|2
dz

= M12(z)(r∗
−r+ − r−r∗

+), (11)

thus the population |r+(z)|2 + |r−(z)|2 always remains con-
stant during beams propagation. The physical meanings of
r±(z) are clear: |r+(z)|2 is the probability of finding an elec-
tron (which is represented by a beam) on the positive-energy
level ω+, whereas |r−(z)|2 is the probability of finding that
electron on the negative-energy level ω− (note that the defini-
tion of a time-dependent pair number while the external field
is still turned on is a subtle issue in quantum electrodynam-
ics [36,37]). So, the population conservation for one electron
dictates that

|r+(z)|2 + |r−(z)|2 = 1. (12)

It is easy to see from Eqs. (8)–(10) that in any section of
BWAs where the axis is straight and parallel to the z-axis,
we have �(z) = 0, therefore M12(z) = M21(z) = 0. As a re-
sult, two quantities |r+(z)|2 and |r−(z)|2 remain constant,
i.e., the transition of any electron between these two energy
levels is impossible. However, in the curved section, we have
�(z) �= 0, thus, in general, two quantities |r+(z)|2 and |r−(z)|2
change during propagation in that section, which makes the
transition of electrons between the two energy levels possible.
If right before entering the curved section of BWAs a beam
(or electron) solely belongs to the negative-energy state ω−
in the Dirac sea, i.e., r−(Z1) = 1 [thus, r+(Z1) = 0], then
the probability of the electron-positron PP at the exit of the
curved section (equivalent to when the external field turns
off) is Ppp = |r+(Z1 + L)|2. During the beam propagation in
the second (output) straight section, this value remains con-
stant. This PP is schematically illustrated in Fig. 1(c) by the
electron transition process B → A where at the end of the PP
a positron (or a hole) is formed at point B, and an electron
occurs at point A. From now on, we will refer to the value
Ppp = |r+(Z1 + L)|2 [under the initial condition r−(Z1) = 1
and r+(Z1) = 0] as the PP probability due to the total action of
the external field. In Refs. [31,33], the curved section is at the
very input, i.e., Z1 = 0. In this case, as discussed in the Intro-
duction and shown clearly in the next sections, any Gaussian
beam always belongs to two energy levels ω± simultaneously,
thus it is very difficult to verify and measure the Ppp after the
beam travels though the curved section. This problem is easily
overcome with our scheme, as shown in the next sections.

It turns out that our scheme can also easily demonstrate the
annihilation process [38,39] and verify its probability Pan in
BWAs. If right before entering the curved section of BWAs,
a beam (or electron) solely belongs to the positive-energy
state ω+, i.e., r+(Z1) = 1 [thus, r−(Z1) = 0, and we have
an electron on the positive-energy level and a positron (or a
hole) on the empty negative-energy state], then the probabil-
ity of annihilation or recombination of this electron-positron
pair at the exit of the curved section is Pan = |r−(Z1 + L)|2.
During the beam propagation in the second (output) straight
section, this value also remains constant. This annihilation is
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FIG. 2. (a),(b) Beams propagation in a BWA with the curved
section length L = � and L = 0.765�, respectively. (c) The evolu-
tion of the beams spectra when L = 0.765�. (d) The red curve with
round markers represents the theoretical values for the probabilities
Ppp = Pan. The solid green curve represents both Ppp and Pan based on
beams simulations in BWAs which is in striking excellent agreement
with the theoretical curve. The dashed blue curve represents the
theoretical values of the probability Ps of the beam (1 or 2) staying
on the same energy level after exiting the curved section. Parameters:
Q = 1.4π/2, � = 5, �0 = 5, σ = 1, κ = 1, γ = 1, and w0 = 16.

schematically illustrated in Fig. 1(c) by the electron transition
process A → B. From now on, we will refer to the value
Pan = |r−(Z1 + L)|2 [under the initial condition r+(Z1) = 1
and r−(Z1) = 0] as the annihilation probability due to the total
action of the external field.

