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ABSTRACT

Due to the shortage of experienced endoscopists, Computer-
Aided Diagnosis (CAD) systems for colonoscopy have re-
cently attracted many research interests. There exist several
public polyp segmentation datasets, giving way to the adop-
tions of domain adaptation methods to address the shift in
distributions. Current domain adaptation frameworks often
comprise (i) a domain discriminator trained with an adversar-
ial loss and (ii) an image-translation network. Due to the com-
plexity of image-translation networks, such methods are gen-
erally hard to train to achieve satisfactory results. Hence, we
propose a domain adaptation method that leverages Fourier
transform as a simple alternative to the image-translation net-
work. We introduce an adversarial contrastive training strat-
egy to jointly learn an embedding space that considers both
style and content of the sample. Our method demonstrated
consistent gains over state-of-the-arts on polyp semantic seg-
mentation task for four public datasets. The code is available
at: https://github.com/tadeephuy/CoFo

Index Terms— Domain adaptation, Fourier transform,
contrastive loss, adversarial learning, polyp segmentation.

1. INTRODUCTION

Up to 3.7% of colorectal carcinoma are diagnosed in three
years after a normal colonoscopy due to the lack of senior en-
doscopists [1]. This gives rise to the development of CAD
systems for colonoscopy. Alba et al. [2] conducted an exten-
sive survey on deep learning approaches for polyp localiza-
tion and polyp classification with very potential results. There
exist several public datasets [3, 4, 5, 6] to support the progress
in this area. This calls for the development of domain adapta-
tion methods to address the distribution shift problem across
different datasets. Distribution shift could stem from the dis-
parity between the hospital sites, the image acquisition proto-
cols, the configurations of imaging machines, which renders
the model fail to operate. Domain adaptation refers to adapt-
ing a trained model using annotations from a source dataset
to perform reliably on a target distribution. Existing domain
adaptation methods usually transfer the style between datasets
using an image translation model and try to fool the domain
discriminator with an adversarial loss [7, 8]. However, styl-
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Fig. 1. Overview of the proposed adverarial contrastive
Fourier domain adaptation method.

ization models are very brittle, which requires many trials for
hyperparameters tuning. Instead, a recent approach transfers
the style of the image in the Fourier domain and outperforms
those methods that use the extra stylization network [9].

In this paper, we propose an adversarial contrastive
Fourier (CoFo) method for unsupervised domain adapta-
tion in the context of semantic segmentation. We follow [9]
and leverage Fourier transform to transfer the style between
the source and target datasets, resulting in training samples
with its original semantic content but in either source or target
style. We append a style encoder and a semantic content en-
coder to the feature extractor of the model. The two encoders
are learned using contrastive loss with supervisions from the
content and the style label of the sample. A gradient reversal
layer [10] is also placed between the feature extractor and the
two encoders to ensure that the feature extractor learns label-
discriminative but domain-invariant features. We illustrate
our method in Fig. 1. In summary, our main contributions
include:

1. We propose CoFo, a domain adaptation method that trans-
fers the style between the domains using Fourier transform
and adversarial training. CoFo disentangles the style and
content concept to learn a compact embedding space.

2. We extensively benchmark our method on polyp segmen-
tation on four public datasets and demonstrate a favorable
performance compared to several baselines, proving its ef-
fectiveness in this task.



2. METHOD

Here we give an overview of each component in CoFo and
describe the loss function to train the model.

Unsupervised domain adaptation (UDA). Given an
RGB image xs ∈ RH×W×3 and its respective semantic mask
ys ∈ RH×W from the source dataset Ds = {(xsi , ysi )}

Ns
i=1,

we have similarly an RGB image xt ∈ RH×W×3 from the
target datasetDt = {xti}

Nt
i=1. In UDA settings, given a trained

model φs using the source dataset Ds to map xs → ys, we
try to adapt φs to Dt such that it performs well on the tar-
get dataset without the availability of the annotated semantic
mask yt ∈ RH×W despite the distribution shift between the
two datasets.

