
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Performance Evaluation of Quine-McCluskey Method
on Multi-core CPU

Hoang-Gia Vu
Faculty of Radio-Electronic

Engineering
Le Quy Don Technical University

Ha Noi, Vietnam
giavh@lqdtu.edu.vn

Ngoc-Dai Bui
Faculty of Radio-Electronic

Engineering
Le Quy Don Technical University

Ha Noi, Vietnam

Anh-Tu Nguyen
Faculty of Radio-Electronic

Engineering
Le Quy Don Technical University

Ha Noi, Vietnam

ThanhBangLe
Faculty of Radio-Electronic

Engineering
Le Quy Don Technical University

Ha Noi, Vietnam

Abstract—The Quine-McCluskey method is an algorithm to
minimize Boolean functions. Although the method can be
programmed on computers, it takes a long time to return the set
of prime implicants, thus slowing the analysis and design of digital
logic circuits. As a result, it slows down the dynamic
reconfiguration process of programmable logic devices. In this
paper, we first propose a data representation for storing
implicants in memory to reduce the cache misses of the program.
We then propose an algorithm to find all prime implicants of a
Boolean function. The algorithm aims to reuse the data available
on cache, thus decreasing cache misses. After that, we propose an
algorithm for step 2 of the Quine-McCluskey method to select the
minimal number of essential prime implicants. The evaluation
shows that our proposals achieve much higher performance than
the original Quine-McCluskey method. The number of essential
prime implicants is a low percentage, less than 50%, of the total
prime implicants generated in step 1 of the method.

Keywords—Quine-McCluskey, prime implicant, multithreading,
Boolean function

I. INTRODUCTION
A Boolean function is a function producing a Boolean output

by logical calculation of Boolean inputs. It is a key point in the
analysis, design, and implementation of digital logic circuits.
Minimization of Boolean functions is to optimize the algorithm
of such functions to achieve a simpler structure of the algorithm.
Thus it simplifies the corresponding digital logic circuit. There
are two popular methods to minimize Boolean functions. 1) The
Karnaugh method is based on a graphical representation of
Boolean functions [1]. And 2) The Quine-McCluskey method
generates prime implicant lists using the tabulation method [2].
The method was first proposed by Quine [3, 4] and then
improved by McCluskey. The Quine-McCluskey method is
functionally identical to the Karnaugh method. However, while
the Karnaugh mapping is suitable to Boolean functions of a few
input variables, the Quine-McCluskey algorithm is dedicated to
Boolean functions with a large number of Boolean inputs [5].
Therefore, the Karnaugh method is often used in education.
Meanwhile, the Quine-McCluskey method is practically
employed in the analysis and design of digital logic circuits for
real-world applications.

However, the computational complexity of the Quine-
McCluskey method is 𝑂(𝑁$%&'(𝑙𝑜𝑔,𝑁), N - the input length [6].

The run-time of the method also grows exponentially with the
input variable number. This slows down the process of analysis,
design, and verification of digital logic circuits. The problem
becomes more serious in the design of dynamic run-time
reconfigurable hardware architectures or adapted hardware
architectures.

The Quine-McCluskey method consists of two steps:

Step 1: Finding all prime implicants of the Boolean function

Step 2: Selection of essential prime implicants that cover all
the minterms of the function.

Both of the steps are memory-intensive applications since
they involve many repeated memory references. We believe that
both of the steps can be accelerated on cached CPU by
exploiting the temporal and spatial data locality. The
contributions of this paper are as follows:

1) We propose a bitarray-based data representation for
implicants that consume a small size of memory. This helps to
reduce the cache miss rate of the method running on the CPU.

2) We propose an algorithm for step 1 of the method to
exploit data locality, thus minimizing the cache misses of the
step running on the CPU.

3) We propose an algorithm for step 2 of the method to
minimize the number of required prime implicants covering all
the minterms of the Boolean function.

The rest of the manuscript is organized as follows: Section
II discusses the related work. Section III presents the data
representation of implicants. Section IV presents the proposed
algorithms of the method. Section V shows the evaluation. The
conclusion is summarized in section VI.