We want to emphasize that by solving Eqs. (8)–(10) we
have obtained the same value for both Ppp and Pan under
the same conditions [except for the initial ones, where we
need to take r−(Z1) = 1 and r+(Z1) = 0 while computing
Ppp, whereas r−(Z1) = 0 and r+(Z1) = 1 while computing
Pan]. These theoretical curves for Ppp and Pan are repre-
sented by just one red curve with round markers in each of
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again in striking excellent agreement with the theoretical curve. The
dashed blue curve represents the theoretical values of the probability
Ps. (b) Beams propagation in a BWA with the input wave number
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Figs. 2–6. The probabilities Ps of finding an electron on the
same initial state (either ω− or ω+) after exiting the curved
section, i.e., |r−(Z1 + L)|2 [when the initial one r−(Z1) = 1]
and |r+(Z1 + L)|2 [when the initial one r+(Z1) = 1), are also
exactly the same, and they are represented by just one dashed
blue curve in each of Figs. 2–5. The population conserva-
tion (12) is confirmed by the fact that the dashed blue curve
and the red curve with round markers in each of Figs. 2–5
are totally symmetrical to each other with respect to the hori-
zontal axis (not shown therein) passing through the point with
coordinates (0,0.5).

Equations (8)–(10) are derived from Eq. (1) for the discrete
model with BWAs in the linear regime. In the same way,
we can have the same Eq. (8) derived from Eq. (6) for the
continuous model in the linear regime, but the components of
the matrix M now read as follows [31]:

M11(z) = −M22(z) = ε+(k) − 2κ2k�(z)

ε+(k)
, (13)

M12(z) = M21(z) = −2κσ�(z)

ε+(k)
. (14)
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of the probability Ps. (b) Beams propagation in a BWA with the
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model (the red curve with round markers) and the continuous model
(solid black curve). (b) Beams propagation in a BWA with the period
� = 2.8. Parameters: �0 = 0.4, Q = 0.8π/2, L = �, σ = 1, κ = 1,
γ = 1, and w0 = 16.

It is easy to prove that under two above-mentioned assump-
tions |�| � π/2 and Q � π/2 (or k � 0), Eqs. (9) and (10)
are reduced to Eqs. (13) and (14).

III. SIMULATIONS AND VERIFICATION OF PAIR
PRODUCTION AND ANNIHILATION PROBABILITIES

In this section we systematically investigate the PP and
annihilation processes by simulating the beams propagation in
BWAs in the presence of a curved section. The simulations-
based Ppp and Pan will be compared with their theoretical
values calculated from Eqs. (8)–(10). In BWAs with Kerr
nonlinearity, the analytical solution for DSs to Eq. (1) has
been obtained in Ref. [13] as follows:
[

a2n(z)
a2n−1(z)

]

=

⎡
⎢⎣ i2n 2κ

w0
√

σγ
sech

(
2n
w0

)
e

iz
(

2κ2

w2
0σ

−σ

)

i2n 2κ2

w2
0σ

√
σγ

sech
(

2n−1
w0

)
tanh

(
2n−1
w0

)
e

iz
(

2κ2

w2
0σ

−σ

)
⎤
⎥⎦, (15)

where w0 represents the DS width. Although the DS with
solution (15) propagates along the z-axis of the BWAs, it
intrinsically has two central wave numbers QB = ±π/2 (see
Fig. 2 in Ref. [13]) at Dirac points. Therefore, the DS can
help to transform the discrete Eq. (1) into the continuous Dirac
Eq. (6). The situation is completely different if a plane wave,
or more often a Gaussian beam, is used. In this case, we need
to launch a Gaussian beam into the BWAs in the vicinity of the
Bragg angle (around the Dirac points), if we want to simulate
optical analogs of relativistic quantum effects emerging from
the Dirac equation [9,31,33]. This implies that a Gaussian
beam

