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Abstract—The Quine-McCluskey method is an algorithm to 
minimize Boolean functions. Although the method can be 
programmed on computers, it takes a long time to return the set 
of prime implicants, thus slowing the analysis and design of digital 
logic circuits. As a result, it slows down the dynamic 
reconfiguration process of programmable logic devices. In this 
paper, we first propose a data representation for storing 
implicants in memory to reduce the cache misses of the program. 
We then propose an algorithm to find all prime implicants of a 
Boolean function. The algorithm aims to reuse the data available 
on cache, thus decreasing cache misses. After that, we propose an 
algorithm for step 2 of the Quine-McCluskey method to select the 
minimal number of essential prime implicants. The evaluation 
shows that our proposals achieve much higher performance than 
the original Quine-McCluskey method. The number of essential 
prime implicants is a low percentage, less than 50%, of the total 
prime implicants generated in step 1 of the method.  

Keywords—Quine-McCluskey, prime implicant, multithreading, 
Boolean function 

I. INTRODUCTION 
A Boolean function is a function producing a Boolean output 

by logical calculation of Boolean inputs. It is a key point in the 
analysis, design, and implementation of digital logic circuits. 
Minimization of Boolean functions is to optimize the algorithm 
of such functions to achieve a simpler structure of the algorithm.  
Thus it simplifies the corresponding digital logic circuit. There 
are two popular methods to minimize Boolean functions. 1) The 
Karnaugh method is based on a graphical representation of 
Boolean functions [1]. And 2) The Quine-McCluskey method 
generates prime implicant lists using the tabulation method [2]. 
The method was first proposed by Quine [3, 4] and then 
improved by McCluskey.  The Quine-McCluskey method is 
functionally identical to the Karnaugh method. However, while 
the Karnaugh mapping is suitable to Boolean functions of a few 
input variables, the Quine-McCluskey algorithm is dedicated to 
Boolean functions with a large number of Boolean inputs [5]. 
Therefore, the Karnaugh method is often used in education. 
Meanwhile, the Quine-McCluskey method is practically 
employed in the analysis and design of digital logic circuits for 
real-world applications. 

However, the computational complexity of the Quine-
McCluskey method is 𝑂(𝑁$%&'(𝑙𝑜𝑔,𝑁), N - the input length [6]. 

The run-time of the method also grows exponentially with the 
input variable number. This slows down the process of analysis, 
design, and verification of digital logic circuits. The problem 
becomes more serious in the design of dynamic run-time 
reconfigurable hardware architectures or adapted hardware 
architectures. 

The Quine-McCluskey method consists of two steps: 

Step 1: Finding all prime implicants of the Boolean function 

Step 2: Selection of essential prime implicants that cover all 
the minterms of the function. 

Both of the steps are memory-intensive applications since 
they involve many repeated memory references. We believe that 
both of the steps can be accelerated on cached CPU by 
exploiting the temporal and spatial data locality. The 
contributions of this paper are as follows: 

1) We propose a bitarray-based data representation for 
implicants that consume a small size of memory. This helps to 
reduce the cache miss rate of the method running on the CPU. 

2) We propose an algorithm for step 1 of the method to 
exploit data locality, thus minimizing the cache misses of the 
step running on the CPU. 

3) We propose an algorithm for step 2 of the method to 
minimize the number of required prime implicants covering all 
the minterms of the Boolean function. 

The rest of the manuscript is organized as follows: Section 
II discusses the related work. Section III presents the data 
representation of implicants. Section IV presents the proposed 
algorithms of the method. Section V shows the evaluation. The 
conclusion is summarized in section VI. 

