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Abstract
Describing the nonlinear behaviour of constitutive materials plays an important role in structural analysis. The Giuffrè–
Menegotto–Pinto (GMP) model is widely used in the nonlinear modelling of steel structures, with its constituent parameters 
often calibrated from tests. However, the experimental results obtained require intermediate identification procedures before 
being used directly, meanwhile, the calibration of model parameters based on experimental data is complicated due to the 
many interrelated constituent variables. This paper aims to propose a method that calibrates the GMP model parameters 
optimally based on the experimental data. An available set of test results of high-strength steels subjected to cyclic strain is 
employed to perform an optimal analysis. The obtained results are then compared to numerical and experimental results to 
evaluate the effectiveness of the proposed method. An extensive study was carried out to evaluate the applicability of the 
optimal parameters obtained and those suggested by OpenSees. The findings reveal that the proposed procedure is highly 
efficient, making it a useful option for developing OpenSees applications that automatically calibrate model parameters. A 
typical 3D steel frame structure subjected to an earthquake is analyzed to evaluate the applicability of the results obtained.

Keywords Giuffrè–Menegotto–Pinto model · Optimal analysis method of parameters · Optimally calibrated model · Cyclic 
behaviour · OpenSees

1 Introduction

In recent years, steel structures have been increasingly 
used in construction engineering. Based on the numerous 
undeniable benefits and high stability at a reasonable cost, 
they have become the preferred structural solutions and 
functional devices in design, especially for large-scale 
structures located in seismic regions.

High-strength and low-strength steel (i.e., low carbon 
steel) are two common types of steel that have been widely 
used in construction engineering with different functions and 
roles, depending on the representative structural element. 

Based on many outstanding advantages, high-strength 
steel is known as one of the most commonly used steels 
for structures. It facilitates creating structures that are 
relatively both stronger and lighter than other traditional 
structures such as concrete, wood, etc. Consequently, it 
not only reduces the size and weight of structures but also 
allows the opening of large spaces with high performance 
and sustainability. Further, it offers flexible adaptation as 
it can be pre-manufactured in various sizes, resulting in 
quick installation and construction. Meanwhile, low carbon 
steel is considered a functional material that is commonly 
used in seismic design based on its great ductility. As a 
result, it’s used in advanced seismic technologies, typically 
as additional energy dissipation devices for structures to 
provide seismic protection.

Nonlinearities are common in most applications involving 
steel structures, especially when the structures are subjected 
to severe impacts such as strong earthquakes. Specifically, 
the nonlinear behaviours can occur in some specific 
structural components (performance-based seismic design), 
supplementary devices, or both, all of which play important 
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components in dissipating energy through inelastic 
deformations inside structures and/or devices. Therefore, 
the nonlinear behaviour of steel materials has always been 
a topic of high interest in recent decades (Anderberg, 1988; 
Chan et al., 2013; Cofie & Krawinkler, 1985; Dai Nguyen 
& Guizani, 2021; Dunne & Petrinic, 2005; Garivani et al., 
2016; Myers, 2009; M. Wang, Fahnestock, et al., 2017; 
Wang, Li, et al., 2017; Ziemian, 1990).

In order to investigate the nonlinear response of materials 
and structures, two fundamental methodologies, including 
tests and numerical modelling, are commonly performed. 
Due to high costs and limited conditions, tests are mainly 
conducted on specific structural components or small-scale 
structures. In such a context, the numerical analysis method 
seems to be the most effective solution where the nonlinear 
time-history analysis is widely employed, especially to 
investigate the nonlinear responses of structures subjected 
to earthquakes. Therefore, current seismic design codes 
consider this methodology to be an effective and reliable 
method for seismic study (AASHTO, 2017; ASCE/
SEI-41–13, 2014; CSA-S6, 2019; ECS, 2005a; NRCC, 
2015; TCVN-9386:, 2012, 2012). In addition, the great 
development of structural analysis software has provided 
many effective solutions to employ nonlinear analyses. 
However, despite the undeniable advantages of numerical 
approaches, the accuracy of numerical analyses is strongly 
dependent on the fit that can describe the behaviour of 
constitutive materials. In other words, the accordance 
between the numerical model and the real structural model. 
The behaviour of materials is consequently considered a key 
parameter and it can only be determined by tests to identify 
the constitutive parameters for numerical models.