Fourier domain adaptation (FDA). Yang et al. propose
a simple method to align the low-level statistics between the
source and target distribution [9]. This stems from the ob-
servation that low-level amplitude spectrum can vary signif-
icantly without altering the visual of high-level semantics.
Therefore, manipulating the low-level components in the fre-
quency domain is the simplest method to transfer the statistics
across different datasets. Given a sampled image pair xs ∼
Ds, xt ∼ Dt, it first computes the Fourier transform F of
the two images, with FA,FP being the amplitude and phase
components, respectively, and F−1 being the inverse Fourier
transform. LetMβ(h,w) = 1(h,w)∈[−βH:βH,−βW :βW ] be the
mask of the region where β ∈ (0, 1) surrounding the center
(0, 0). FDA swaps the low frequency components bounded
by [−βH : βH,−βW : βW ] of the two amplitude spectral
signals and map it back to image space to create xs→t:

xs→t = F−1
(
[Mβ �FA(xt)

+ (1−Mβ)�FA(xs), FP (xs)]
)
,

(1)

where� denotes the element-wise multiplication. Such trans-
formation creates a sample having the style of xt from the
target dataset while preserving the source semantic content
of xs, making ys the corresponding semantic mask of xs→t.
The same operation could be applied to create its reciprocal
sample xt→s with the style of xs and the semantic content of
xt, having the semantic mask yt.

Contrastive learning. Given two inputs za, zb ∈ Z and
their respective labels ya, yb, to learn the function f : Z →
Rd that maps z to the d-dimensional vector in the embedding
space in which similar samples (ya = yb) are close while
dissimilar ones (ya 6= yb) are far apart, Chopra et al. [11]
proposes a contrastive loss Lc:

Lc
(
f(za), f(zb)

)
= 1[ya=yb]D

(
f(za), f(zb)

)
+ 1[ya 6=yb]max{0,m−D

(
f(za), f(zb)

)
},

(2)

where m is the margin specifying the minimum distance be-
tween two different classes and D(a, b) : Rd → R is a dis-
tance function between a pair of d-dimensional vector a, b.

Domain adversarial neural networks (DANN). When
the source and target datasets come from different domains,
a robust feature space for the classifier to yield predictions
must be disentangled from the domain-discriminative proper-
ties. Ganin et al. incorporate into the baseline modelGy ◦F a
gradient reversal layer (GRL)Rλ followed by a domain clas-
sifier Gd [10]. This setups encourages the feature extractor F
to map a given sample x to an embedding z such that: (i) the
classifier Gy can accurately predict the label y of x, (ii) the
domain classifier Gd fails to discriminate its domain. Rλ is a
parameterless layer which acts as an identity transformation
during the forward pass Rλ(x) = x, but scales the gradients
from Gd by a negative constant λ before passing it to the pre-
ceding layers during backpropagation:

dRλ
dx

= −λI, (3)

where I is an identity matrix. As the training progresses by
minimizing the label prediction loss Ly and domain classifi-
cation loss Ld,Rλ reverts ∂Ld/∂θF to−λ∂Ld/∂θF , thus updat-
ing F in the opposite of the optimal direction for domain clas-
sification. Such training process encourages F to learn label-
discriminative features for the prediction task and diminish
domain-discriminative features that could introduce bias due
to the shift between domains.

Network architecture. A decoder D : Z → RH×W
is appended to the feature extractor F : RH×W×3 → Z to
decode the features z ∈ Z of an RGB image x ∈ RH×W×3
to its semantic mask y ∈ RH×W :

ỹ = D(z), (4)

where z is the feature maps encoded by F from x:

z = F (x), (5)

D◦F : RH×W×3 → RH×W is a standard framework of a se-
mantic segmentation model. To approach the UDA problem,
we place a GRL Rλ after branching out from F , followed
by a style encoder and a content encoder S,C : Z → Rd
that map the encoded features z to two d-dimensional vectors
s̃, c̃ ∈ Rd:

s̃ = S(Rλ(z)), (6)

c̃ = C(Rλ(z)), (7)

where s̃ is the domain style vector and c̃ is the domain se-
mantic content vector. Fig. 1 illustrates the placement of the
components and highlights the learning process.

Combining FDA and DANN. Given a pair of images
from source and target dataset xs ∼ Ds, xt ∼ Dt, we ap-
plied equation Eq. (1) to generate xs→t and xt→s, forming
a set of input (xs, xt, xs→t, xt→s). For each element in the
input set, we denote its original domain to be the semantic
content label c and the domain of its low-frequency compo-
nents to be its style label s. Specifically, the label for content
and style of each input are as follows:
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Fig. 2. Combining FDA with DANN. Shape (circle/cross) in-
dicates the content, color (red/purple) indicates the style of the
sample. a) Apply FDA to transfer the style between the two
datasets, creating red crosses and purple circles. b) Jointly
learn the embedding space where style and content are dis-
crimintative. c) With GRL updating the feature extractor in
the opposite of the optimal direction, the learnt embedding
space is content and style invariant. Best viewed in color.