II. RELATED WORK  
Wegener et al. proved that the minimization of Boolean 

functions is a hard problem [7]. Prasad et al. analyzed the 
simplification of the Quine-McCluskey method for a different 
number of product terms [8]. The complexity of the Quine-
McCluskey method was mathematically modelled in the 
following equation [8]: 

 



𝑁 = 𝑎	.		𝑡3. 𝑒567 + 1                      (1) 

Where, 

N : the number of literals 

t : the number of non-repeating product terms in the Boolean 
function 

a, b, and c : three constants depending on the number of input 
variables 

For improving the minimization of Boolean functions, there 
were several works to quickly and automatically simplify 
Boolean functions. Dusa et al. proposed eQMC to reduce the 
computational complexity of the Quine-McCluskey method by 
taking into account only minterms that the corresponding 
outputs are ‘1’ [9]. The eQMC method performs an exhaustive 
procedure that relies on index vectors instead of complex 
matrices. The method achieved higher performance and smaller 
memory usage compared to their implementation of the original 
Quine-McCluskey method. However, the performance was still 
low at 4.87 seconds, execution time with 15 input variables and 
only 20 observed configurations. Gurunath et al. introduced an 
algorithm for multiple output minimization [10]. Jain et al. [11] 
optimized the Quine-McCluskey method by introducing the 
concept of Reduced Mask. The new concept helped to reduce 
the computational complexity of the method. As a result, the 
execution time decreased significantly. Majumder et al. 
presented a technique based on decimal values to decrease the 
probability of an error occurrence [12].  

There are a couple of works for the acceleration of the 
Quine-McCluskey method. Siladi et al. proposed a scheme to 
adapt step 1 of the Quine-McCluskey method on a parallel 
computing platform – GPU [13, 14]. In this works, the author 
presented a parallel algorithm for simplification of step 1 on the 
GPU. They process the implicants in multiple rounds. In each 
round of step 1, implicants are first partitioned by the positions 
of dashes in the terms. Each partition is then scanned for merge-
able terms. In their merging algorithm, the list of terms is first 
converted to bitmap representation, thus each term is a bit set. 
Dashes in the term are treated as zeroes when calculating the bit 
indexes. The algorithm achieved not much higher performance 
compared to the implementation on the CPU for large numbers 
of input variables.  Small instances running on the GPU is even 
slower than those running on the CPU. In these works, they did 
not take into account the output value ‘x’ – don’t care of the 
Boolean function.  

III. BITARRAY-BASED DATA REPRESENTATION 
To reduce the memory usage and the cache misses of the 

Quine-McCluskey method, we propose to represent implicants 
in form of bit arrays instead of ASCII characters. Particularly, 
symbols ‘1’, ‘0’, ‘-‘ are represented as follows: 

 Symbol ‘1’  à bit array ‘01’ 

 Symbol ‘0’  à bit array ‘00’ 

 Symbol ‘-’  à bit array ‘10’ 

As a result, implicant (10-00-10) will be represented in the 
following form: 

 
             (10-00-10) à  bit array ‘0100100000100100’ 

 The implicant (10-00-10) consumes 8 bytes if it is 
represented in the form of ASCII characters. The implicant uses 
2 bytes (16 bits) if represented in a bit array. Therefore, the 
memory utilization of the bitarray-based representation is four 
times efficient than that of the ASCII-based representation. 

 For comparison between two bit arrays to find out if they can 
be combined into a new implicant, we propose to use the 
operator XOR as in Algorithm 1. If the two implicants differ in 
only one symbol, then the XOR operation of two corresponding 
bit arrays will return a bit array including only one bit ‘1’. It is 
noted that the comparison is only for implicants having the same 
number of dashes. In the function, the XOR operation of the two 
bit arrays is first executed, followed by counting the number of 
bits ‘1’ in the result. If the number of bit ‘1’ is equal to one, the 
position of the bit ‘1’ is returned. Otherwise ‘-1’ will be 
returned. 

IV. THE ALGORITHMS FOR THE QUINE-MCCLUSKEY METHOD 
In this paper, we focus on optimizing both step 1 and step 2 

of the Quine-McCluskey method. 

A. Algorithm for Step 1: Finding all Prime Implicants 
In step 1 of the Quine-McCluskey method, the major 

operations are memory access to read all the implicants and 
comparison of implicants. We believe that the performance 
bottleneck in this step is the huge number of memory references 
repeated again and again. In this part, we propose an algorithm 
to exploit temporal data locality on cache memory. The Pseudo 
code is described in Algorithm 2. 

• Let m be the number of input variables in the Boolean 
function. 