Generally, the fundamental method to define the 
behaviour of steels is to conduct experimental studies of 
representative steel specimens by uniaxial tests under two 
typical loading scenarios, including monotonic loading 
and cyclic loading, corresponding to the behaviour of 
the structure in terms of static and cyclic dynamic loads. 
Research on the monotonic behaviour of steel have been 
investigated over the years, the obtained results allowed to 
provide analytical models of materials. Anderberg (1988) 
recognized that an analytical description of the stress–strain 
behaviour is essential, especially in numerical modelling 
solutions. Accordingly, the experimental method used to 
determine the strength properties is of great importance to 
obtain accurate results. Based on the model of Ramberg and 
Osgood (1943), the authors developed a simplified model 
based on expressing the deformation transition via three 
components (Young’s modulus and two secant strengths) 
that are separately obtained from different monotonic 
tests. Real et al. (2014) investigated the difference between 
various nonlinear behaviour models of stainless steel using 
monotonic test data. The authors developed an interactive 

computer program to analyse the available experimental 
data which allows determining the essential parameters for 
the expression of the analytical model for various stainless 
steels.

On the other hand, according to obtained results of 
experimental studies on the nonlinear behaviour of steel 
structures, the cyclic loading offers a significant alteration 
in the behaviour of the steel structure compared with the 
monotonic loading (Hai et al., 2018; M. Wang, Fahnestock, 
et al., 2017; Wang, Li, et al., 2017). In addition, the cyclical 
feature of steel structures has been carried out and widely 
applied over decades, especially for the systems exhibiting 
nonlinear responses under seismic impacts (Aghlara & 
Tahir, 2018; Campbell & Co-auteur, 1970; Dai Nguyen & 
Guizani, 2021; Jamkhaneh et al., 2019; Saeedi et al., 2016; 
Ziemian, 1990). Based on the obtained experimental results, 
numerous observed cyclical behaviours of steel structures 
have been investigated and developed into a series of 
constitutive models with different degrees of compatibility 
(Bouc, 1967; Chaboche, 1986; Giuffrè, 1970; Hu & Shi, 
2018; Menegotto & Pinto, 1973; Takeda et al., 1970; Y.-B. 
Wang, Fahnestock, et al., 2017; Wang, Li, et al., 2017; Wen, 
1976). In general, these proposed models are developed 
based on the obtained cyclic stress–strain relationship from 
extensive experimental studies. They generally concern 
the Bauschinger effect and kinematic/isotropic hardening 
behaviour, which both are important aspects of the overall 
cyclic loading history (Bauschinger, 1886; Myers, 2009).

Further, these models are phenomenologically established 
rather than being constructed on the basis of mechanical 
principles where their characteristics are considered by 
some typical parameters making them as generic as possible 
in order to match a variety of experimentally observed 
behaviours. Specifically, based on the available data on the 
stress–strain relationship of structures, essential parameters 
for commonly used constitutive models are determined (Hu 
& Shi, 2018; M. Wang, Fahnestock, et al., 2017; Wang, 
Li, et al., 2017). In the context of the increasing use of 
numerical approaches in structural analysis, these models 
are useful in predicting the nonlinear behaviour of structures 
in a realistic manner.

In practice, the experimental data can be generated from 
pre-planned testing and/or publicly available datasets. The 
calibration process is then carried out by looking for a 
set of model parameters that match the analytical results 
and the experimental test as accommodating as possible 
(Anderberg, 1988; Hai et al., 2018; Hu & Shi, 2018; Real 
et al., 2014; M. Wang, Fahnestock, et al., 2017; Wang, Li, 
et al., 2017; Y.-B. Wang, Fahnestock, et al., 2017; Wang, 
Li, et al., 2017). Several studies have used such models in 
analysis to evaluate the nonlinear behaviour of structures 
(Dai Nguyen & Guizani, 2021; Hai et al., 2018; Sheikhi 
& Fathi, 2020; Taiyari et al., 2019; M. Wang, Fahnestock, 
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et al., 2017; Wang, Li, et al., 2017). Typically, some studies 
compare the specific models to explore the applicability 
of each one for the considered steel structure (Hai et al., 
2018; Real et al., 2014). The remaining problem is that the 
parameters of the selected model have not been calibrated 
in an optimal way, leading to potential errors in evaluating 
its proper applicability (Hai et al., 2018) as well as the 
reliability of analysis results.