• xs : source content, source style,
• xt : target content, target style,
• xs→t: source content, target style,
• xt→s: target content, source style.

In UDA settings, only the semantic masks ys of the images
xs from source datasets are available. However, the samples
with source content in target style xs→t still effectively have
ys as their semantic masks as aforementioned. We learn the
model for the semantic segmentation task by minimizing the
binary cross-entropy loss Lseg:

Lseg = −
∑

(y log(D(F (x))) + (1− y) log(1−D(F (x))),

(8)
where x ∈ {xs, xs→t}, and y is its respective semantic mask.

For the content encoder C, we apply the contrastive loss
Eq. (2) to learn an embedding space in which inputs with sim-
ilar content label c are grouped together and vice versa:

Lco(c̃a,c̃b) = 1[ca=cb]D(c̃a, c̃b)
+ 1[ca 6=cb] max(0,m−D(c̃a, c̃b).

(9)

Similarly for the style encoder S, we learn an embedding
space that clusters the inputs by their style label s:

Lst(s̃a,s̃b) = 1[sa=sb]D(s̃a, s̃b)
+ 1[sa 6=sb] max(0,m−D(s̃a, s̃b).

(10)

Jointly learn S and C results in an embedding space
where inputs with both similar style and similar content are
close. On the other hand, backpropagation through Rλ re-
verts ∂Lst/∂θF to −λ∂Lst/∂θF and ∂Lco/∂θF to −λ∂Lco/∂θF ,
rendering the features z ineffective for style and content
discrimination. In other words, F are forced to learn domain-
invariant and label-discriminative features z for D to decode
into the semantic mask. The procedure is illustrated in Fig. 2.
The final loss function L of CoFo is as follows:

L = Lseg + αcoLco + αstLst, (11)

where αco and αst are the weights of Lco and Lst.

CVC. Kvasir. ETIS. EndoTect.
Ns 547 700 0 0
Nt∗ 183 100 50 50
Nt 182 200 146 150

Table 1. Distributions of the datasets. Ns is the number of
samples in Ds, Nt∗ is the number of samples in Dt∗, Nt is
the number of samples in Dt.

3. EXPERIMENTS

This section describes the experiments of applying our
method on different colonoscopy datasets for the polyp seg-
mentation task.

Datasets. We evaluated CoFo on four public colonoscopy
datasets including CVC-EndoScene Still [3], ETIS-Larib [5],
Kvasir-SEG [6], and Endotect [4]. Following UDA settings,
each dataset was divided into three parts:
• source training set Ds = {(xsi , ysi )}

Ns
i ,

• target adaptation set without annotationsDt∗ = {xt∗i }
Nt∗
i ,

• target test set Dt = {(xti, yti)}
Nt
i .

In each experiment, we trained the model using the source
dataset Ds

a and the target adaptation dataset Dt∗
b . We then

tested the trained model on Dt
b, where a, b are the dataset

names and a 6= b. Due to the small number of samples in
Endotect and EITS-Larib, we only used them as the target
dataset, each having only Dt∗ and Dt. We appreciate the
original train/test split of the dataset if available, and ran-
domly split otherwise. The distributions of the datasets are
summarized in Table 1.

Network architecture. We used the standard U-net [12]
architecture with ResNet18 [13] backbone for F . The con-
tent encoder C has three ConvBlocks of a Convolution layer -
Batch Normalization [14] - Leaky ReLU activation function,
followed by an Average Pooling layer and a Linear layer. The
style encoder S is similar to the content encoder C with a
slight different in the ConvBlock where we use Instance Nor-
malization [15] instead of Batch Normalization. This tweak
helps remove instance-specific contrast information as sug-
gested in [16] and yields significant improvements in image
stylization, which is widely employed in several stylization
applications [17, 18, 19]. We empirically show modest im-
provement with this choice of design in Table 3. The two
encoders output a vector of size d = 256.

Training hyperparameters. We used SGD optimizer
with a learning rate of 0.03 and nesterov momentum of 0.95
[20]. We trained each experiment for 1000 epochs with
a cosine annealing learning rate, reaching 0 after the last
epoch. For memory efficiency, the batch is shuffled and
matched with it original order for contrastive learning task.
We set αco = αst = 1, the size β of the FDA swapping
mask Mβ to 0.01 and λ in the GRL Rλ to 1. We chose
cosine distance for the distance function D with the mar-
gin m = 0.5. To suppress initial noisy signals from the



contrastive encoders, we scaled λ from 0 to 1 following the
formula λp = 2/(1+e−10p) − 1 where p is in range [0, 1],
indicating the training progress.