an ∼ exp

(
− n2

w2
0

)
exp

[
i

(
π

2
+ k

2

)
n

]
(16)

must be excited at the input of BWAs where k � 0, and w0

also represents the Gaussian beam width. In contrast, we need
to use the initial condition for the DS as follows:

aini
n = an(0)exp

(
in

k

2

)
, (17)
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where an(0) in Eq. (17) is the DS taken at z = 0 from Eq. (15),
and k � 0. This initial condition (17) will be used below for
numerically solving Eq. (1) with the help of the Runge-Kutta
fourth-order method to mimic the dynamic PP and annihila-
tion processes with a large value w0 for broad beams to ensure
that we operate in the quasilinear (low-power) regime even
when the nonlinear coefficient γ = 1 is used below.

In Figs. 2(a) and 2(b) we show the beams evolution process
when an initial DS with Q = 1.4π/2 (or k = 0.4π ) and w0 =
16 is launched into a BWA with the curved section length
L = � and L = 0.765�, respectively. The curved section
[located between two vertical white lines in Figs. 2(a)
and 2(b)] has the period � = 5. The amplitude of the phase
�0 = 5, and the length of the first straight section is Z1 = 140.
As clearly shown in Figs. 2(a) and 2(b), the DS is split into
two beams labeled 1 and 2 even without the curved section.
This is because the initial DS is composed of two Bloch
modes. As shown in Fig. 4(c) in Ref. [10], when the input an-
gle θ = 1.4θB (correspondingly, Q = 1.4π/2 = 1.4QB), the
mode (numbered 2) belonging to the positive-energy level
ω+ will be dominantly excited, whereas the mode (numbered
1) belonging to the negative-energy level ω− will be excited
with less energy. Note also that in Fig. 4(c) in Ref. [10], four
modes numbered 1–4 are excited for the model depicted in
Fig. 4(a) therein, however with our tight-biding model based
on Eq. (1) only two lowest modes numbered 1 and 2 with ω±
are excited. Moreover, as confirmed in Ref. [12], where all
relevant parameters (except for the parameters of the external
electric field) have been used in the same region, beam 2
in Figs. 2–5 demonstrates the Klein tunneling effect, so it
belongs to the positive-energy state ω+. All beams in Figs. 2–5
in this work with label 1 (label 2) depict the beam belonging
to the negative-energy state ω− (positive-energy state ω+). By
putting the curved section in the middle of BWAs, we are able
to obtain clean beams which determinedly belong solely to
either ω− or ω+ before they go to the curved section where
the dynamic PP and annihilation processes take place under
action of the external field, which are shown by the beams
breakup process after exciting this curved section.

As shown in Fig. 1(c) and as already pointed out in
Ref. [33], “in the vicinity of the Dirac point, the two mini-
bands have different signs in their derivative and therefore
the direction of the propagating beams belonging to the two
minibands is opposite.” As a result, in Figs. 2–5 all beams 1,
3, and 5 with the same propagation direction belong to the
negative-energy state just like beam 1, whereas all beams 2,
4, and 6 with the same propagation direction belong to the
positive-energy state just like beam 2. As shown in Figs. 2–5,
beam 1 is split into two beams 3 and 4, and this is a demon-
stration of the dynamic PP process where the initial electron
(beam 1) that is located on the negative-energy level ω− in
the Dirac sea [i.e., r−(Z1) = 1 and r+(Z1) = 0] will jump to
the positive-energy level ω+ represented by beam 4 with the
PP probability Ppp = I4/I1, where Im is the intensity of beam
m with m runs from 1 to 6. The probability for this electron
staying in the same Dirac sea on the negative-energy state ω−
represented by beam 3 is obviously equal to 1 − Ppp = I3/I1.