Logically, the accuracy of numerical analysis responses is 
driven by the applicability of the equivalent model utilized. 
In the past decades, although several phenomenological 
models have been carried out alongside with equivalent 
calibrated models, the concordance of numerical models 
with experimental tests still has shortcomings, and the 
optimal analysis of the model parameters to improve the 
accuracy of numerical analyses has received insufficient 
attention. Consequently, optimal identification of the 
essential parameters for the representative model of the 
structure's behaviour is an important phase of structural 
analysis calibration, allowing the most approximate 
reflection of the material behaviour of the real structure 
while increasing the accuracy and efficiency of subsequent 
numerical analyses.

In the current context of performance-based seismic 
design, numerical simulation has increasingly become an 
effective method. The majority of the numerical studies 
were conducted using commercial software with high 
performance and accuracy in structural analysis, which 
effectively represented various material behaviour models. 
Practically, typical nonlinear behaviours of steel have been 
integrated into commercial structural analysis programs 
such as Abaqus (Abaqus, 2014), ANSYS (ANSYS, 2021), 
SAP2000 (SAP2000, 2020), etc., which offer a large library 
of finite elements and great GUIs to enable an efficient and 
detailed modelling. However, due to their limited scalability 
and high investment costs, they are out of reach for most 
researchers.

The Open System for Earthquake Engineering Simulation 
(OpenSees) of Pacific Earthquake Engineering Research 
(PEER) Center (OpenSees, 2020) is one of the most widely 
used open-source software for studying the structure 
subjected to earthquakes with a variety of material behaviour 
models and analysis methods. It offers a potential solution 
in the form of a community-owned research code with 
significant and expanding modelling capabilities, as well as 
a larger possibility for research and development initiatives 
to last longer. In addition, it allows the integration of 
extensive tools for processing experimental results, resulting 
in not only a reduction in intermediate steps but also an 
increase in the efficiency of analyses. With many undeniable 
advantages, OpenSees is increasingly used in the seismic-
resistant design. Specifically, OpenSees has a variety of 
steel models, including the Giuffrè-Menegotto-Pinto model 

(Giuffrè, 1970; Menegotto & Pinto, 1973), which is one 
of the most extensively utilized for seismic analysis steel 
structures (Bosco et al., 2016; OpenSees, 2021).

This paper aims to perform an optimal procedure that 
is integrated into OpenSees, to calibrate the Giuffrè-
Menegotto-Pinto (GMP) model for the cyclic nonlinear 
behaviour of steel from the experimental tests.

To this end, the description of the GMP model integrated 
into OpenSees is first outlined. The proposed procedure for 
optimal identification and analysis of the model’s parameters 
is presented. The proposed method is then evaluated by a 
comparison between the optimally calibrated model with 
available experimental results and available non-optimal 
models of typical high-strength steels. An extensive study 
using the values recommended by OpenSees for critical 
parameters to evaluate the convenience appropriateness of 
the suggested values and the effectiveness of the optimally 
calibrated model. The obtained parameters for specific high-
strength steel are then assigned to a typical steel structure 
subjected to earthquakes to investigate the applicability of 
the proposed method.

2  Overview the Giuffrè–Menegotto–Pinto 
(GMP) Model

The GMP model, which was first developed by Giuffrè 
(1970), is based on Goldberg and Richard’s nonlinear 
stress–strain relationship (Goldberg & Richard, 1963) 
and integrates the influence of inelastic deformations 
on the Bauschinger effect (Bauschinger, 1886) observed 
from tested steel specimens. Namely, Giuffrè proposed a 
set value of parameters for the constitutive model based 
on the obtained response of cyclic stress–strain relation 
derived from the test of a single 10-mm-diameter specimen 
subjected to symmetric tension–compression cycles, which 
was further improved by Menegotto and Pinto (Menegotto 
& Pinto, 1973). The hysteretic behaviour of the GMP model 
is illustrated in Fig. 1.

The expression of the GMP model is assumed as the 
following:

f* and ε* are the normalized stress and strain that are 
determined as the equation (2) follows:

f, ε) are the stress–strain at the considering state; (f0, ε0) 
are the yield stress and yield strain, respectively; (fr, εr) are 

(1)f ∗= b� ∗ +
(1 − b)� ∗

(
1 + |� ∗|R

)1∕R

(2)f ∗=
f − fr

f0 − fr
; � ∗=

� − �r

�0 − �r
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the stress and strain at the reserve point (see in Fig. 1); R 
is the parameter to control the smoothness of the transition 
from elastic to a plastic state, includes the Bauschinger 
effect. This parameter is dependent on the peak deformation 
correlation between the latest yield point and the maximum 
plastic deformation in the load direction after reversing, 
expressed as below:

R0 is the value of R during first loading; CR1 and CR2 are 
experimentally determined parameters that are used to define 
the behaviour of material;

ξ is the normalized plastic deformation range 
controlling R, which is updated after a reversal in strain. 
The definition of ξ is expressed as follows:

εy is the initial yield strain, ε0 is the yield strain at the current 
loading process, and εp is the maximum strain in the load 
direction. The parameters f0, ε0, fr, εr, and R are updated after 
each strain reversal.