II. RELATED WORK
Wegener et al. proved that the minimization of Boolean

functions is a hard problem [7]. Prasad et al. analyzed the
simplification of the Quine-McCluskey method for a different
number of product terms [8]. The complexity of the Quine-
McCluskey method was mathematically modelled in the
following equation [8]:

𝑁 = 𝑎	.		𝑡3. 𝑒567 + 1 (1)

Where,

N : the number of literals

t : the number of non-repeating product terms in the Boolean
function

a, b, and c : three constants depending on the number of input
variables

For improving the minimization of Boolean functions, there
were several works to quickly and automatically simplify
Boolean functions. Dusa et al. proposed eQMC to reduce the
computational complexity of the Quine-McCluskey method by
taking into account only minterms that the corresponding
outputs are ‘1’ [9]. The eQMC method performs an exhaustive
procedure that relies on index vectors instead of complex
matrices. The method achieved higher performance and smaller
memory usage compared to their implementation of the original
Quine-McCluskey method. However, the performance was still
low at 4.87 seconds, execution time with 15 input variables and
only 20 observed configurations. Gurunath et al. introduced an
algorithm for multiple output minimization [10]. Jain et al. [11]
optimized the Quine-McCluskey method by introducing the
concept of Reduced Mask. The new concept helped to reduce
the computational complexity of the method. As a result, the
execution time decreased significantly. Majumder et al.
presented a technique based on decimal values to decrease the
probability of an error occurrence [12].

There are a couple of works for the acceleration of the
Quine-McCluskey method. Siladi et al. proposed a scheme to
adapt step 1 of the Quine-McCluskey method on a parallel
computing platform – GPU [13, 14]. In this works, the author
presented a parallel algorithm for simplification of step 1 on the
GPU. They process the implicants in multiple rounds. In each
round of step 1, implicants are first partitioned by the positions
of dashes in the terms. Each partition is then scanned for merge-
able terms. In their merging algorithm, the list of terms is first
converted to bitmap representation, thus each term is a bit set.
Dashes in the term are treated as zeroes when calculating the bit
indexes. The algorithm achieved not much higher performance
compared to the implementation on the CPU for large numbers
of input variables. Small instances running on the GPU is even
slower than those running on the CPU. In these works, they did
not take into account the output value ‘x’ – don’t care of the
Boolean function.

III. BITARRAY-BASED DATA REPRESENTATION
To reduce the memory usage and the cache misses of the

Quine-McCluskey method, we propose to represent implicants
in form of bit arrays instead of ASCII characters. Particularly,
symbols ‘1’, ‘0’, ‘-‘ are represented as follows:

 Symbol ‘1’ à bit array ‘01’

 Symbol ‘0’ à bit array ‘00’

 Symbol ‘-’ à bit array ‘10’

As a result, implicant (10-00-10) will be represented in the
following form:

 (10-00-10) à bit array ‘0100100000100100’

 The implicant (10-00-10) consumes 8 bytes if it is
represented in the form of ASCII characters. The implicant uses
2 bytes (16 bits) if represented in a bit array. Therefore, the
memory utilization of the bitarray-based representation is four
times efficient than that of the ASCII-based representation.

 For comparison between two bit arrays to find out if they can
be combined into a new implicant, we propose to use the
operator XOR as in Algorithm 1. If the two implicants differ in
only one symbol, then the XOR operation of two corresponding
bit arrays will return a bit array including only one bit ‘1’. It is
noted that the comparison is only for implicants having the same
number of dashes. In the function, the XOR operation of the two
bit arrays is first executed, followed by counting the number of
bits ‘1’ in the result. If the number of bit ‘1’ is equal to one, the
position of the bit ‘1’ is returned. Otherwise ‘-1’ will be
returned.

IV. THE ALGORITHMS FOR THE QUINE-MCCLUSKEY METHOD
In this paper, we focus on optimizing both step 1 and step 2

of the Quine-McCluskey method.

A. Algorithm for Step 1: Finding all Prime Implicants
In step 1 of the Quine-McCluskey method, the major

operations are memory access to read all the implicants and
comparison of implicants. We believe that the performance
bottleneck in this step is the huge number of memory references
repeated again and again. In this part, we propose an algorithm
to exploit temporal data locality on cache memory. The Pseudo
code is described in Algorithm 2.

• Let m be the number of input variables in the Boolean
function.

• Let list-1 be the list of all minterms that the corresponding
output is evaluated to ‘1’.

• Let list-x be the list of all minterms that the corresponding
output is evaluated to ‘x’ – don’t care.

• Let implicant-list be the list of all implicants in each round
of comparison.

• Let prime-list be the list of all prime implicants found out
after step 1 of the method.

• Let new-implicant-list be the new imlicant list generated
after each round of comparison and merging.

• Let combined be the Boolean variable indicating if there
is any combination between two implicants. It starts at True
value.

