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 Abstract– This paper presents a novel architecture for in-

memory computation of binary neural network (BNN) 

workloads based on STT-MRAM arrays. In the proposed 

architecture, BNN inputs are fed through bitlines, then, a 

BNN vector multiplication can be done by single sensing of 

the merged SL voltage of a row. Our design allows to 

perform unrestricted accumulation across rows for full 

utilization of the array and BNN model scalability, and 

overcomes challenges on the sensing circuit due to the 

limtitation of low regular tunneling magnetoresistance ratio 

(TMR) in STT-MRAM. 

 Circuit techniques are introduced in the periphery to 

make the energy-speed-area-robustness tradeoff more 

favorable. In particular, time-based sensing (TBS) and 

boosting are introduced to enhance the accuracy of the BNN 

computations. System simulations show 80.01% (98.42%) 

accuracy under the CIFAR-10 (MNIST) dataset under the 

effect of local and global process variations, corresponding 

to an 8.59% (0.38%) accuracy loss compared to the original 

BNN software implementation, while achieving an energy 

efficiency of 311 TOPS/W. 

 

Keywords— In-memory computing, STT-MRAM, binary 

neural networks, energy efficiency. 

I. INTRODUCTION 

EEP neural networks (DNNs) have enabled tremendous 

advances in prominent applications such as image 

classification, visual intelligence, and natural language 

processing. However, the computationally intensive nature of 

DNNs limits their adoption in energy- and area-constrained 

integrated systems at the edge of the Internet of Things (IoT), 

wearable, and mobile devices, among others. 

 At the algorithm level, precision scaling down to binary for 

both activations and weights has enabled substantial energy, 

area, and memory usage reductions [1]. This has facilitated on-

chip storage and further energy efficiency improvements. In 

such binary neural networks (BNNs), multiplications are 

replaced by XNOR and bit-counting operations [2]. At the 

circuit level, in-memory computation of BNNs offers further 

energy and area reductions, in view of stricter data locality 

enforcement and inherent density [2]-[12]. In [2], [4], in-

memory BNN accelerators were proposed based on 6T-SRAM 

and 8T-SRAM, respectively. 
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As embedded non-volatile memories (NVMs) potentially 

introduce further advantages in terms of density and leakage 

power, RRAM-based BNN in-memory accelerator architectures 

were recently introduced [5]-[10]. In [5], [6], the restriction to 0 

or +1 activation values substantially limits the achievable 

accuracy [4]. Multiply-and-accumulate (MAC) operations with 

1 weights and activations are instead allowed in the memristor-

based accelerator in [7] and the XNOR-RRAM in [8]. However, 

[7] relies on a crossbar array and hence suffers from well-known 

sneak current path issues. The XNOR-RRAM in [8] overcomes 

these limitations through a pseudo-crossbar 2T2R array, 

although it suffers from limited neural network model 

scalability. Indeed, RRAM bitcell rows must be twice the 

number of input neurons, substantially dilating the array size for 

a given in-memory model size. Also, current-domain operation 

inherently limits energy efficiency. STT-MRAM arrays are also 

being explored as a promising non-volatile option for in-

memory computing applications, leveraging on their inherent 

advantages over other memory technologies [13]-[16], [17], 

[18]. For example, spin-orbit torque magnetic random access 

memory (SOT-MRAM), spin-transfer torque magnetic memory 

(STT-MRAM) have attracted considerable attention [11]- [18]. 

SOT-MRAM-based works are reported in [11], [12] perform 

only bulk bit-wise logic operations among a few operands, 

prohibiting highly-parallel single-access MAC operations. The 

PXNOR-BNN architecture in [12] is a write scheme-based 

solution, its energy per operation is increased by the extensive 

usage of write accesses, whose energy is well known to be 

higher than read [19]. However, the low tunneling 

magnetoresistance ratio (TMR) as known as the major challenge 

of STT-MRAM that makes it is difficult to apply STT-MRAM 

for analog computing, as discussed in [20]. As a consequence, 

most STT-MRAM-based in-memory BNN macros only perform 

bit-wise operations with two or three operands per memory 

access, as larger numbers of operands degrade the accuracy of 

the MAC computation and ultimately the classification accuracy 

[13], [14], [17], [18]. The macros in [15], [16] only support 0 or 

+1 values for activations with the limitations as in [5], [6].  

This paper introduces a novel STT-MRAM in-memory 

highly-scalable architecture for BNNs (both  the  weights  and  

neuron  activations  that are  binarized  to  -1  or  +1) with the 

single-access many-MAC operation, allowing to perform 

unrestricted accumulation across rows for full utilization of the 
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array and BNN model scalability. In the proposed architecture, 

inputs are fed through bitlines, and the products between inputs 

and weights are accumulated row-wise via the source lines, 

allowing simultaneous activation of multiple rows. Besides, the 

BNN vector multiplication is performed in the form of 

accumulated select line voltage, instead of power-hungry bitline 

current sensing in [5], [8]. 

Moreover, the reliable operation under process variations is 

enhanced via a time-based sense amplifier [21] and boosted 

voltage sensing [22]. The coordinated adoption of such 

techniques improves the energy efficiency of the periphery, 

eliminating voltage reference generation and distribution. This 

work is an extended version of our previous work in [23]. As 

additional contributions of this manuscript, select line boosting 

is introduced to further enhance the classification accuracy, and 

the area/throughput/energy/accuracy tradeoff is explored and 

quantified from circuit to algorithm. Also, the effect of process 

and environmental variations on robustness and classification 

accuracy is studied. Results are validated with a CNN under the 

CIFAR-10 dataset. 

The remainder of the paper is structured as follows. Section II 

introduces the proposed STT-BNN architecture at the bitcell 

level. The architecture and the periphery circuitry are discussed 

in Section III. Section IV covers the effect of process variations 

on classification accuracy and its tradeoff with performance and 

energy. Design considerations on energy efficiency are 

discussed in Section V. Section VI validates the overall BNNs 

performance of the proposed in-memory macro under practical 

BNN workloads. Section VII concludes this work. 

II. PROPOSED IN-MEMORY ACCELERATOR AT BITCELL LEVEL 

Let us consider a generic BNN model with primary inputs 

𝑖0, 𝑖1…𝑖𝑚−1, inputs ℎ0, ℎ1…ℎ𝑛−1 of the subsequent hidden 

layers, and outputs 𝑜0, 𝑜1… of the output neurons. The generic 

weight in the 𝑙-th layer between its 𝑖-th input and its 𝑗-th output 

is named 𝑤𝑖,𝑗,𝑙, as summarized in Fig. 1. In the following, such 

binary weights are assumed to be stored within the memory 

array.  

Fig. 1 shows how a conventional architecture for in-memory 

BNN acceleration is mapped onto an STT-MRAM memory 

array (or multiple of them, depending on the BNN size), based 

on traditional column-level accumulation. In detail, the binary 

inputs of a given layer are applied to the wordlines of the array, 

and the bit-wise products with the respective weights stored in a 

column are summed up and accumulated in the form of its bitline 

current. These currents are binarized to generate the outputs of 

the portion of the layer being computed. 

This paper introduces a novel STT-MRAM in-memory 

computing architecture for binary neural networks, where both 

weights and neuron activations are binarized to -1  or  +1. The 

binary weights are stored within the bitcells of the memory 

array, which are assumed to be of 2T-2J type as in Fig. 2. This 

structure allows performing unrestricted accumulation across 

rows for full utilization of the array, enabling the execution of 

substantially larger BNN model at a given memory capacity. 

The adopted bitcell is based on the popular 2T-2J structure, 
whose area is 2.2X larger than the densest 1T-1J bitcell 
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Fig. 1. Generic BNN model and mapping onto conventional in-memory STT-

MRAM architecture with column multiplexing (e.g., one column multiplexed to 

the sense amplifier every 16 adjacent columns). 
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Fig. 2. Proposed usage of 2T2J STT-MRAM bitcell for single-bit XNOR of input 

feature and weight (modified from [23]). 