The position of the yield surface is assumed to be fixed 
in the above model. That means the isotropic hardening 
behaviour has not been considered. In OpenSees, for the 
uniaxial material Steel02 model (OpenSees, 2020), the 
isotropic hardening effect is implemented by two states of 
tension (fst) and compression (fsc) respectively expressed 
as the following equations:

(3)R = R0

(
1 −

CR1.𝜉

CR2 + 𝜉

)
> 0

(4)� =
|||||

�p − �0

�y

|||||

fy and εy are the initial yield stress and strain, respectively; 
�min
p

 and �max
p

 are the minimum and maximum strain values, 
recorded for each loading direction; a1, a2, a3, a4 are four 
isotropic hardening parameters. 

In recent decades, the GMP model has become one of 
the most popular models applied in modelling the nonlinear 
behaviour of steel structure (Bosco et al., 2016; Bu et al., 
2021; Hai et al., 2018; Zhuge et al., 2022).

3  Calibration of the Model and Proposed 
Optimization Process

3.1  Proposed Optimal Calibration Method

As discussed above, the calibration procedure aims to 
determine the model’s parameters so that the numerical 
model is consistent with the test observations. According 
to the GMP model, there are a total of ten (10) constitutive 
parameters that need to be determined. Among them, the 
elastic modulus E0 is usually measured from the initial 
elastic states (first hysteresis loop) by linear interpolation and 
it is then considered to be constant during the optimization 
process. The yield strength fy is approximated by the stresses 
in the yield plateau region where the stress curve’s slope 
decreases more than 20% from the linear state, based on the 
criteria proposed by Jiao et al. (2015). The obtained values 
are then validated by comparing them with the available test 
results of Hai et al. (2018). Accordingly, the obtained values 
by the such method are in good agreement with the available 
test results. The remaining parameters include R0, b, CR1, 
CR2, a1, a2, a3, a4 are determined based on the matching 
criteria of the GMP model.

To do so, an optimal analysis method of parameters is 
proposed to calibrate the model in order to converge test 
results to the predicted material hysteretic responses. The 
normalized least-squares error optimization is employed 
to minimize the discrepancy between tested and predicted 
material hysteretic responses, which are expressed as:

where, f i
test

 is the test stress at the ith strain step, f i
pre
(�) 

is the stress predicted by the material model at the ith strain 
step, and x is the vector of nine parameters of the GMP 
model, defined as follows:

(5)fst = fya3

[
�max
p

− �min
p

2a4�y

]0.8

;fsc = fya1

[
�max
p

− �min
p

2a2�y

]0.8

(6)Error(�) =

������
∑n

i=1

�
f itest − f i

pre
(�)

�2

∑n

i=1

�
f itest

�2

f

ε 

( )(3) (3),r rfε

( )(1) (1),r rfε

( )(0) (0)
0 0, fε

( )(2) (2)
0 0, fε

( )(2) (2),r rfε
( )(1) (1)

0 0, fε

Fig. 1  Hysteretic behaviour of Guiffre-Menegotto-Pinto model
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In order to calibrate these nine (9) parameters, 
Optimization Toolbox in Matlab software is employed 
to find a constrained minimum of a function of 
multivariable, fmincon (MathWorks, 2020). Namely, the 
optimization function is determined by equation (6) and 
the variables are determined by equation (7).

The proposed procedure of calibration and optimal 
analysis parameter is illustrated in Fig. 2 below:

In general, OpenSees also recommends values for 
some specific parameters of GMP model as follows: R0 
ranges from 10 to 20; CR1 = 0.925; CR2 = 0.15 (Mazzoni, 
McKenna, Scott, & Fenves, 2006). The efficiency of these 
parameters is highly significant in shortening the time of 
analysis and increasing the convergence in the optimal 
analysis process because of the considerable reduction 
of the variable. In order to validate this recommendation, 
the applicability of these parameters will be investigated 
in the analysis below.