In the while loop, combined is first assigned to False. Then
all the implicants are classified as in Line 10. Implicants
belonging to the same group have the same number of symbols

1: def compare_2(a, b)
2: temp = a ^ b
3: if temp.count(1) == 1:
4: return temp.find(1)
5: else:
6: return -1

Algorithm 1: Comparison of two bit arrays

‘1’. Therefore, there are at most m+1 groups. Implicants in
each group are then compared with the implicants of the
consecutive group to find if they can be merged into a new
implicant as in Line 11 to Line 19. If there is any combination,
the variable combined is marked as True in Line 21. That means
at least one new implicant is generated, and the next round of
the while loop is required. At the same time, the two combined
implicants are marked as used.

It is noted that in the first for loop, a variable named
reversed is used to indicate the third for loop should be iterated
in the reversed order or the normal order. This variable starts at
False as in Line 12. Iterating the loop in the reversed order helps
to utilize the data in cache memory that are fetched recently
from the lower-level memory before the data are replaced on
the cache memory. As a result, the cache miss rate will be
decreased. That is also the key point in Algorithm 2.

All the marked-as-used implicants are then removed from
the implicant-list before the list is updated into the prime-list as

in Line 32. After that, the implicant-list is assigned to the new-
implicant-list before going to the next round of the while loop.
B. Algorithm for Step 2: Selection of Essential Prime

Implicants
In step 2 of the Quine-McCluskey method, essential prime

implicants will be selected among the full set of prime
implicants from step 1. In this step, we aim to choose the
smallest number of prime implicants that cover all the minterms
of the Boolean function. For that perspective, we propose
Pseudo code as in Algorithm 3. After step 1 of the Quine-
McCluskey method, we have prime-list including all prime
implicants of the Boolean function.
 • Let final-prime-list be the final list of essential prime
implicants covering all the minterms of the function.

 • Let victim be the prime that is selected after each round of
the while loop. victim is the prime implicant that is merged from
the largest number of minterms.

 • Let max-len be the maximum length of all minterm sets of
prime implicants.

 • Let val-1 be the minterm set of a prime implicant.

 In the while loop, max-len is assigned to zero in Line 5. max-
len is found by iterating prime-list and comparing the length of
the minterm sets of all prime implicants. It is noted that after
finding out a victim in each round of the while loop, the victim
is removed from prime-list as in Line 11. Then, the minterm set
of each prime implicants is also updated as in Line 7 before
finding max-len.

V. EVALUATION
Table 1 shows the experimental setup we used to evaluate

the proposed algorithms. In this evaluation, the number of input
variables in the Boolean function is scaled from 10 to 20. For
the k-input Boolean function, the number of possible input
vectors is 2; , which evaluate to ‘0’, ‘1’, or ‘x’ – don’t care.

• Let fill-factor-1 be the ratio between the number of input
vectors that evaluate to ‘1’ and the total number of input vectors
2;.

1: m = # input variables
2: list-1 = [minterms]
3: list-x = [d-terms]
4: implicant-list = list-1.append(list-x)
5: prime-list = []
6: new-implicant-list = []
7: combined = True
8: while (combined):
9: combined = False
10: groups = make_groups(implicant_list)
11: for i in range(m):
12: reversed = False
13: for x1 in groups[i]:
14: if reversed:
15: range-litst = groups[i+1].reverse()
16: else:
17: range-litst = groups[i+1]
18: for x2 in range-list:
19: pos = compare_2(x1, x2)
20: if pos != -1:
21: combined = True
22: new-term = x1
23: new-term[pos -1] = 1
24: new-term[pos] = 0
25: x1.used = True
26: x2.used = True
27: new-implicant-list.append(new-term)
28: reversed = not reversed
29: for impl in implicant-list:
30: if impl.used:
31: implicant-list.remove(impl)
32: prime-list.append(implicant-list)
33: implicant-list = new-implicant-list

Algorithm 2: Finding all prime implicants

1: final-prime-list = []
2: victim = None
3: max-len = 1
4: while max-len != 0:
5: max-len = 0
6: for prime in prime-list:
7: prime.val-1.difference_update(victim.val-1)
8: if len(prime.val-1) > max-len:
9: max-len = len(prime.val-1)
10: temp = prime
11: prime-list.remove(temp)
12: victim = temp
13: final-prime-list.append(temp)

Algorithm 3: Selection of Essential Prime Implicants

TABLE I. EVALUATION SETUP

CPU Intel Core i3-7100

Number of cores 4

CPU operation frequency 800 MHz

L1 Dcache 32 KB

L1 Icache 32 KB

L2 cache 256 KB

L3 cache 3 MB

Block cache size 64 Bytes

Operating system Ubuntu 18.4

Cache profiling tool Perf 5.4.143

TABLE II. CACHE MISS FOR DIFFERENT FILL FACTORS

fill-
factor

L1-load-misses
(Original)

Miss-
rate

L1-load-misses
(Our proposal)