 

structure [24]. 

As shown in Fig. 2, the gate of the access transistors M1 and 

M2 are both connected to the wordline WL, and the source is 

connected to the select line SL. The magnetic junction MTJ0 is 

set either high (anti-parallel magnetization resistance 𝑅𝐴𝑃) or 

low resistance (parallel magnetization resistance 𝑅𝑃) to 

respectively store -1 and +1 weight 𝑊. The other magnetic 

junction MTJ1 is set to the complementary state. The source line 

voltage 𝑉𝑆𝐿 generated by a single bitcell being activated within 

a source line can be expressed through the Norton theorem as a 

function of the short-circuit bitcell current 𝐼𝑏𝑖𝑡𝑐𝑒𝑙𝑙 (i.e., its current 

flowing from M1-M2 when SL is grounded), and the cumulative 

resistance seen from the SL terminal. 

 For a single bitcell under a +1 (-1) input 𝐼𝑁, 𝑉𝐵𝐿,0 = 𝑉𝐵𝐿 and 

𝑉𝐵𝐿,1 =  0 (𝑉𝐵𝐿,0 = 0 and 𝑉𝐵𝐿,1 = 𝑉𝐵𝐿) and the bitcell short-

circuit current 𝐼𝑏𝑖𝑡𝑐𝑒𝑙𝑙 is expressed as 
 

𝐼𝑏𝑖𝑡𝑐𝑒𝑙𝑙(𝐼𝑁 = +1)   =

{
 
 

 
 𝑉𝐵𝐿
𝑅𝑃 +𝑅𝑎𝑐𝑐𝑒𝑠𝑠,0

     𝑖𝑓 𝑊 = +1

𝑉𝐵𝐿
𝑅𝐴𝑃 +𝑅𝑎𝑐𝑐𝑒𝑠𝑠,0

   𝑖𝑓 𝑊 = −1

 (1a) 

𝐼𝑏𝑖𝑡𝑐𝑒𝑙𝑙(𝐼𝑁 = −1)   =

{
 
 

 
 𝑉𝐵𝐿
𝑅𝐴𝑃 +𝑅𝑎𝑐𝑐𝑒𝑠𝑠,1

   𝑖𝑓 𝑊 = +1

𝑉𝐵𝐿
𝑅𝑃 +𝑅𝑎𝑐𝑐𝑒𝑠𝑠,1

     𝑖𝑓 𝑊 = −1

 (1b) 

On the other hand, the overall resistance 𝑅𝑏𝑖𝑡𝑐𝑒𝑙𝑙 seen from the 

SL terminal of the bitcell is data-independent and equal to 

(𝑅𝑀𝑇𝐽,0 +𝑅𝑎𝑐𝑐𝑒𝑠𝑠,0)||(𝑅𝑀𝑇𝐽,1 +𝑅𝑎𝑐𝑐𝑒𝑠𝑠,1). The access 

transistor resistance 𝑅𝑎𝑐𝑐𝑒𝑠𝑠,0 and 𝑅𝑎𝑐𝑐𝑒𝑠𝑠,1 inevitably contribute 

to 𝐼𝑏𝑖𝑡𝑐𝑒𝑙𝑙 due to their series connection with 𝑅𝑀𝑇𝐽,0 and 𝑅𝑀𝑇𝐽,1, 
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and need to be kept small enough to appreciate the state change 

in the MTJs, and hence achieve an adequate sensing margin as 

discussed below. By applying the Norton theorem as in Fig. 2 

and considering that 𝑅𝑎𝑐𝑐𝑒𝑠𝑠,0 = 𝑅𝑎𝑐𝑐𝑒𝑠𝑠,1 = 𝑅𝑎𝑐𝑐𝑒𝑠𝑠 (see effect 

of variations in Section IV), from (1a-b) the resulting voltage 𝑉𝑆𝐿 

for an isolated active bitcell at position (𝑖, 𝑗) within the memory 

array is 

𝑉𝑆𝐿 = 𝑅𝑏𝑖𝑡𝑐𝑒𝑙𝑙 ⋅ 𝐼𝑏𝑖𝑡𝑐𝑒𝑙𝑙,𝑖𝑗 =
𝑉𝐵𝐿

𝑋𝑖𝑗
, (2) 

where 𝑋𝑖𝑗  is defined as 

𝑋𝑖𝑗 =

{
 

 
𝑅𝑃 +𝑅𝑎𝑐𝑐𝑒𝑠𝑠
𝑅𝑏𝑖𝑡𝑐𝑒𝑙𝑙

     𝑖𝑓 𝑊𝑖𝑗⊕ 𝐼𝑁𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = +1 

𝑅𝐴𝑃 +𝑅𝑎𝑐𝑐𝑒𝑠𝑠
𝑅𝑏𝑖𝑡𝑐𝑒𝑙𝑙

  𝑖𝑓 𝑊𝑖𝑗 ⊕𝐼𝑁𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = −1

 (3) 

being 𝑊𝑖𝑗  the weight stored by the bitcell, and 𝐼𝑁𝑗 is the input 

fed to column 𝑗. From (2)-(3), the source line voltage is 

proportional to the bitline voltage and directly depends on the 

XNOR of the input and the weight stored in the bitcell, as desired 

to implement a MAC unit with binary inputs and weights. 

The resulting sensing margin 𝑆𝑀𝑏𝑖𝑡𝑐𝑒𝑙𝑙 of the 𝑉𝑆𝐿 voltage is 

the difference between the values associated with an output 

equal to +1 and -1. From (2), the sensing margin results to 

𝑆𝑀𝑏𝑖𝑡𝑐𝑒𝑙𝑙 = 𝑉𝐵𝐿𝑅𝑏𝑖𝑡𝑐𝑒𝑙𝑙 (
1

𝑅𝑃 + 𝑅𝑎𝑐𝑐𝑒𝑠𝑠
−

1

𝑅𝐴𝑃 + 𝑅𝑎𝑐𝑐𝑒𝑠𝑠
)

= 𝑉𝐵𝐿 ⋅ 𝑇𝑀𝑅 ⋅
𝑅𝑃

𝑅𝑃 +𝑅𝐴𝑃 + 2𝑅𝑎𝑐𝑐𝑒𝑠𝑠
 

(4) 

where 𝑇𝑀𝑅 is the MTJ technology-dependent tunneling 

magnetoresistance ratio (𝑅𝐴𝑃 −𝑅𝑃)/𝑅𝑃 [25], [26]. From (4), 

the sensing margin can be improved by adopting larger bitline 

voltages, and hence at the cost of higher read current and energy 

per operation. The sensing margin is also improved by adopting 

a stronger access transistor, at the cost of higher area/bitcell 

when increasing larger transistor aspect ratio, or higher power 

under lower threshold voltage and higher WL voltage. As a limit 

to the sensing margin, the read current is upper bounded by the 

maximum value that avoids unintentional MTJ bitflips [22]. 

Circuit simulations were performed through the popular Spice-

compatible macroscopic model in [27], [28] for MTJs with 

parameters summarized in Table I, and a commercial 65-nm 

CMOS design kit. Fig. 3 shows the resulting waveforms when 

the WL voltage 𝑉𝑊𝐿 is asserted at 0.7 V and 𝑉𝐵𝐿=0.3 V, and the 

access transistor width is 4X the minimum allowed by the 

technology (i.e., W=0.54 um, L= 0.06 um). Under this sizing, 

the read current through the MTJs in Fig. 2 is 𝐼𝑀𝑇𝐽 = 29.9 µA 

 
TABLE I. MAIN MTJ PARAMETERS  

MTJ size (WxL) 60 nm x 60 nm 

MTJ thickness (Tm) 1.5 nm 

oxide thickness (TMgO) 1.15 nm 

MTJ resistance variability 6.9%* 

nominal 𝑅𝑃 (𝑅𝐴𝑃) 2 KΩ (5.3 KΩ) 

TMR 165% 

max MTJ read current (1E-9 bitflip rate) [22] 50 A 
* The MTJ model variability is calibrated using the experimental results 

in [28]. The MTJ resistance variability is set by the variation of MTJ 

sizes as well as variations in the TMgO thickness. 
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Fig. 3. SL voltages and bitcell currents output at 𝑉𝐵𝐿=0.3 V and 𝑉𝑊𝐿=0.7 V. 
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Fig. 4. SL voltage and sensing margin dependence on a) 𝑉𝐵𝐿, b) 𝑉𝑊𝐿. 