(7)� =
{
E0 b R0 CR1 CR2 a1 a2 a3 a4

} 3.2  Application of the Proposed Model to Calibrate 
Experimental Results

In this section, a set of available test results, which is 
performed by Hai et  al. (2018) for high strength steel 
specimens (including four different steel grades such 
as Q460D, Q550D, Q690D, and Q890D), is employed 
to evaluate the proposed optimal calibration process to 
determine the parameters of the GMP model. The names 
of test specimens are assigned the full specifications of the 
steel grades, geometrical parameters (the cross-section of 
specimens), and strain protocols.

The geometrical parameters of considered specimens 
are detailed in Fig. 3. The research scope focuses on the 
nonlinear behaviour of the test specimens, so that the two 
typical smallest cross-sections are of interest, including 
10 mm × 10 mm and 16 mm × 16 mm (see in Fig. 3).

These specimens are subjected to cyclic loadings, 
represented as strain histories with two specific protocols 
shown in Fig. 4. The strain rate is considered constant 
and equals to 0.2%/s in order to limit the potential 
effects of temperature increase due to inelastic strain. 
The strain protocol SH1 has a constant amplitude of 

Fig. 2  Block diagram for 
optimal calibration of GMP 
model’s parameters
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4% (constant strain amplitude test). The strain protocol 
SH2 has increasing amplitudes of 0.75%, 1%, 1.25%, 
and 1.5% (variable strain amplitude test) where the first 
three strain amplitudes are loaded with three cycles (see 
in  \* MERGEFORMAT Fig. 4(b)). It should be noted 
that, the specimens 4R10-1, 5R10-1, 6R10-1, 8R10-1, and 
5R16-1 are subjected to strain protocol SH1, the remaining 
specimens (i.e., 4R10-2, 5R10-2, 6R10-2, 8R10-2, and 
5R16-2) are subjected to strain protocol SH2. In the 
experimental investigation, the specimens are loaded 
to a failure stage, where the largest amplitudes of strain 
histories (4% for SH1 and 1.5% for SH2) are maintained 
until the specimen fails.

However, in the framework of this study, the nonlinear 
cyclic behaviour is of more interest to determine the 
constitutive model than the failure mode of the structure. 
Therefore, a certain number of cyclic loads are considered 
to reduce the analytical processing and quickly an achieve 
iteration convergence. To do so, 12 cycles are considered 
for the protocol SH1 and 18 cycles (includes 03 cycles for 
each of the first three amplitudes and 09 cycles for the final 
amplitude) are applied in the protocol SH2 (see in Fig. 4(b)). 
Accordingly, the instability of test specimens did not affect 
the analysis results, although it occurs during the last cycles 

of the test of the specimen 4R10-2, 6R10-2 and 5R16-2 
(with more than 400 cycles).

According to the above block diagram (Fig.  2), the 
constitutive parameters of the GMP model are determined 
for each test using the developed computer program. The 
essential parameters of considered materials are optimally 
identified and presented below in Table  1, where the 
ErrorVal (%) is calculated by Eq. (6).

As shown in Table 1, there is a slight difference in the 
main parameters of material between the constant strain 
amplitude tests (SH1) and those of variable strain amplitude 
tests (SH2). Namely, the difference in the results of Young’s 
modulus is less than 3.5% (3.41% for specimen 8R10), while 
the difference in the yield strength is found about 2.8% 
(specimen 6R10). According to the author’s experience, 
these differences are practically acceptable due to potential 
mistakes and tolerance that may occur in the processing 
of experimental tests. On the other hand, the difference in 
the remaining parameters of the calibrated model seems 
to be more significant. It can be explained that SH1 has a 
much larger maximum amplitude than SH2, which leads to 
significant nonlinear states of constant strain amplitude tests 
(SH1), resulting in the accumulation of residual deformation 
by SH2 after each load cycle is smaller than by SH1.

Fig. 3  Geometrical parameters 
and corresponding specimens 
(Hai et al., 2018)

(a)

(b)

Fig. 4  Cyclic strain histories 
used for tests: a protocol SH1 
and b protocol SH2 (Hai et al., 
2018)
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Figure  5 shows a comparison of stress–strain 
relationships between the test results, the available results 
of Hai et  al. (2018) (which are not optimal), and the 
optimally calibrated model. For constant strain amplitude 
tests, the transition from plastic to elastic state and vice 
versa of the optimally calibrated model shows a better 
match with the test results than that of the non-optimal 
models. In addition, for the variable strain amplitude 
test, these obtained results are much more consistent, 
not only at the transition state but also at the peak values 
of both strain and stress. This result can lead to a more 
accurate prediction of energy dissipation capacity due 
to the inelastic deformation of material by the optimally 
calibrated model.