Miss-
rate

0.1 3,612,183 4.12% 3,363,111 3.45%

0.2 4,194,506 0.54% 4,153,117 1.15%

0.3 45,486,911 0.15% 36,471,029 0.37%

0.4 22,437,678,570 0.12% 19,667,227,871 0.35%

TABLE III. CACHE MISS FOR DIFFERENT NUMBER OF INPUT VARIABLES

Inputs L1-load-misses
(Original)

Miss-
rate

L1-load-misses
(Our proposal)

Miss-
rate

10 3,612,183 4.12% 3,363,111 3.45%

15 203,862,212 0.21% 166,546,860 0.55%

20 321,717,266,536 0.19% 225,112,520,565 0.52%

• Let fill-factor-x be the ratio between the number of input

vectors that evaluate to ‘x’ and the total number of input vectors
- 2;.

In this section, we describe the cache performance, execution
time, and the number of essential prime implicants in our
algorithms. For the number of input variables 10, we scale the
fill-factor-1 and fill-factor-x from 0.1 to 0.4.
A. Cache Performance
 Table II shows the cache load misses of L1 data cache and
the corresponding miss rate for the original Quine-McCluskey
method and for our proposal evaluated in a Boolean function
with 10 input variables while scaling the fill factor. As can be
seen from the table, the number of L1 cache load misses in our
proposal is quite smaller than that of the original Quine-
McCluskey method. The reduced number of cache load misses
is a consequence of the proposed small data representation
described in Section III and the algorithm presented in Section

TABLE IV. EXECUTION TIME OF STEP 1 AND STEP 2 FOR DIFFERENT
FILL FACTOR

fill-
factor

Step 1
(Original)

Step 1 (Our
proposal)

Step 1
(Multi-
thread)

Step 2

0.1 0.0379 0.0043 0.0057 0.0014

0.2 0.1806 0.0641 0.0588 0.0116

0.3 7.2595 2.4564 2.0784 0.1597

0.4 4,301.5054 1,453.5304 1,235.8151 59.5760

TABLE V. EXECUTION TIME OF STEP 1 AND STEP 2 FOR DIFFERENT
NUMBER OF INPUT VARIABLES

Inputs Step 1
(Original)

Step 1
(Our

proposal)

Step 1
(Multi-
thread)

Step 2

10 0.0379 0.0043 0.0057 0.0014

15 22.3329 6.0953 5.1162 2.1205

20 41629.7808 8994.4525 7503.7638 3101.154

IV.A. The same situation is in Table III when the number of
input variables is scaled and the fill factor is fixed at 0.1.
Although the miss rate is basically higher in our proposal, except
for the function with 10 input variables and the fill factor at 0.1,
the larger number of L1 data cache load misses will cause the
longer total miss penalty in the original Quine-McCluskey
method. As a result, the execution time in our proposal is
expected shorter than that of the original Quine-McCluskey.

B. Execution Time
 Table IV shows the execution time of step 2 and step 1 of the
Quine-McCluskey method for different fill factors. In this
experiment, we executed step 1 in the original method in a single
core. Then step 1 was executed with our proposal in Section III
and Section IV.A in a single core. After that step 1 with our
proposal was executed in multiple threads running in the multi-
core CPU. The results show that our proposal achieved much
higher performance than the original Quine-McCluskey did. The
same situation is presented in Table V for scaling the number of
input variables. This higher performance in our proposal comes
from the smaller numbers of cache load misses revealed in
Section V.A.

 As can be seen in the two tables, the method with our
proposal running in multiple threads achieved not much higher
performance compared to running on a single thread, apart from
the experiment with 10 input variables and the fill factor 0.1.
This is because the Quine-McCluskey method is a memory-
intensive application. The majority of the execution time is
consumed by the memory access, but not the computation in the
CPU cores. The two tables also show that the execution time of
step 2 is quite smaller than that of step 1. However, it is noted
that the proposed algorithm for step 2 do not focus on improving
the performance, but focus on reducing the number of essential
prime implicants.