 

(26 µA) when 𝑋𝑁𝑂𝑅 = -1 (+1). These currents are lower than 

the 50-A upper limit imposed by unintended bitflips from 

Table I. From Fig. 3, the source line voltage is 97.6 mV under 

(+1,-1) or (-1,+1) input-weight pairs, whereas it is 185 mV 

otherwise. This leads to a sensing margin of 87.4 mV. 

The effect of 𝑉𝐵𝐿  and 𝑉𝑊𝐿  on the sensing, the margin is shown 

in Figs. 4(a-b), under the above parameter values. From Fig. 

4(a), a 𝑉𝐵𝐿 increase first leads to a linear increase in the sensing  

margin, it then reaches a peak at 𝑉𝐵𝐿0.3 V, and finally leads to 

a moderate monotonic decrease. The linear increase is simply 

due to the voltage drop increase over the MTJ resistances as in 
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(4), whereas the decrease is explained by the moderately non-

linear behavior of 𝑅𝑀𝑇𝐽,𝑃 and 𝑅𝑀𝑇𝐽,𝐴𝑃  leading to a reduction in  

their difference in (4) at relatively large voltages [24]. On the 

other hand, from Fig. 4(b) an increase in 𝑉𝑊𝐿  initially improves 

the sensing margin, and then makes it saturate at 𝑉𝑊𝐿0.7 V, as 

the access transistor resistance starts becoming much smaller 

than 𝑅𝑀𝑇𝐽,𝑃 in (4). Very similar considerations hold in terms of 

access transistors aspect ratio, whose values greater than 4X the 

minimum lead to sensing margin saturation. Accordingly, 𝑉𝐵𝐿 

and 𝑉𝑊𝐿  are respectively set to a minimum value of 0.3 V and 

0.7 V to maximize sensing margin and robustness. From Figs. 

4(a-b), the generation of 𝑉𝐵𝐿 and 𝑉𝑊𝐿  does not need to be 

particularly accurate, as even large deviations of 50-100 mV 

have a minor effect on the sensing margin. 

These considerations justify the choice 𝑉𝐵𝐿0.3 V and 

𝑉𝑊𝐿0.7 V along with the 4X transistor size in the following, as 

they maximize the sensing margin while avoiding over-design. 

III.  STT-BNN ARRAY ARCHITECTURE AND CIRCUIT DESIGN 

This section presents the proposed STT-BNN architecture. 

The 𝑀x𝑁 array in Fig. 5 consists of 𝑀 rows and 𝑁 columns (i.e., 

2𝑁 bitlines), with wordlines being used to enable computation 

in the respective rows, and the source lines as outputs. The 

bitline (BL) drivers encode the input features of the neural 

network being mapped in the form of a signal pair as discussed 

in the previous section (see NMOS and PMOS selection 

transistors at the bottom of Fig. 5). Each wordline (WL) is driven 

by a 2-stage buffer to keep the settling time of the WL signal 

negligible compared to the overall access time. 

A. Array Organization and Computation 

As all rows operate independently of each other, let us 

consider a single row as depicted in blue in Fig. 5. Let the 

number of XNOR outputs equal to +1 (-1)  across the row be 𝑁1 

(𝑁0 = 𝑁− 𝑁1). Compared to the single bitcell resistance 

𝑅𝑏𝑖𝑡𝑐𝑒𝑙𝑙 in Section II, the resistance seen from the SL terminal in 

a row is reduced to 𝑅𝑏𝑖𝑡𝑐𝑒𝑙𝑙/𝑁. From (2)-(3), the select line 

voltage 𝑉𝑆𝐿,𝑖 in the considered row 𝑖-th is 

𝑉𝑆𝐿,𝑖 =
𝑅𝑏𝑖𝑡𝑐𝑒𝑙𝑙
𝑁

∑ 𝐼𝑏𝑖𝑡𝑐𝑒𝑙𝑙,𝑖𝑗

𝑁−1

𝑗=0

= 𝑉𝐵𝐿
𝑅𝑏𝑖𝑡𝑐𝑒𝑙𝑙
𝑁

∑
1

𝑋𝑖𝑗

𝑁−1

𝑗=0

= 

= 𝑉𝐵𝐿 (
𝑁0

𝑁
⋅

𝑅𝑏𝑖𝑡𝑐𝑒𝑙𝑙
𝑅𝐴𝑃 +𝑅𝑎𝑐𝑐𝑒𝑠𝑠

+
𝑁1
𝑁
⋅

𝑅𝑏𝑖𝑡𝑐𝑒𝑙𝑙
𝑅𝑃 +𝑅𝑎𝑐𝑐𝑒𝑠𝑠

) (5) 

where 𝑋𝑖𝑗  is the resistance determining the bitcell current of the 

bitcell (𝑖, 𝑗) in (1)-(3). From (5), the row select voltage linearly 

depends on 𝑁1, ranges from 𝑉𝐵𝐿 ⋅
𝑅𝑏𝑖𝑡𝑐𝑒𝑙𝑙

𝑅𝐴𝑃+𝑅𝑎𝑐𝑐𝑒𝑠𝑠
 to 𝑉𝐵𝐿 ⋅

𝑅𝑏𝑖𝑡𝑐𝑒𝑙𝑙

𝑅𝑃+𝑅𝑎𝑐𝑐𝑒𝑠𝑠
, 

and its mid-point value (i.e., 𝑁1 = 𝑁/2)  is 𝑉𝑆𝐿,50% = 0.5 ⋅ 𝑉𝐵𝐿 . 

The output binarization is performed by assigning the output 

𝑂𝑈𝑇𝑖 of the select line in the generic 𝑖-th row to +1 if 𝑉𝑆𝐿,𝑖 ≥

𝑉𝑆𝐿,50% and to -1 if 𝑉𝑆𝐿,𝑖<𝑉𝑆𝐿,50%. This simply requires a sense 

amplifier (see Subsection B) and the generation of the voltage 

𝑉𝑆𝐿,50%, which is straightforwardly derived from 𝑉𝐵𝐿. Hence, the 

logic output of the senseamp in the 𝑖-th row is equal to the sum 

of the XNOR computations across its bitcells 

𝑂𝑈𝑇𝑖 = ∑ 𝑊𝑖𝑗⨁𝐼𝑁𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑁−1
𝑗=0 . (6) 
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Fig. 5.  STT-BNN architecture and MAC operation mapping onto the array. 

 

The above results are immediately generalized to the entire 

array, as the above scheme applies independently to each row. 

The independent execution of the accumulations in the 𝑀 rows 

achieves full utilization of the array with the maximum degree 

of accumulation-level parallelism of 𝑀.  

B. Source Line Read Out via Time-Based Sense Amplifier 

The binarization of the BNN accumulators in Fig. 5 requires 

the comparison of the 𝑉𝑆𝐿 voltage with the mid-point value 

𝑉𝑆𝐿,50%. To suppress the need for a standalone and accurate 

voltage reference, the time-based sensing (TBS) technique in 

[21] is adopted to move read-out from voltage to time domain. 

The senseamp circuit for the binarization of the accumulated 

value in each row is shown in Fig. 6(a). The TBS senseamp 

converts the SL voltage through a voltage-controlled current-

starved inverter gate. The resulting current 𝐼𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔 is then 

converted to time through the current-starved gate delay, which 

is proportional to 1/𝐼𝑠𝑡𝑎𝑟𝑣𝑒𝑑. Such delay is then compared with 

a delay line-based pulse of duration 𝑇𝑅𝐸𝐹  that inherently tracks 

process/voltage/temperature variations (see delay line in Fig. 