4. RESULTS AND DISCUSSION

Quantitative results. We report the dice score of polyps
class of the experiments in Table 2. Our method demon-
strates a consistent improvement over other methods by an
average dice score of 2%. While DANN [10] is originally de-
veloped for image classification, it shows poor results when
being applied for semantic segmentation. In comparison to
BDL[7] and PCEDA[8], which rely on an image translation
network to transfer the style between the two datasets, CoFo
follows the simple procedure of FDA [9] but yields solid re-
sults. CoFo can be seen as an extension of FDA with an ad-
versarial training task. The result shows that this extension
comes with positive gains. We observe that GAN-based meth-
ods [7, 8] often comprise a clunky set of several networks that
are inherently hard to train and implement, while CoFo is rel-
atively easy to implement. Unlike [8], CoFo is trained end-to-
end without the need to pre-generate the stylized images for
training. ASN [21] aligns the multi-level feature space of the
two distributions using a discriminator network and adversar-
ial loss at each level. Compared to our method, ASN requires
more memory footprint during training. CoFo is an adver-
sarial method like [7, 8, 10, 21] but it is noticeably easier to
train using the GRL like DANN instead of adversarial losses.
It should be noted that the hyperparameter settings used for
CoFo is very standard; thus, we believe that CoFo could be
further tuned for better results and analysis in future works.

Qualitative results. We compare the qualitative results
of CoFo and other methods in Fig. 3, using Kvasir as the
source dataset and adapt on ETIS. CoFo outperforms BDL
and PCEDA considerably for the small polyp in the first row
by producing smoother masks which are also closer to the
ground truth. Compared to FDA, which also performs well
on small polyps, CoFo is still slightly better.

Ablation study. We conducted ablation studies on CoFo
with different configurations and reported the results in Ta-
ble 3. We used Kvasir as the source dataset and used the
rest as the target datasets. We removed the GRL to force
the model to learn domain-discriminative features of the two
datasets, which resulted in a slight drop in performance com-
pared to the baseline, suggesting that such features do ham-
per the performance of the model in the context of UDA. It
is also noticeable that using Instance Normalization in the
style encoder marginally improves the performance when us-
ing Batch Normalization in CoFo BN. Furthermore, we mea-
sured the effectiveness of the content encoder and the style
encoder independently. Results show that the style encoder is
the critical component of our approach. Using the style en-
coder alone leads to significant gains as compared to the con-
tent encoder. On the target test set EndoTect, the CoFo Style

Source CVC. Kvsr.

Target En.T. ETIS. Kvsr. En.T. ETIS. CVC.
w/o DA 0.722 0.659 0.769 0.836 0.668 0.732
DANN [10] 0.734 0.654 0.759 0.828 0.506 0.660
ASN [21] 0.601 0.607 0.801 0.833 0.673 0.837
BDL [7] 0.750 0.518 0.778 0.854 0.415 0.817
PCEDA [8] 0.765 0.293 0.736 0.822 0.504 0.701
FDA [9] 0.798 0.665 0.804 0.868 0.663 0.751
CoFo 0.826 0.681 0.828 0.872 0.685 0.811

Table 2. Dice score of the experiments with other SOTA
methods. Each cell shows the result when train on the source
dataset and test on the target dataset of a given method.w/o
DA: without domain adaptation.

Source Config. Kvsr.

Target GRL Style Cont. EnT. ETIS. CVC.
w/o DA 0.836 0.668 0.732
CoFo - GRL X X 0.823 0.665 0.722
CoFo Style X X 0.872 0.678 0.798
CoFo Cont. X X 0.859 0.666 0.789
CoFo BN X X X 0.861 0.679 0.792
CoFo X X X 0.864 0.685 0.811

Table 3. Dice score of different CoFo configurations. CoFo -
GRL: not use GRL; CoFo Style: only use the style encoder S;
CoFo Cont.: only use the content encoder C; CoFo BN: use
Batch Normalization in S instead of Instance Normalization.

Image Groundtruth BDL PCEDA FDA CoFo

Fig. 3. Qualitative results on Kvasir→ ETIS.

configuration even outperforms the combined configuration.

5. CONCLUSION

We proposed a UDA method for polyps segmentation. We
conducted extensive experiments on four different polyp seg-
mentation datasets to show favorable performance of CoFo
compared to several SOTA while being very straightforward
to implement. We plan to benchmark our method on other
datasets to justify its applicability in broader domains. Fur-
ther analysis of the hyperparameter setting and backbone ar-
chitectures is also left for future work.
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