In order to evaluate the convenience of the parameter 
values recommended by OpenSees (Filipou et al., 1983), 
an extensive analysis is performed on two specimens of 
4R10-2 and 5R16-2. Specifically, for each specimen, three 
values of R0, including R0 = 10, 15, and 20, are taken into 
the optimal analysis method of parameters similar to the 
previous section. The obtained results are shown in Table 2 
and Fig. 6.

As can be observed, R0 seems to be a significant 
parameter for the fit between the predicted model and test 
results. The better consistence in this case study corresponds 
to the higher value of R0 (in the range of 10 to 20). 
Furthermore, using the recommended values of OpenSees 
is difficult to meet the matching criteria. The difference (i.e., 
ErrorVal) between the test results and the calibrated model is 
thereby much larger than the optimal one (see in Table 1 and 
Table 2). In some particular cases, results by using suggested 
values of OpenSees and test results seem to be identical 
(as shown in Fig. 6.(e) for R0 = 20), suggesting that the 
recommended values of OpenSees are reasonable and may 
be appropriate. But for other cases, it is difficult to achieve a 
good agreement between the model proposed by OpenSees 
and experimental results. Despite that observation, the 

optimally calibrated model is still meaningful when it 
demonstrates a better match (see in Fig. 6.(f)).

From the above analysis results, the optimally calibrated 
model is highly consistent with the test results, suggesting 
that the optimal analysis method of parameters offers great 
efficiency in identifying and calibrating the parameters of 
the GMP model from the experimental results of steel cyclic 
behaviour, and can be extensively used for modelling steel 
structures with high accuracy.

The proposed method also demonstrates the capability of 
the GMP model in describing the cyclic nonlinear behaviour 
of high-strength steel. In the context of using open-source 
codes, such as OpenSees (OpenSees, 2020), for nonlinear 
analysis of steel structures, the proposed method offers an 
effective solution for generating software tools that allow 
the experimental results to be used as input parameters for 
numerical analysis with high accuracy.

4  Application in Steel Structure Analysis

4.1  Description of the Considered Structure

In this section, a numerical analysis is performed using 
OpenSees Navigator (OpenSeesNavigator, 2020) to 
investigate the behaviour of steel structures of a 5-story 
building subjected to earthquakes, as illustrated in Fig. 7.

The considered structure is a typical steel frame for a 
building structure, including five spans in the X direction 
(5 × 6.6 m), three spans in the Y direction (3 × 6.6 m), and 
five floors (5 × 4.2 m) (see in Fig. 7). The cross-sections of 
column and beam systems are W12 × 26 section based on 
AISC Shapes Database v15.0 (AISC, 2017). The dimensions 
of W12 × 26 are assigned such as d = 310 mm; bf = 165 mm; 
tw = 5.84 mm; tf = 9.65 mm (see Fig. 8).

The material properties used in the model corresponds 
to the specimen 4R10-1 from the experimental dataset 

Table 1  The parameters of the Giuffrè-Menegotto-Pinto model for tested specimens

Specimen parameter 4R10-1 4R10-2 5R10-1 5R10-2 6R10-1 6R10-2 8R10-1 8R10-2 5R16-1 5R16-2

E0 (MPa) 273,800 267,800 222,300 224,500 224,800 218,800 225,600 217,900 201,400 200,300
fy (MPa) 591.2 595.2 673.3 686.9 801.5 824.3 1048.5 1049.3 645.1 628.1
b 0.013 0.009 0.004 0.003 0.003 0.001 0.003 0.008 0.007 0.043
R0 17.402 20.000 20.000 14.180 13.385 14.194 20.000 20.000 5.437 7.643
CR1 0.790 0.910 0.918 0.889 0.872 0.910 0.910 0.895 0.500 0.500
CR2 0.010 0.119 0.300 0.300 0.300 0.300 0.220 0.124 0.261 0.010
a1 0.130 0.133 0.003 0.053 0.004 0.226 0.034 0.289 0.192 0.188
a2 60 60 1 17.22 1 60 7.385 60 60 60
a3 0.130 0.002 0.003 0.003 0.004 0.004 0.005 0.005 0.192 0.188
a4 60 1 1 1 1 1 1 1 60 60
ErrorVal (%) = 12.9 2.6 6.0 3.7 6.6 6.8 5.3 3.4 7.1 6.0
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of Hai et  al. (2018). The GMP model, represented by 
the Steel02 model in OpenSees, is employed to model 
the behaviour of the material. The optimal analysis 
procedure, as shown in Fig. 2, is used to determine the 
input parameters of the OpenSees model. Specifically, 
the optimally calibrated parameters are assigned to the 