6(a)). The comparison simply requires a latch driven by such a 

pulse, which comes at no cost since the sensing output needs to 

be stored in a latch anyway [21]. An inverter is added between 

the LOAD node and the latch input to sharpen the pulse. Time 

binarization is carried out by digitally configuring the delay 

line, and generates the accumulated result at the latch output. 

The benefits and the limitations of time-based sensing in 

BNNs are evaluated in Fig. 6(b), which plots the SL voltage and 

the sensing delay versus the accumulation result for a typical 
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Fig. 6. (a) Time-based sensing and related timing diagram, (b) SL voltage and 

sensing time vs. 𝑁1  (number of accumulated XNOR outputs equal to +1) from 

a row with 𝑁=128 bitcells [23]. Monte Carlo simulation results are shown for 

the waveform of the latch input 𝐷𝑖𝑛. 

 

array with 𝑁=128. From (5), 𝑉𝑆𝐿 is highest (lowest) when 𝑁1 =
𝑁 (𝑁1 = 0), i.e., when all XNOR outputs within the same row 

are +1 (-1). The same figure shows that the delay of the complete 

in-memory computation is data-dependent, as the SL voltage is 

maximum (minimum) when 𝑁1 = 𝑁 (𝑁1 = 0) since 𝑋𝑖𝑗  in (3) 

is determined by the lower MTJ resistance 𝑅𝑃 (higher MTJ 

resistance 𝑅𝐴𝑃). 

From a robustness viewpoint, the senseamp discrimination 

ability is more challenging when the accumulated value is 

closest to the decision threshold 𝑉𝑆𝐿,50%, and hence when 

having to distinguish 𝑉𝑆𝐿  from the logic value 𝑁1 = 𝑁/2 + 1 

and 𝑁1 = 𝑁/2 − 1. In this worst case, the corresponding delay 

difference at the input of the final latch in Fig. 6(a) was found 

to be 313 ps, which is much higher than a gate delay1, and can 

be hence easily distinguished in any sub-100nm technology. As 

an example, the pulse duration 𝑇𝑅𝐸𝐹  of a delay line based on an 

inverter chain can be tuned with a step down to a few tens of ps 

or lower. The delay line pulse duration 𝑇𝑅𝐸𝐹 inherently mimics 

 
1 For example, the fan-out-of-4 delay of an inverter gate in the adopted 

technology is 15 ps. 

the same circuit as the TBS path delay [21], tracking its PVT 

variations. 

It is worth observing that the computation completion occurs 

at the mid-point delay, rather than after the longest delay 

determined by the input voltage state. Indeed, the output Q of 

the TBS in Fig. 6(a) is latched at the mid-point delay and is 

hence equal to 1 (0) if the overall delay is lower (higher) than 

the mid-point delay generated by the delay line. After latching 

the value, the computation output is stored and a new one can 

be executed, without waiting for the longest delay. After setting 

the mid-point delay to be able to discriminate the above values 

around the decision threshold, the resulting computation time is 

10 ns, which is substantially shorter than prior BNN 

implementations in CMOS logic or memory [6], [8], [13], [14]. 

 The architecture with time-based sensing naturally 

introduces a sampling capacitor 𝐶𝑆𝐿 at the point of sensing (see 

Fig. 6(a)). Such capacitive buffer allows to turn off the select 

line current as soon as its voltage is stable, thus saving energy. 

Also, the worst-case sensing margin and hence robustness can 

be further improved by optimizing the current 𝐼𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔 through 

the size  of transistor MST, and the current-starved inverter load 

determined by the size of MLOAD in Fig. 6(a). Transistor size 

optimization and the exploration of the area-energy-sensing 

error rate tradeoff at design time are discussed in Section V. 

IV.  IMPACT OF PROCESS VARIATIONS 

 Process variations inevitably degrade the sensing margin, 

potentially inducing errors in the logical value at the output of 

each row and hence each accumulation. To quantify the impact 

of variations, Monte Carlo simulations were run under global 

and local variations in both transistors and MTJs, based on the 

simulation framework in Section II. Typical arrays with 𝑀=128 

rows and 𝑁=64, 128, and 256 columns will be considered in the 

examples below. All building blocks from decoding to read-out 

are included to make the array fully functional and self-

consistent. In the adopted simulation framework, the effect of 

fluctuations in 𝑉𝐵𝐿  and 𝑉𝑊𝐿  due to process variations in the 

bitline and wordline drivers was explicitly included. Their effect 

is insignificant, as it leads to variations in 𝑉𝐵𝐿 and 𝑉𝑊𝐿  in the 

0.3% range or lower. 

To quantify the impact of process variations on robustness, 

some important metrics were introduced. First, the cell-level row 

error rate (RER) is the probability of an erroneous output caused 

by variations in an elementary MAC operation [29]: 

𝑅𝐸𝑅 = Pr[𝑇𝑀 < 0] =
1

2
[1 + erf (−

1

√2
⋅

1

𝜎𝑇𝑀/𝜇𝑇𝑀
)] (7), 

where 𝑇𝑀 = 𝑇𝑆𝑊–𝑇𝑅𝐸𝐹  is the time margin or the difference 

between switching time at the TBS output 𝑇𝑆𝑊 and the reference  

time 𝑇𝑅𝐸𝐹 generated by the delay line (see Fig. 6(a)). In (7), 𝜇𝑇𝑀 

and 𝜎𝑇𝑀 denote the mean and the standard variation of the time 

margin 𝑇𝑀. 

The row-level conditional row error rate2 𝐶𝑅𝐸𝑅(𝑘) is the 

conditional error probability under the condition 𝑁1 = 𝑘 [2], [8] 

2 𝐶𝑅𝐸𝑅(𝑘) is generally defined as the complement of the 𝑝𝑎𝑠𝑠_𝑟𝑎𝑡𝑒 [2], [8], 

i.e., 𝐶𝑅𝐸𝑅(𝑘) = 1 − 𝑝𝑎𝑠𝑠_𝑟𝑎𝑡𝑒. 
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(i.e., the output accumulation has a number of (+1) equal to 𝑘, 

which occurs with probability 𝐶𝑁
𝑘/2𝑁) 

𝐶𝑅𝐸𝑅(𝑘) = 𝑅𝐸𝑅(𝑘) ⋅
𝐶𝑁
𝑘

2𝑁
 (8), 

where 𝐶𝑁
𝑘/2𝑁 is the probability that the output accumulation has 

a number of (+1) equal to 𝑘, and 𝐶𝑁
𝑘 is the number of 

combinations of 𝑘 bits chosen from a total of 𝑁 bits [29]. 

Finally, the array-level average error rate (𝐴𝐸𝑅) is the 

average error rate for all possible values of 𝑁1 (i.e., averaging 

𝐶𝑅𝐸𝑅(𝑘) across the values  of 𝑘 from 0 to 𝑁):  

𝐴𝐸𝑅 = ∑𝐶𝑅𝐸𝑅(𝑘)

𝑁

𝑘=0

=∑𝑅𝐸𝑅(𝑘) ⋅
𝐶𝑁
𝑘

2𝑁

𝑁

𝑘=0

 (9), 

which is the overall error probability that quantifies the impact 

of process variations on the output. 

A. Error Analysis under Time-Based Sensing 

As discussed above, the sizes of transistors MST and MLOAD in 

Fig. 6(a) are key design knobs in the senseamp to improve 

robustness. Accordingly, their sizes were swept to explore the 

underlying tradeoffs and discretized as a multiple of an 

elementary minimum-sized transistor. 