• Let list-1 be the list of all minterms that the corresponding 
output is evaluated to ‘1’. 

• Let list-x be the list of all minterms that the corresponding 
output is evaluated to ‘x’ – don’t care. 

• Let implicant-list be the list of all implicants in each round 
of comparison. 

• Let prime-list be the list of all prime implicants found out 
after step 1 of the method. 

• Let new-implicant-list be the new imlicant list generated 
after each round of comparison and merging. 

• Let combined be the Boolean variable indicating if there 
is any combination between two implicants. It starts at True 
value.  

In the while loop, combined is first assigned to False. Then 
all the implicants are classified as in Line 10. Implicants 
belonging to the same group have the same number of symbols  

1:  def compare_2(a, b)
2: temp = a ^ b
3:          if  temp.count(1) == 1:
4: return temp.find(1)
5:          else:
6: return -1

Algorithm 1: Comparison of two bit arrays



 
 
 

‘1’. Therefore, there are at most m+1 groups. Implicants in 
each group are then compared with the implicants of the 
consecutive group to find if they can be merged into a new 
implicant as in Line 11 to Line 19. If there is any combination, 
the variable combined is marked as True in Line 21. That means 
at least one new implicant is generated, and the next round of 
the while loop is required. At the same time, the two combined 
implicants are marked as used. 

It is noted that in the first for loop, a variable named 
reversed is used to indicate the third for loop should be iterated 
in the reversed order or the normal order. This variable starts at 
False as in Line 12. Iterating the loop in the reversed order helps 
to utilize the data in cache memory that are fetched recently 
from the lower-level memory before the data are replaced on 
the cache memory. As a result, the cache miss rate will be 
decreased. That is also the key point in Algorithm 2. 

All the marked-as-used implicants are then removed from 
the implicant-list before the list is updated into the prime-list as  

 

 
 
in Line 32. After that, the implicant-list is assigned to the new-
implicant-list before going to the next round of the while loop. 
B. Algorithm for Step 2: Selection of Essential Prime 

Implicants 
In step 2 of the Quine-McCluskey method, essential prime 

implicants will be selected among the full set of prime 
implicants from step 1. In this step, we aim to choose the 
smallest number of prime implicants that cover all the minterms 
of the Boolean function. For that perspective, we propose 
Pseudo code as in Algorithm 3. After step 1 of the Quine-
McCluskey method, we have prime-list including all prime 
implicants of the Boolean function. 
 • Let final-prime-list be the final list of essential prime 
implicants covering all the minterms of the function. 

 • Let victim be the prime that is selected after each round of 
the while loop. victim is the prime implicant that is merged from 
the largest number of minterms. 

 • Let max-len be the maximum length of all minterm sets of 
prime implicants. 

 • Let val-1 be the minterm set of a prime implicant. 

 In the while loop, max-len is assigned to zero in Line 5. max-
len is found by iterating prime-list and comparing the length of 
the minterm sets of all prime implicants. It is noted that after 
finding out a victim in each round of the while loop, the victim 
is removed from prime-list as in Line 11. Then, the minterm set 
of each prime implicants is also updated as in Line 7 before 
finding max-len. 

V. EVALUATION 
Table 1 shows the experimental setup we used to evaluate 

the proposed algorithms. In this evaluation, the number of input 
variables in the Boolean function is scaled from 10 to 20. For 
the k-input Boolean function, the number of possible input 
vectors is 2; , which evaluate to ‘0’, ‘1’, or ‘x’ – don’t care.  

• Let fill-factor-1 be the ratio between the number of input 
vectors that evaluate to ‘1’ and the total number of input vectors  
2;. 