On the contrary, in Figs. 2–5 beam 2 is split into two
beams 5 and 6, and this is a demonstration of the annihilation
process where the initial electron (beam 2) that is located on

the positive-energy level ω+ [i.e., r+(Z1) = 1 and r−(Z1) = 0]
will jump to the negative-energy level ω− represented by
beam 5 with the annihilation probability Pan = I5/I2. The
probability for this electron staying on the same positive-
energy state ω+ represented by beam 6 is obviously equal to
1 − Pan = I6/I2.

In Fig. 2(d) we show the dependence of various probabil-
ities as functions of the curved section length L. The solid
green curve in Fig. 2(d) (and also in Figs. 3–5) depicts the
two probabilities Ppp and Pan which are obtained by the beam
propagation simulations as explained above. These values are
quite close to each other [for instance, Ppp = 0.0408 and Pan =
0.0474 in Fig. 2(a), whereas Ppp = 0.8423 and Pan = 0.8396
in Fig. 2(b)], so we just use the green curve for both Ppp and
Pan in Figs. 2–5 (otherwise, all three curves will be on top of
each other, which will make it difficult to see each of them
clearly). As clearly shown in Figs. 2–5, the theoretical (red
curve with round markers) and simulations-based values for
Ppp and Pan are in striking excellent agreement.

In Fig. 2(c) we demonstrate the evolution in the
(Q, z)-plane of the spectra of beams shown in Fig. 2(b). This
can be done by getting the Fourier transform for an at each dis-
tance z. Each beam in Fig. 2(c) has two spectral components
around the input wave number Q = 1.4π/2 and around Q′ =
−0.6π/2. The spacing between Q and Q′ is exactly equal to
π , i.e., the period of the Brillouin zones shown in Fig. 1(c)
for the discrete model. This feature is also true even for a
DS consisting of just one beam parallel to the z-axis during
propagation (when at input k = 0, thus input wave number
Q = π/2) as shown in Fig. 2 in Ref. [13]. Figure 2(c) confirms
that each of the dynamical PP and annihilation processes in
BWAs just happens with one wave number Q.

In Fig. 3(a) we show the dependence of various proba-
bilities on the input wave number Q while fixing all other
parameters such as the curved section length L = � = 5 and
the phase amplitude �0 = 5. Figure 3(a) shows that the the-
oretical curve (the red one with round markers) for Ppp = Pan

and the corresponding simulations-based curve (solid green
curve) are again in striking excellent agreement. Note that
in Fig. 3(a) we just plot the simulations-based curve (solid
green one) in the interval Q ∈ [1.1π/2; 1.9π/2] because by
getting closer to Dirac point Q = π/2 and point Q = π all
beams 1–6 become closer to each other in space (when
Q = π/2 all beams 1–6 become one single beam parallel
to the z-axis (see Fig. 2 in Ref. [13]), thus it is difficult
to observe the beam breakup process. For input Gaussian
beams, it is even more difficult to form separated collimated
beams with Q � π/2 or π as already shown in Ref. [12].
As an example, in Fig. 3(b) we show the beam propaga-
tion simulation when Q = 1.608π/2, where the probabilities
Ppp = Pan = 0.5. This is clearly proved in Fig. 3(b) where due
to the dynamic PP beam 1 is split into two beams (3 and
4) with equal intensity, and the annihilation process makes
beam 2 split into two beams (5 and 6) with equal intensity as
well.

In Fig. 4(a) we show the dependence of various prob-
abilities on the phase amplitude �0 while fixing all other
parameters such as the curved section length L = � = 5
and the input wave number Q = 1.4π/2. Figure 4(a) shows
that the theoretical curve (the red one with round markers)
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for Ppp = Pan and the corresponding simulations-based curve
(solid green curve) are also in perfect agreement. As an ex-
ample, in Fig. 4(b) we show the beam propagation when
�0 = 3.4 and the probabilities Ppp = Pan = 0.97, where 97%
of energy from beam 1 is transferred to beam 4 due to the
dynamic PP, and 97% of energy from beam 2 is transferred to
beam 5 due to the annihilation process.