A larger size of MST directly reduces the variability of 

𝐼𝑠𝑡𝑎𝑟𝑣𝑖𝑛𝑔 and hence the time margin 𝜎𝑇𝑀/𝜇𝑇𝑀 according to a 

square root law [30]. Accordingly, the 𝑅𝐸𝑅 in (7) is improved 

(i.e., reduced) by selecting a larger size for transistor MST. 

Regarding the effect of MLOAD in Fig. 6(a), a larger size 

monotonically and linearly increases the mean 𝜇𝑇𝑀 of the time 

margin 𝑇𝑆𝑊, due to the linear increase in the current starved 

inverter delay. Hence, the 𝑅𝐸𝑅 in (7) can be arbitrarily reduced 

at the cost of slower sensing and hence lower array throughput. 

From a design standpoint, the size of the MST and MLOAD 

elementary transistor was set with a channel width of 16X (4X) 

the minimum allowed by the technology, and a channel length 

of 8X (4X) longer than the minimum value. In this design, the 

size of MLOAD and MST is set so that their ratio keeps the 

reference delay in Fig. 6(a) equal to 10 ns, and their absolute size 

is set to explore different RER targets, hence AER values. To 

achieve an AER equal to 0.1 with an array of 𝑁=128 at the 

access transistor width of four times the minimum, the 

multiplicities of MST and MLOAD respectively need to be set to 12 

and 19. For the reasons discussed in Section II, the access 

transistor in the bitcell was chosen to be 4X the minimum size, 

as a tradeoff between array density and robustness. The resulting 

error rate from 1,000-run Monte Carlo simulations is shown in 

Fig. 7 versus the number 𝑁1 of XNOR outputs equal to +1 in 

the same row. The worst-case error rate is expectedly observed 

around the decision threshold 
𝑁

2
, as discussed above. 

Quantitatively, the row-level 𝐶𝑅𝐸𝑅 at the center points (𝑁/2 −
1 and 𝑁/2+ 1) has the highest value of 2.4E-2. 

The 𝐶𝑅𝐸𝑅 rapidly improves when moving away from the 

decision threshold, as in Fig. 7. In particular, 𝐶𝑅𝐸𝑅 is halved 

when moving to the next pair of points 𝑁/2 ± 2 around the 

decision threshold. Then, it is reduced by more than 10X at the 

close pair 𝑁/2 ± 4, and rapidly decreases to the very low 

values of 1.2E-5 and 4.1E-5 at 𝑁/2 ± 8. The error rate keeps 

decreasing at an even faster rate under values of 𝑁1 that are 

farther away from N/2. 

From the above considerations, the most significant row-

level errors are confined to very few values of 𝑁1, whereas most 

of the others lead to very small error rates. At the array level, 

this means that the 𝐴𝐸𝑅 in (9) is contributed only by a few 𝑅𝐸𝑅 

values near the reference point, whereas the other components 

give a negligible contribution. From Fig. 8, larger arrays lead to 

a nearly-linearly increase in 𝐴𝐸𝑅. This is because a larger 

number of columns 𝑁 makes the SL voltages around the 

decision threshold closer to each other from (5), which in turn 

makes their discrimination harder and increases the number of 

significant 𝑅𝐸𝑅 contributions to the overall 𝐴𝐸𝑅. From Fig. 8, 

the increase in 𝐴𝐸𝑅 in larger arrays can be mitigated by 

choosing a bitcell with larger access transistors and hence layout 

footprint, as this reduces the effect of local variations across 

bitcells. However, this comes at a significant array area increase, 

as it impacts all bitcells within it. 

To ameliorate the 𝐴𝐸𝑅 in the proposed STT-BNN 

architecture, SL boosting is introduced in the next subsection to 

significantly improve the robustness at minor area overhead and 

at no increase in the bitcell footprint. 

B. SL Boosting for Sensing Error Rate Improvement at Low Area 

To improve the robustness against process variations, the SL 

voltage can be preliminarily magnified before being compared 

with the threshold decision (i.e., before sensing). The boosting 

concept was originally proposed for bitline readout in STT-

MRAM arrays [22], and is here extended to the source line. 

 In source line boosting, a voltage booster with voltage gain 

𝐺 = 𝑉𝑏𝑜𝑜𝑠𝑡𝑒𝑑/𝑉𝑆𝐿 is inserted between the SL and the time-based 

senseamp as in Fig. 9. The voltage gain 𝐺 is easily set to the 

targeted value by cascading an adequate number 𝑛 of voltage 

boosting stages as in Fig. 9 [22]. Accordingly, the senseamp is 

now receiving a much wider input voltage swing 𝑉𝐵𝑜𝑜𝑠𝑡𝑒𝑑 , thus 

enlarging the sensing margin at the cost of relatively small area 

overhead. For example, the area overhead of a second-order 

booster (𝑛=2) with 200-fF boosting capacitors is only 2.8% in a 

128x128 STT-BNN array. 

 Fig. 10 plots the resulting 𝐶𝑅𝐸𝑅 versus 𝑁1 under second-

order SL boosting. Its comparison with Fig. 7 shows an evident 

reduction in the error rate by 2X for the points 𝑁/2 ± 2  around  
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Fig. 7. Row-level conditional row error rate 𝐶𝑅𝐸𝑅 vs. 𝑁1  (number of XNOR 

outputs equal to +1 in the same row, under 𝑁=128 bitcells). 
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Fig. 10. Row-level conditional row error rate 𝐶𝑅𝐸𝑅 vs. 𝑁1  with and without SL 

boosting. 

   

the decision threshold, and by three orders of magnitude or more 

for the points 𝑁/2 ± 8. This clearly improves the 𝐴𝐸𝑅 at the 

array level, as the number of significant 𝑅𝐸𝑅 contributions in 

(9) is further reduced. In particular, the 𝐴𝐸𝑅 under second-order 

SL boosting is respectively improved by 54.67%, 49.8% and 

 
3 Simultaneous (time-staggered) operation of all sub-arrays occupies a larger 

(smaller) fraction of the array at shorter (longer) execution time, as a tradeoff 

that is common to any in-memory compute framework. 

41.92% for 𝑁 equal to 64, 128 and 256, compared to the case 

without SL boosting under an access transistor width of four 

times the minimum. 

 The above improvements are more pronounced than those 

brought by access transistor oversizing as evidenced in Fig. 8, 

and also come with much lower area overhead (e.g., 2.8% 

instead of 16.2% for the array size of 128x128), since they 

impact only senseamps. Accordingly, SL boosting is the 

preferred design choice when tighter 𝐴𝐸𝑅 targets need to be met. 

V. EVALUATION OF ENERGY EFFICIENCY OF STT-BNN 

In the proposed STT-BNN macro in Fig. 5, the energy per 

accumulation across the 𝑁 bitcells in the same row is contributed 

by the bitcells and the row-line periphery as follows: 

𝐸𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝐸𝑟𝑜𝑤 +𝐸𝑆𝐴 
                         = 𝐸𝑊𝐿 +𝐸𝐵𝐿 +𝐸𝑝𝑟𝑒 + 𝐸𝑆𝐴 

(10) 

where 𝐸𝑟𝑜𝑤  is the energy consumed to develop the final SL 

voltage corresponding to the accumulation in a row. This 

includes the energy of bitline pre-charge (𝐸𝑝𝑟𝑒), WL drivers 

(𝐸𝑊𝐿), and the energy consumed by the 𝑁 bitcells that are 

performing the computations (𝐸𝐵𝐿, which is proportional to the 

number of bitcells involved in the process). 𝐸𝑆𝐴 is the senseamp 

energy to binarize the SL voltage for the entire row 

accumulation. 

Fig. 11 shows the energy breakdown for each accumulation 

across the 𝑁=128  bitcells, as evaluated with and without 

applying the source line boosting technique. From this figure, 

𝐸𝐵𝐿 is the dominant contribution and exceeds 75% of the overall 

energy/accumulation. Then, 𝐸𝑆𝐴 is the second largest 

contribution accounting for 13.26% (11.65%) when SL boosting 

is (is not) applied, confirming that SL boosting comes at a minor 

energy cost. The third largest energy contribution is 𝐸𝑊𝐿, which 

accounts for about 10%.  𝐸𝑝𝑟𝑒  is generally insignificant, being 

less than 1%. 