model as the obtained results from Table 1 (E0 = 273.8 
GPa, fy = 591.2 MPa, b = 0.0133, R0 = 17.4, CR1 = 0.79, 
CR2 = 0.01, a1 = 0.13, a2 = 60, a3 = 0.13, a4 = 60).

The load applied to the structure includes: the nodal 
mass of structure 20  kNs2/m, dead load at nodes 10 kN.
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Fig. 5  Comparison among predicted behaviour (this paper), the available experimental studies, and calibration of Hai et al. (2018)
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The structure is subjected to the accelerogram of the 
Northridge earthquake (USA, January 17, 1994, recording 
station: 090 CDMG Station 24,278) with the peak ground 
accelerations PGA = 0.568 g.

Stress–strain points of the investigated column’s 
section are illustrated in Fig. 7 and 8. For each element, 
five typical cross-sections are specified for the integral 
calculation.

Table 2  The parameters of the 
GMP model for recommended 
values of OpenSees

Parameter Specimen

4R10-2 5R16-2

E0 (MPa) 267,800 267,800 267,800 200,300 200,300 200,300
fy (MPa) 595.2 595.2 595.2 628.1 628.1 628.1
b 0.0120 0.0012 0.0047 0.05 0.0266 0.0233
R0 10 15 20 10 15 20
CR1 0.925 0.925 0.925 0.925 0.925 0.925
CR2 0.15 0.15 0.15 0.15 0.15 0.15
a1 0.133 0.133 0.133 0.172 0.188 0.188
a2 60 60 60 54.8 60.000 60.000
a3 0.101 0.093 0.133 0.188 0.188 0.188
a4 45.502 41.840 60 60 60 60
ErrorVal (%) 38.3 16.6 4.9 43.9 26.5 16.2
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Fig. 6  Comparison among predicted behaviour (this paper), the available experimental studies, and recommended values of OpenSees (Filipou 
et al., 1983)
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4.2  Results and Discussions

Figure  9 shows the time-history responses of the base 
shear force and the horizontal displacement at the top of 
the building subjected to earthquake (blue line). As it is 
observed from Fig. 9(b), the structure presents residual 
displacement at the top of the building, which indicates a 
nonlinear behaviour of structures under the earthquake.

In order to investigate the feasibility of the optimally 
calibrated model for nonlinear time-history analysis of steel 
frame, an extensive study is conducted to compare the GMP 
model with optimal parameters and the model Steel01 in 
OpenSees (not optimal) (Mazzoni et al., 2006), which is 

based on the traditional bilinear model. Accordingly, three 
main parameters of GMP model including E0 = 273.8 GPa, 
fy = 591.2 MPa, and b = 0.0133 (specimen 4R10-1) are used 
for Steel01 model.

As it is observed in Fig. 9 and Fig. 10, the base shear 
forces, bending moment, and lateral displacement at the top 
of the structure obtained by using the Steel01 model (red 
dashed) are slightly higher than those of the GMP model. 
In the cases where the structures are subjected to stronger 
earthquake scenarios, these differences may be more visible, 
and the use of the Steel01 model may lead to significant 
flaws. In fact, this difference is considered a consequence 
of the difference between the two models Steel01 and GMP, 
where the transition from the elastic to the post-elastic state 
of material behaviour is the most notable. Further, this 
difference is more obvious in the post-peak response phases, 
suggesting that it has a significant effect on the strain energy 
stored in the structure.

Figure  10 presents the response history of bending 
moment (Mxx) and axial force at the bottom of column 58, 
axis 3-B.

The comparison of obtained results in terms of the 
stress–strain relationship at the investigated point SS1 
(base of column 58, 3-B axis) by the two considered models 
is presented in Fig.  11. Specifically, Fig.  11.(a) shows 
the full time and Fig. 11.(b) shows the first two cycles 
(t = 0—9.95 s).