TABLE VI. NUMBER OF ESSENTIAL PRIME IMPLICANTS FOR DIFFERENT
FILL FACTOR

fill-
factor

Minterms Primes Essential
primes

0.1 104 146 72 (49.3%)
0.2 205 673 106 (15.8%)
0.3 308 7,952 110 (1.4%)
0.4 411 3,485,799 97 (0.003%)

TABLE VII. NUMBER OF ESSENTIAL PRIME IMPLICANTS FOR DIFFERENT
NUMBER OF INPUT VARIABLES

Inputs Minterms Primes Essential
primes

10 104 146 72 (49.3%)

15 3,278 6919 2048 (29.6%)

20 104,857 296,035 60,682 (20.5%)

C. Number of Essential Prime Implicants
 Table VI and Table VII show the number of prime
implicants before and after step 2 of the Quine-McCluskey
method. As can be seen from the tables, the number of essential
prime implicants achieved after step 2 decreases significantly
compared to the number of prime implicants. The number of
essential prime implicants is always smaller than the number of
minterms and much smaller than the number of total prime
implicants. Particularly, the number of essential prime
implicants is less than 50% of the total number of prime
implicants. For the high fill factors, 0.3 and 0.4, the percentages
are even lower than 2%, 1.4% at the fill factor 0.3 and 0.003%
at the fill factor 0.4. Table VI reveals that the higher fill factor
the lower percentage of total prime implicants that are essential.

VI. CONCLUSION
 In this paper, we address the performance bottleneck of the
Quine-McCluskey method to the memory access since the
application is memory-intensive. We propose a bitarray-based
data representation for implicants of Boolean functions and an
algorithm to find all the prime implicants. The proposals exploit
the data locality of cache memories. The experimental results
show that our proposal causes fewer cache load misses than the
original Quine-McCluskey method does, leading to higher
performance. In this work, we also minimize the number of
essential prime implicants. The result shows that the percentage

of prime implicants that becomes essential is quite small, less
than 50%. This helps to reduce the hardware cost in the
implementation of the Boolean function. In future work, we
will take into account the minimazation of multi-output
Boolean functions as well as a framework for design and
verification of Boolean functions.

References
[1] M. Karnaugh, “The map method for synthesis of combinational logic

circuits,” Transactions of the American Institute of Electrical Engineers,
vol. 72 part I, pp. 593–598, 1953.  

[2] E. J. McCluskey, “Minimization of boolean functions,” Bell System
Technical Journal, vol. 35, Issue 6, pp. 1417–1444, 1956.

[3] W. V. Quine, “The problem of simplifying truth functions,” The
American Mathematical Monthly, vol. 59, no. 8, pp. 521–531,
Mathematical Association of America, 1952.   

[4] W. V. Quine, “A way to simplify truth functions,” The American
Mathematical Monthly, vol. 62, no. 9, pp. 627–631, Mathematical
Association of America, 1955.  

[5] M. Petrík, “Quine–McCluskey method for many-valued logical
functions,” Soft Computing, vol. 12, Issue 4, pp. 393–402, Springer-
Verlag, 2007.  

[6] S. P. Tomaszewski, I. U. Celik, G. E. Antoniou, “WWW-based boolean
function minimization,” International Journal of Applied Mathematics
and Computer Science,vol. 13, no. 4, pp. 577–583, 2003.

[7] I. Wegener, “The complexity of boolean functions,” John Wiley & Sons,
Inc. New York, NY, USA,1987.

[8] P. W. Chandana Prasad, Azam Beg, Ashutosh Kumar Singh, “Effect of
Quine-McCluskey simplification on boolean space complexity,” In:
Innovative Technologies in Intelligent Systems and Industrial
Applications, CITISIA 2009, IEEE, 2009.  

[9] A. Dus ̧a, A. Thiem, “Enhancing the minimization of boolean and
multivalue output functions with eQMC,” The Journal of Mathematical
Sociology, 39:2, pp. 92–108, 2015.

[10] B. Gurunath, N.N. Biswas, “An algorithm for multiple output
minimization,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 8, Issue 9, pp. 1007–1013, IEEE,
1989.  

[11] T. K. Jain, D. S. Kushwaha, A. K. Misra, “Optimization of the Quine-
McCluskey method for the minimization of the boolean expressions,”
Fourth International Conference on Autonomic and Autonomous Systems
(ICAS’08), Gosier, 2008, pp. 165–168.  

[12] A. Majumder, B. Chowdhury, A. J. Mondai, K. Jain, “Investigation on
Quine McCluskey method: A decimal manipulation based novel approach
for the minimization of boolean function,” International Conference on
Electronic Design, Computer Networks & Automated Verification
(EDCAV), 2015, DOI: 10.1109/EDCAV.2015.7060531.  

[13] V. Siládi, T. Filo, “Quine-McCluskey algorithm on GPGPU,” In: AWER
Procedia Information Technology and Computer Science, vol. 4 3rd
World Conference on Innovation and Computer Science (INSODE-
2013), pp. 814–820, 2013.

[14] V. Siládi, M. Povinsky, L. Trajtel, “Adapted parallel Quine-McCluskey
algorithm using GPGPU,” 14th International Scientific Conference on
Informatics, pp. 327-331, 2017.