 Fig. 12 plots the energy per row-wise accumulation, and the 

inference accuracies as evaluated from two neural networks built 

in Torch7 [31], and mapped into the proposed STT-BNN macro 

similar to [8]. The first and simpler neural network is a multi-

layer perceptron (MLP) for handwritten digit classification on 

the MNIST dataset [32], whose structure is detailed in Table II. 

The MLP is structured into four layers, and the MAC 

computations for each layer is partitioned into sub-computations 

that fit the array size. The table also details the resulting number 

of STT-MRAM sub-arrays necessary to cover each layer3. For 

instance, Table II indicates that the second layer requires a  
(2,048x2,048) matrix multiplication and accumulation with 

2,048 input features and 2,048 output features. 

 From the same table, the overall matrix multiplication and 

accumulation in Table II is mapped onto different sub-array 

sizes from 256x256 down to 64x64, for which the resulting 

number of sub-arrays required for the computation it is 

evaluated. 

 The second example of the neural network is a convolutional 
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Fig. 12. STT-BNN energy and inference accuracy vs. number of columns 𝑁 in 

(a) MLP classifying handwritten digits (MNIST), (b) CNN classifying images 

(CIFAR-10), both with and without source line boosting (no re-training). 

 

neural network (CNN) for image classification on the CIFAR-
10 dataset [33]. The CNN comprises six convolutional layers 

and three fully-connected layers, as described in Table III. For 

example, the kernel size (128, 256, 3, 3) in its second layer is 

associated with 128 input features, 256 output features, and the 

filter size is 3x3. 

As an illustrative example, Fig. 12(b) shows that source line 

boosting substantially improves the CNN accuracy from 26.16% 

to 68.37% with array size 𝑁 as 256, at the cost of a marginal 

energy increase from 1.43 pJ to 1.46 pJ. The underlying tradeoff 

is discussed in the following section. 

VI. SYSTEM-LEVEL VALIDATION AND COMPARISON WITH 

PRIOR ART 

The impact of process variations and the effectiveness of the 

proposed architecture were studied by mapping the neural 

networks in the previous section onto the STT-BNN array. To 
 

TABLE II. STRUCTURE OF MLP FOR HANDWRITTEN DIGIT CLASSIFICATION 

AND MAPPING OF EACH LAYER ONTO THE STT-BNN ARRAY (𝑀X𝑁)  

MLP 

Layer 

matrix size in the 

neural network 

(MLP) 

STT-BNN sub-array size  

256x256 128x128 64x64 

1 784x2048 - - - 

2 2048x2048 64 256 1024 

3 2048x2048 64 256 1024 

4 2048x10 8 16 32 

 

TABLE III. STRUCTURE OF CNN FOR IMAGE CLASSIFICATION AND MAPPING 

OF EACH LAYER ONTO THE STT-BNN ARRAY (𝑀X𝑁)  
CNN 

Layer 

kernel size in the 

neural network 

(CNN) 

STT-BNN sub-array size  

256x256 128x128 64x64 

1 (3, 128, 3, 3) - - - 

2 (128, 128, 3, 3) 3 9 36 

3 (128, 256, 3, 3) 6 18 72 

4 (256, 256, 3, 3) 9 36 144 

5 (256, 512, 3, 3) 18 72 288 

6 (512, 512, 3, 3) 36 144 576 

7 8192x1024 128 512 2048 

8 1024x1024 16 64 256 

9 1024x10 4 8 16 

 

propagate the effect of errors to the system level, errors were 

injected in the array according to the AER profile in Section IV. 

As discussed above, the size of the STT-BNN sub-array and 

the size of the bitcell access transistor affect the average error 

rate, which in turn determines the classification accuracy of the 

neural network mapped onto the array. Regarding the size of the 

array, Figs. 12(a)-(b) show that the classification accuracy tends 

to be degraded in larger sub-arrays with an increased number of 

columns N. Such accuracy degradation is expected from the 

error rate increase caused by the larger 𝑁 in (9), which places a 
larger number of accumulation values close to the decision 

threshold of the senseamp. Under source line boosting, the 

degradation of the MLP classification accuracy is negligible in 

wider arrays with practical size. For example, an array with 

𝑁=128 experiences a 0.05% accuracy drop, compared to an 

array with 𝑁=64. The accuracy degradation is somewhat more 

pronounced yet still rather small (0.41%), when moving to 

𝑁=256 from Fig. 12(a). 

The CNN accuracy degradation at 𝑁=128 in Fig. 12(b) is 

expectedly more pronounced (2.26%) than the MLP, being 

image classification (CIFAR-10 dataset) a significantly more 

complex task than handwritten digit classification (MNIST 

dataset). The CNN accuracy is degraded much more 

significantly (13.9%) when 𝑁 is increased to 256. From the 

same figures, the accuracy without source line boosting is 

degraded much faster and to an intolerable extent (49.04%) at 

𝑁=256. In other words, source line boosting is very effective in 

preserving accuracy in spite of local variations, and is necessary 

to keep accuracy within reasonable bounds in larger arrays. 

From Figs. 12(a)-(b), this is achieved at the cost of a minor 

energy increase (2%) compared to the case without source line 

boosting.  

 From the above considerations, the number of columns 𝑁 

per sub-array should be increased to improve the array density, 

and to increase the maximum degree of parallelism in the 

accumulation process, and hence improve the throughput. 

Source line boosting helps extend the range of sub-array sizes 
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at which the accuracy degradation is within a given target, and 

hence makes the area-throughput-accuracy tradeoff more 

favorable at the expense of energy. 

 The effect of the access transistor size on the inference 

accuracy is shown in Figs. 13(a)-(b) for the MLP and the CNN 

neural network. From these figures, the access transistor 4X size 

is confirmed to be a good compromise between array density and 

accuracy. Indeed, a size increase to 6X the minimum allowed 

leads to a minor accuracy improvement towards the ideal 

accuracy obtained when no process variations occur. As a 

representative example, the accuracy at 4X size for the MLP 

(CNN) computation at 𝑁=128 drops by 0.29% (5.7%) compared 

to the ideal accuracy obtained without variations, from Figs. 

13(a-b).  

The effect of temperature variations on the inference accuracy 

is depicted in Fig. 13 for N=128. Compared to the STT-BNN 

design at room temperature, the classification accuracy of the 

MLP slightly drops by up to 0.1% at 85 oC, whereas it drops 

more significantly by 3.41% for the CNN in view of its more 

complex task. Also, compared to the baseline BNN in [31], the 

classification accuracy of the MLP drops by up to 0.48% at 85 

oC, whereas it drops by 12% for the CNN. Overall, the effect of 

mismatch is markedly more pronounced than temperature. 

Our proposed STT-BNN architecture is able to utilize 100% 

of a sub-array simultaneously, in view of its row-level 

accumulation process over source lines, which can 

simultaneously utilize all columns. Indeed, column multiplexing 

does not affect accumulation over source lines, allowing to 

accumulate overall bitlines instead of only those selected by 

column multiplexers. 

Table IV summarizes the comparison with prior art on in-

memory computing architectures based on non-volatile arrays, 

including the proposed STT-BNN architecture as reported for a 

128x128 sub-array size. From this table, the maximum 

achievable classification accuracy of STT-BNN over the 

MNIST dataset is equivalent to [8], [35] and better than [15] by 

3.4%. The work in [8] uses a 3-bit multilevel sense amplifier 

(i.e., a 3-bit ADC) to push the classification accuracy over the 

CIFAR-10 dataset at 86.08%, which is 6.07% higher than the 

proposed STT-BNN. However, the adoption of ADCs in the as 

readout circuitry comes at a very significant penalty in terms of 

throughput, which is improved by four orders of magnitude in 

STT-BNN thanks to the adoption a simple (1-bit) sense 

amplifier, which is ubiquitously available in memory periphery 

even for conventional read/write. Similarly, STT-BNN 

improves the energy efficiency over [8] by 2.2X, and by 680-

18,400X compared to [17], [18]. The energy efficiency 

improvement offered by STT-BNN can be attributed to its 

unique ability to support full-array MAC operations in a single 

memory access phase, and the replacement of common current 

sensing with the more energy-frugal voltage (ADC-less) 

sensing. 