Fig. 7  Considered building 
structure: a 3D model and b 3rd 
axis elevation
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Fig. 9  Time-history responses 
of the structure: a Base 
shear forces and b Lateral 
displacements at the top story
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As can be noticed from the above results, the two 
models may result in a good agreement at the peak 
stress–strain response. However, the behaviour during the 
transition of plastic-elastic deformation in both loading 
and unloading phases is obviously different. Consequently, 
the hysteresis loop shape by using the Steel01 model is a 
clear difference from the experimental results. From an 
energy point of view, the energy dissipation calculated 
for one cyclic may be represented by the area of the 
hysteresis loop of the stress–strain curve (Yang et al., 
2019). Accordingly, the area of the largest hysteresis 
loop of the two models is used for comparison. The result 
shows that the Steel01 model provides a larger hysteresis 
loop area than that of the optimal model. This result may 
lead to an inaccurate assessment of energy dissipated in 
the structure.

Further, for lower strain, using the Steel01 model resulted 
in a larger prediction of the strain–stress response of the 
structure (green squares in Fig. 11), which may lead to 
significant errors in the accumulated strain energy at low 
strain loops. It is logical and compatible with the above 
findings in the response history of structures in the later 
periods. These comparisons are detailed in Table 3.

In the framework of this study, the optimally calibrated 
GMP model showed high efficiency, not only in terms of 
permitting automation of the analytical process but also in 
terms of presenting a good agreement between the numerical 
and experimental models. As a result, it can be considered 
more suitable for the seismic analysis and assessment of 
steel structures.

5  Conclusion

In this research, the Giuffrè-Menegotto-Pinto (GMP) model 
is considered to simulate the behaviour of high-strength 
steel. An optimal analysis method is proposed to calibrate 
the numerical model in order to match the experimental 
results. A set of ten parameters of the GMP model optimally 
calibrated for the numerical model are as close to the test 
model as possible. An extensive study was carried out to 
assess the recommended value by OpenSees to use with 
the GMP model. Obtained results are used to perform on 
a typical steel frame structure of a five-story building. The 
following is a summary of the study’s main concluding 
remarks:

Fig. 10  Time-history responses 
of the structure: a Bending 
moment and b axial force at the 
bottom of Column 58, 3-B axis 
on the 1st floor

-100
-80
-60
-40
-20

0
20
40
60
80

0 5 10 15 20 25 30

M
om

en
t M

xx
(k

N
m

)

Time (sec)

Steel01
GMP

460

470

480

490

500

510

520

0 5 10 15 20 25 30

A
xi

al
 P

 (k
N

)

Time (sec)

Steel01
GMP

(a) (b)

Fig. 11  The stress–strain 
relationship at SS1 point of 
Column 58/B-3 axis/ first Story: 
a the whole cycle and b the first 
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Table 3  Comparison of seismic 
response of considered structure 
between Steel01 model and 
optimal model

# Dmax (mm) Q (kN) Ε (%) Σ (MPa) Hysteresis area (max) 
per cycle (Fig. 11. (b))

Steel01 24.109 586.308 0.641 606.682 3.552
GMP 24.071 583.849 0.660 605.099 3.193
Compare (%) 0.155 0.419 2.940 0.261 10.102
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– The proposed optimal analysis method shows high 
efficiency in calibrating the numerical model to match 
the test results. The difference between the calibrated 
model by the proposed method and the test results is 
found less than 10%.

– The proposed method offers a practical solution for 
application to open-source programs such as OpenSees, 
allowing the use of experimental results for analysis 
without the intermediate step to determine the model’s 
parameters.

– The parameter to control the smoothness of the transition 
from elastic to plastic state  (R0) has an important role 
in adjusting the accordance of the numerical model and 
the tests. In the framework of this study, the suggested 
values of OpenSees for the GMP model proved to be 
inconsistent with calibration models from experimental 
tests of high-strength steel.

– The case study, numerical analysis of typical steel 
structure indicates that the use of optimally calibrated 
GMP model is more appropriate, while the Steel01 
model may result in potential errors of cyclic nonlinear 
behaviour of structures.

Notwithstanding the above, this study conducted an 
optimal procedure to identify the parameters in a way that 
help the researcher optimally calibrate numerical model 
parameters to match the test results. Further experimental 
studies shall be carried out to evaluate the suitability of 
the method with a variety of other steels to develop an 
automated analysis tool oriented to OpenSees.
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