1:   m = # input variables
2: list-1 = [minterms]
3:   list-x = [d-terms]
4: implicant-list = list-1.append(list-x) 
5:   prime-list = []
6:   new-implicant-list = []
7: combined = True
8:   while (combined):
9:        combined = False
10:  groups = make_groups(implicant_list)
11: for i in range(m):
12: reversed = False
13: for x1 in groups[i]:
14: if reversed:
15: range-litst = groups[i+1].reverse()
16: else:
17: range-litst = groups[i+1]
18:                  for x2 in range-list:
19: pos = compare_2(x1, x2)
20: if pos != -1:
21: combined = True
22:                               new-term = x1
23:                               new-term[pos -1] = 1
24: new-term[pos] = 0
25:                               x1.used = True
26: x2.used = True
27:                              new-implicant-list.append(new-term)
28: reversed = not reversed
29: for impl in implicant-list:
30: if impl.used:
31: implicant-list.remove(impl)
32: prime-list.append(implicant-list)
33: implicant-list = new-implicant-list

Algorithm 2: Finding all prime implicants

1:  final-prime-list = []
2:  victim = None
3:  max-len = 1
4:  while max-len != 0:
5:        max-len = 0
6:        for prime in prime-list:
7:               prime.val-1.difference_update(victim.val-1)
8: if len(prime.val-1) > max-len:
9: max-len = len(prime.val-1)
10: temp = prime
11: prime-list.remove(temp)
12: victim = temp
13: final-prime-list.append(temp)

Algorithm 3: Selection of Essential Prime Implicants



TABLE I.   EVALUATION SETUP 

CPU Intel Core i3-7100 

Number of cores 4 

CPU operation frequency 800 MHz 

L1 Dcache 32 KB 

L1 Icache 32 KB 

L2 cache 256 KB 

L3 cache 3 MB 

Block cache size 64 Bytes 

Operating system Ubuntu 18.4 

Cache profiling tool Perf 5.4.143 

 

TABLE II.  CACHE MISS FOR DIFFERENT FILL FACTORS 

fill-
factor 

L1-load-misses 
(Original) 

Miss-
rate 

L1-load-misses 
(Our proposal) 

Miss-
rate 

0.1 3,612,183 4.12% 3,363,111 3.45% 

0.2 4,194,506 0.54% 4,153,117 1.15% 

0.3 45,486,911 0.15% 36,471,029 0.37% 

0.4 22,437,678,570 0.12% 19,667,227,871 0.35% 

 

TABLE III.  CACHE MISS FOR DIFFERENT NUMBER OF INPUT VARIABLES 

Inputs L1-load-misses 
(Original) 

Miss-
rate 

L1-load-misses 
(Our proposal) 

Miss-
rate 

10 3,612,183 4.12% 3,363,111 3.45% 

15 203,862,212 0.21% 166,546,860 0.55% 

20 321,717,266,536 0.19% 225,112,520,565 0.52% 

 
• Let fill-factor-x be the ratio between the number of input 

vectors that evaluate to ‘x’ and the total number of input vectors 
- 2;. 

In this section, we describe the cache performance, execution 
time, and the number of essential prime implicants in our 
algorithms. For the number of input variables 10, we scale the 
fill-factor-1 and fill-factor-x from 0.1 to 0.4. 
A. Cache Performance 
 Table II shows the cache load misses of L1 data cache and 
the corresponding miss rate for the original Quine-McCluskey 
method and for our proposal evaluated in a Boolean function 
with 10 input variables while scaling the fill factor. As can be 
seen from the table, the number of L1 cache load misses in our 
proposal is quite smaller than that of the original Quine-
McCluskey method. The reduced number of cache load misses 
is a consequence of the proposed small data representation 
described in Section III and the algorithm presented in Section  

TABLE IV.  EXECUTION TIME OF STEP 1 AND STEP 2 FOR DIFFERENT 
FILL FACTOR 

fill-
factor 

Step 1 
(Original) 

Step 1 (Our 
proposal) 

Step 1 
(Multi-
thread) 

Step 2 

0.1 0.0379 0.0043 0.0057 0.0014 

0.2 0.1806 0.0641 0.0588 0.0116 

0.3 7.2595 2.4564 2.0784 0.1597 

0.4 4,301.5054 1,453.5304 1,235.8151 59.5760 

 

TABLE V.  EXECUTION TIME OF STEP 1 AND STEP 2 FOR DIFFERENT 
NUMBER OF INPUT VARIABLES 

Inputs Step 1 
(Original) 

Step 1 
(Our 

proposal) 

Step 1 
(Multi-
thread) 