VII. CONCLUSION 

In this paper, the STT-BNN architecture for in-memory BNN 

acceleration in STT-MRAM arrays has been introduced. In the 

STT-BNN architecture, the products of inputs and weights are 

accumulated over source lines at the row level. This allows full 

utilization of the array and hence higher throughput than prior 

STT-MRAM architectures. Since the input neurons are fed 

through bitlines instead of wordlines, the MAC computation 

also achieves an energy efficiency that is superior to prior non-

volatile memory architectures. 

To gain an insight into the impact of process variations, circuit 

and analytical models have been derived to quantify the error 

rate at the bitcell, row, and array level. The resilience against 

variations has been improved through the adoption of time-

based sensing (TBS) and source line boosting, making the area-

throughput-accuracy tradeoff more favorable. 

In summary, the unique full array utilization, the energy 

efficiency, and the accuracy in practical neural network 

computations make the STT-BNN architecture well suited for 
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Fig. 13. Inference accuracy of proposed STT-BNN on (a) MNIST and (b) 

CIFAR-10 dataset vs. access transistor size for various sub-array sizes. 
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TABLE IV. COMPARISON WITH PRIOR ART 

 
VLSI’21 

[34] 

DATE’18 

[8] 

IEDM’18 

[15] 

IEEE Trans. Magn.’18 

[17] 

TCAD’20 

[18] 

ISCAS’19 

[35] 

This work 

 

memory type SRAM RRAM STT-MRAM STT-MRAM STT-MRAM STT-MRAM STT-MRAM 

technology 28 nm 65 nm 45 nm 45 nm 45 nm 22 nm 65 nm 

single-memory access 

MAC operations 
YES YES YES NO NO YES YES 

neural network 

supported 

high-precision 

DNN 
BNN BNN XNOR-Net 

binary-weight 

CNNs 

high-precision 

DNN 
BNN 

activations / weights 5b /1b 1b/1b 1b/1b 1b/1b 1b/1b 4b/5b 1b/1b 

sub-array size 1152x256 128x128 128x256 NA 512x256 64x576 128x128 

DAC required YES YES NO NO NO YES NO 

max throughput 

(TOPS) 
6.144 NA NA NA NA NA 3.28 

max energy efficiency 

(TOPS/W) 
5796 141 NA 0.0169 0.455 NA 

311 a 

(319 b) 

accuracy in 

MLP-MNIST / 

CNN-CIFAR-10 

NA / 

91.1% 

98.43% / 

86.08% 

< 95% / 

N/A 
NA/ NA NA/ NA 

98%/ 

91% 

98.42% / 

80.01% 

a This work with second-order SL boosting 
b This work without SL boosting 

 

in-memory compute frameworks that leverage available STT-

MRAM arrays via simple enhancement of their periphery. 

ACKNOWLEDGEMENT 

The authors acknowledge the support of the National R&D 

Program through the National Research Foundation of Korea 

(NRF) funded by Ministry of Science and ICT 

(2020M3F3A2A01085755) with fifty percent; fifty percent of 

the NRF-CRP20-2017-0003 “CogniVision” grant from the 

Singapore National Research Foundation and the 102.01-

2018.310 grant from the Vietnam National Foundation for 

Science and Technology Development (NAFOSTED). 

REFERENCES 

[1] M. Courbariaux, Y. Bengio, “Binarized Neural Networks: Training Neural 

Networks with Weights and Activations Constrained to +1 or -1,” arXiv: 

1602.02830, 2016. 

[2] J. Kim, J. Koo, T. Kim, Y. Kim, H. Kim, S. Yoo, J. J. Kim, “Area-Efficient 

and Variation Tolerant In-Memory BNN Computing Using 6T SRAM 

Array,” 2019 Symposium on VLSI Circuits. 

[3] S. Jain, L. Lin, M. Alioto, “Broad-Purpose In-Memory Computing for 

Signal Monitoring and Machine Learning Workloads,” IEEE Solid-State 

Circuits Letters (invited), vol. 3, pp. 394-397, Sept. 2020. 

[4] R. Liu, et al., “Parallelizing SRAM Arrays with Customized Bit-Cell for 

Binary Neural Networks,” in Proc. of ACM/IEEE DAC, 2018. 

[5] X. Sun, X. Peng, P. Y. Chen, R. Liu, J. S. Seo, S. Yu, “Fully Parallel 

RRAM Synaptic Array for Implementing Binary Neural Network with (+1, 

-1) Weights and (+1, 0) Neurons,” in Proc. of ASPDAC, 2018, pp. 574-579. 

[6] W. H. Chen, K. X. Li, W. Y. Lin, et al., “A 65nm 1Mb Nonvolatile 

Computing-in-Memory ReRAM Macro with Sub-16ns Multiply-and-

Accumulate for Binary DNN AI Edge Processors,” in ISSCC Dig. Tech. 

Papers, 2018, pp. 494-496. 

[7] K. V. Pham, T. V. Nguyen, S. B. Tran, H. K. Nam, M. J. Lee, B. J.  Choi, 

S. N. Truong, K. S. Min, “Memristor Binarized Neural Networks,” Journal 

of Semiconductor Techology and Science, vol.18, no.5, October, 2018. 

[8] X. Sun, S. Yin, X. Peng, R. Liu, J. S. Seo, S. Yu, “XNOR-RRAM: A 

Scalable and Parallel Resistive Synaptic Architecture for Binary Neural 

Networks,” in Proc. of DATE, 19-23 March 2018. 

[9] S. Yu, et al., “Binary Neural Network with 16 Mb RRAM Macro Chip for 

Classification and Online Training”, IEEE International Electron Devices 

Meeting (IEDM), 2016. 

[10] A. P. Chowdhury, P. Kulkarni, M. N. Bojnordi, “MB-CNN: Memristive 

Binary Convolutional Neural Networks for Embedded Mobile Devices,” 

Journal of Low Power Electronics and Applications, October 2018. 

[11] H. Cai, et al., “Interplay Bitwise Operation in Emerging MRAM for 

Efficient In‑memory Computing,” CCF Transactions on High 

Performance Computing, Vol. 2, pages 282–296 (2020). 

[12] L. Chang, et al., “PXNOR-BNN: In/With Spin-Orbit Torque MRAM 

Preset-XNOR Operation-Based Binary Neural Networks,” IEEE Trans. on 

VLSI Systems, vol. 27, no.11, Nov. 2019. 

[13] S. Resch, et al., “PIMBALL: Binary Neural Networks in Spintronic 

Memory,” ACM Trans. Archit. Code Optim. 16, 4, Article 41, Oct. 2019. 

[14] S. Jain, A. Ranjan, K. Roy, A. Raghunathan, “Computing in Memory with 

Spin-Transfer Torque Magnetic RAM,” IEEE Trans. on VLSI Systems, vol. 

26, no. 3, pp. 470–483, Mar. 2018. 

[15] N. Xu, et al., “STT-MRAM Design Technology Co-Otimization for 

Hardware Neural Networks,” IEEE International Electron Devices 

Meeting (IEDM), 2018. 

[16] S. Gao, et al., “MRAM Acceleration Core for Vector Matrix Multiplication 

and XNOR-Binarized Neural Network Inference,” International 

Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), 

2020. 