In Fig. 5(a) we show the dependence of various proba-
bilities on the period � which is also set to be the length
L of the curved section while fixing all other parameters
such as the phase amplitude �0 = 3.455 and the input wave
number Q = 1.4π/2. Figure 5(a) confirms again the perfect
agreement between the theoretical curve and the simulations-
based curve for Ppp = Pan. As an example, in Fig. 5(b) we
show the beam propagation when � = 1.55. As a result, the
probabilities Ppp = Pan = 0.99, where 99% of energy from
beam 1 is transferred to beam 4 due to the dynamic PP, and
99% of energy from beam 2 is transferred to beam 5 due to
the annihilation process.

In this section, we have shown that the results for Ppp and
Pan based on simulating the DSs propagation governed by
nonlinear (i.e., γ = 1) Eq. (1) are in perfect agreement with
the theoretical results for Ppp and Pan based on Eqs. (8)–(10)
[which are derived from linear Eq. (1) with γ = 0] in wide
ranges of all relevant parameters. We just need to make sure
that the peak input intensity of DSs is small enough (simply by
choosing a large beam width parameter w0 for DSs) to guar-
antee that we operate in the quasilinear (low-power) regime.
The influence of nonlinearity when intense DSs are used will
be investigated elsewhere.

IV. COMPARISON BETWEEN THE DISCRETE
AND CONTINUOUS MODELS

In this section, we compare the theoretical results for
the probabilities Ppp and Pan based on the discrete model
[Eqs. (8)–(10)] with those based on the continuous model of
the Dirac equation [i.e., Eqs. (8), (13), and (14)]. As men-
tioned in Sec. II, these results should agree quite well with
each other when two conditions hold true: (i) we operate
around Dirac points (Q � π/2); (ii) phase � is small enough
(|�| � π/2). Indeed, as an example, in Fig. 6(a) we fix the

phase amplitude �0 = 0.4 and the input wave number Q =
0.8π/2 while plotting Ppp and Pan as a function of the period
� (which is also set to be equal to the length L = �) of the
curved section, where the red curve with round markers is
based on the discrete model and the solid black curve is based
on the continuous model. At � = 2.8, the discrete model in
Fig. 6(a) reaches its maximum Ppp = Pan � 0.55, which is
again in perfect agreement with the simulation-based result
for Eq. (1) (also � 0.55) shown in Fig. 6(b). On the other
hand, when � = 2.8, the continuous model gives the result
Ppp = Pan � 0.57.

Note that in Fig. 6 we use the input wave number Q =
0.8π/2 < QB = π/2, whereas in Figs. 2–5 we use the input
wave number Q > QB = π/2. By checking the Klein tunnel-
ing effect (not shown here) for beams 1 and 2 in Fig. 6, it
turns out that this effect only happens with beam 1 but not
with beam 2, so now beam 1 belongs to the positive-energy
state ω+, and the breakup of beam 1 into beams 3 and 4 in
Fig. 6 simulates the annihilation process. Meanwhile, beam 2
belongs to the negative-energy state ω−, and the breakup of
beam 2 into beams 5 and 6 in Fig. 6 simulates the dynamic PP
process.

V. CONCLUSIONS

In conclusion, we have theoretically and numerically
demonstrated the optical analogs of electron-positron dy-
namic PP and annihilation in BWAs with a curved section lo-
cated in the middle to mimic the external oscillating electric
field. This system allows us to simultaneously observe the two
processes and determine unambiguously their probabilities by
beams propagation simulations in BWAs, which are shown
to be in perfect agreement with the theoretical results. Under
some specified conditions, the probabilities based on this dis-
crete model agree well with those based on the continuous
Dirac equation. Our findings show that BWAs are an amazing
photonic system to mimic fundamental quantum relativistic
phenomena in QED.
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