Step 2 

10 0.0379 0.0043 0.0057 0.0014 

15 22.3329 6.0953 5.1162 2.1205 

20 41629.7808 8994.4525 7503.7638 3101.154 

 

IV.A. The same situation is in Table III when the number of 
input variables is scaled and the fill factor is fixed at 0.1. 
Although the miss rate is basically higher in our proposal, except 
for the function with 10 input variables and the fill factor at 0.1, 
the larger number of L1 data cache load misses will cause the 
longer total miss penalty in the original Quine-McCluskey 
method. As a result, the execution time in our proposal is 
expected shorter than that of the original Quine-McCluskey. 

B. Execution Time 
 Table IV shows the execution time of step 2 and step 1 of the 
Quine-McCluskey method for different fill factors. In this 
experiment, we executed step 1 in the original method in a single 
core. Then step 1 was executed with our proposal in Section III 
and Section IV.A in a single core. After that step 1 with our 
proposal was executed in multiple threads running in the multi-
core CPU. The results show that our proposal achieved much 
higher performance than the original Quine-McCluskey did. The 
same situation is presented in Table V for scaling the number of 
input variables. This higher performance in our proposal comes 
from the smaller numbers of cache load misses revealed in 
Section V.A. 

 As can be seen in the two tables, the method with our 
proposal running in multiple threads achieved not much higher 
performance compared to running on a single thread, apart from 
the experiment with 10 input variables and the fill factor 0.1. 
This is because the Quine-McCluskey method is a memory-
intensive application. The majority of the execution time is 
consumed by the memory access, but not the computation in the 
CPU cores. The two tables also show that the execution time of 
step 2 is quite smaller than that of step 1. However, it is noted 
that the proposed algorithm for step 2 do not focus on improving 
the performance, but focus on reducing the number of essential 
prime implicants. 



TABLE VI.  NUMBER OF ESSENTIAL PRIME IMPLICANTS FOR DIFFERENT 
FILL FACTOR 

fill-
factor 

Minterms Primes Essential 
primes 

0.1 104 146 72 (49.3%) 
0.2 205 673 106 (15.8%) 
0.3 308 7,952 110 (1.4%) 
0.4 411 3,485,799 97 (0.003%) 

 

TABLE VII.  NUMBER OF ESSENTIAL PRIME IMPLICANTS FOR DIFFERENT 
NUMBER OF INPUT VARIABLES 

Inputs Minterms Primes Essential 
primes 

10 104 146 72 (49.3%) 

15 3,278 6919 2048 (29.6%) 

20 104,857 296,035 60,682 (20.5%) 

 

C. Number of Essential Prime Implicants 
      Table VI and Table VII show the number of prime 
implicants before and after step 2 of the Quine-McCluskey 
method. As can be seen from the tables, the number of essential 
prime implicants achieved after step 2 decreases significantly 
compared to the number of prime implicants. The number of 
essential prime implicants is always smaller than the number of 
minterms and much smaller than the number of total prime 
implicants. Particularly, the number of essential prime 
implicants is less than 50% of the total number of prime 
implicants. For the high fill factors, 0.3 and 0.4, the percentages 
are even lower than 2%, 1.4% at the fill factor 0.3 and 0.003% 
at the fill factor 0.4. Table VI reveals that the higher fill factor 
the lower percentage of total prime implicants that are essential. 

VI. CONCLUSION 
 In this paper, we address the performance bottleneck of the 
Quine-McCluskey method to the memory access since the 
application is memory-intensive. We propose a bitarray-based 
data representation for implicants of Boolean functions and an 
algorithm to find all the prime implicants. The proposals exploit 
the data locality of cache memories. The experimental results 
show that our proposal causes fewer cache load misses than the 
original Quine-McCluskey method does, leading to higher 
performance. In this work, we also minimize the number of 
essential prime implicants. The result shows that the percentage 

of prime implicants that becomes essential is quite small, less 
than 50%. This helps to reduce the hardware cost in the 
implementation of the Boolean function. In future work, we 
will take into account the minimazation of multi-output 
Boolean functions as well as a framework for design and 
verification of Boolean functions. 
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