[17] Y. Pan et al., "A Multilevel Cell STT-MRAM-Based Computing In-

Memory Accelerator for Binary Convolutional Neural Network," IEEE 

Transactions on Magnetics, vol. 54, no. 11, pp. 1-5, Nov. 2018. 

[18] S. Angizi, Z. He, A. Awad and D. Fan, "MRIMA: An MRAM-Based In-

Memory Accelerator," IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems, vol. 39, no. 5, pp. 1123-1136, May 2020. 

[19] Y. Seo, K. W. Kwon, “Area Optimization Techniques for High-Density 

Spin-Orbit Torque MRAMs”, Electronics 2021, 10, 792.  

[20] H. Cai, et al., “Proposal of Analog In-Memory Computing with Magnified 

Tunnel Magnetoresistance Ratio and Universal STT-MRAM Cell,” 

arXiv:2110.03937, 2021. 

[21] Q. K. Trinh, S. Ruocco, M. Alioto, “Time-Based Sensing for Reference-

Less and Robust Read in STT-MRAM Memories,” IEEE Trans. on CAS – 

part I, vol. 65, no. 10, pp. 3338–3348, 2018. 

[22] Q. K. Trinh, S. Ruocco, M. Alioto, “Novel boosted-voltage sensing scheme 

for variation-resilient STT-MRAM read,” IEEE Trans. Circuits Syst. I, 

Reg. Papers, vol. 63, no. 10, pp. 1652–1660, Oct. 2016. 

[23] T. N. Pham, Q. K. Trinh, I. J. Chang, M. Alioto, “STT-MRAM 

Architecture with Parallel Accumulator for In-Memory Binary Neural 

Networks”, in Proc. of ISCAS, 2021, pp. 1-5. 

[24] D. Apalkov, et al., “Spin-Transfer Torque Magnetic Random Access 

Memory (STT-MRAM),” ACM Journal on Emerging Technologies in 

Computing Systems, Vol. 9, No. 2, Article 13, May 2013. 

[25] C. Augustine, N. N. Mojumder, X. Fong, S. H. Choday, S. P. Park, K. Roy, 

“Spin-Transfer Torque MRAMs for Low Power Memories: Perspective 

and Prospective,” IEEE Sensors Journal, Vol.12, No.4, April 2012. 

[26] A. Raychowdhury, D. Somasekhar, T. Karnik, V. De, “Design Space and 

Scalability Exploration of 1T-1STT MTJ Memory Arrays in the Presence 

of Variability and Disturbances,” IEEE International Electron Devices 

Meeting (IEDM), 2009. 

[27] X. Fong, S. H. Choday, P. Georgios, C. Augustine, K. Roy. (Aug. 2013). 

SPICE Models for Magnetic Tunnel Junctions Based on Monodomain 



11 

 

Approximation. [Online] - Available:  

https://nanohub.org/resources/19048. 

[28] C. J. Lin et al., “45nm low power CMOS logic compatible embedded STT-

MRAM utilizing a reverse-connection 1T/1MTJ cell,” 2009 IEEE Int. 

Electron Devices Meeting, pp. 1–4, Dec. 2009. 

[29] R. E. Walpole, R. H. Myers, S. L. Myers, K. Ye, Probability & Statistics 

for Engineers & Scientists, Prentice Hall, 2006. 

[30] M. Alioto, G. Scotti, A. Trifiletti, “A Novel Framework to Estimate the 

Path Delay Variability on the Back of an Envelope via the Fan-Out-of-4 

Metric,” IEEE Trans. on CAS – part I, vol. 64, no. 8, pp. 2073-2085, Aug. 

2017. 

[31] Y. Kim, H. Kim, J. Kim, “Neural Network-Hardware Co-design for 

Scalable RRAM-Based BNN Accelerators,” arXiv: 1811.02187, 2019. 

[32] LeCun, Y. & Cortes, C. (2010). MNIST handwritten digit database. 

[Online] Available: http://yann.lecun.com/exdb/mnist/. 

[33] Alex Krizhevsky master thesis “Learning Multiple Layers of Features 

from Tiny Images” (CIFAR-10 dataset), 2009. 

[34] J. Lee, H. Valavi, Y. Tang and N. Verma, "Fully Row/Column-Parallel In-

memory Computing SRAM Macro employing Capacitor-based Mixed-

signal Computation with 5-b Inputs," 2021 Symposium on VLSI Circuits, 

2021, pp. 1-2. 

[35] A. D. Patil, H. Hua, S. Gonugondla, M. Kang and N. R. Shanbhag, "An 

MRAM-Based Deep In-Memory Architecture for Deep Neural Networks," 

in Proc. of ISCAS, 2019, pp. 1-5. 

 
 

Thi-Nhan Pham received the BS degree in Electronics and 

Telecommunications from Le Quy Don Technical 

University, Hanoi, Vietnam, in 2017. She is currently 

pursuing the M.S. and Ph.D. combined degree in the 

Department of Electronics and Radio Engineering, Kyung 

Hee University (KHU), Republic of Korea. Her research 

interests are emerging memory technologies, energy-

efficient architecture and in-memory computing. 

 

 

 

 

Quang-Kien Trinh (M’ 15) received BS. (2007) and 

MS(2009) Degrees of Applied Mathematics and Physics 

respectively from Institute of Physics and Technologies 

(State University) in Moscow, Russia; he received Ph.D. 

(2018) in Computer Engineering from the National 

University of Singapore. Currently, he is a senior 

researcher and the deputy head of the Department of 

Microprocessor Engineering, Faculty of Radio-

Electronics, Le Quy Don Technical University. He has 

authored or coauthored more than 35 publications. His research interest 

includes low-power integrated circuit design, emerging memory technologies, 

and hardware security. 

 

 

 

Ik-Joon Chang (M’12) received the B.S. degree, with 

summa cum laude, in electrical engineering from Seoul 

National University, Seoul, Korea. And he acquired his 

M.S. and Ph.D. degree from the School of Electrical and 

Computer Engineering, Purdue University, West 

Lafayette, IN, in 2005 and 2009, respectively. After his 

graduation, he worked in Samsung flash design team for 

two years. Now, he is an associate professor of Kyunghee 

University, Korea. 

 

 

Massimo Alioto (M’01–SM’07-F’16) is currently with the 

ECE Department, National University of Singapore, where 

he leads the Green IC Group, directs the Integrated Circuits 

and Embedded Systems area and the FD-fAbrICS research 

center. Previously, he held positions at the University of 

Siena, Intel Labs, University of Michigan Ann Arbor, 

University of California, Berkeley, and EPFL. 

He has authored or coauthored more than 330 publications and four books, 

including Enabling the Internet of Things-From Circuits to Systems (Springer, 

2017) and Adaptive Digital Circuits for Power-Performance Range Beyond 

Wide Voltage Scaling (Springer, 2020). His primary research interests include 

self-powered wireless integrated systems, widely energy-scalable systems, data-

driven integrated systems and hardware security, among the others. 

He is the Editor in Chief of the IEEE Transactions on VLSI Systems (2019-

2022), and was the Deputy Editor in Chief of the IEEE Journal on Emerging and 

Selected Topics in Circuits and Systems (2018). In 2020-2021 he was 

Distinguished Lecturer of the IEEE Solid-State Circuits Society. In 2022-2023 

and 2009-2010, he is/was Distinguished Lecturer of the IEEE Circuits and 

Systems Society, for which he was also member of the Board of Governors 

(2015-2020), and Chair of the “VLSI Systems and Applications” Technical 

Committee (2010-2012). He served as Guest Editor of several IEEE journal 

special issues, and Associate Editor of a number of IEEE and ACM journals. He 

is/was Technical Program Chair in a number of IEEE conferences (e.g., ISCAS 

2023, SOCC, ICECS), and is currently in the IEEE “Digital architectures and 

systems” ISSCC subcommittee, and the ASSCC TPC. Prof. Alioto is an IEEE 

Fellow. 

https://nanohub.org/resources/19048
http://yann.lecun.com/exdb/mnist/

