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ABSTRACT

We analytically and numerically investigate beyond-band discrete solitons, which present a completely new class of stable localized out-gap
solitons with detunings being located beyond the two bands of the linear plane waves in a periodic binary waveguide array. Each of the even
and odd components of these discrete solitons does not change its sign across the transverse direction of the binary waveguide array. The
even and odd components of these newly found discrete solitons can be approximately presented by two hyperbolic secant functions with
the only difference in their peaks. This approximation is especially good in the low-intensity regime in which the detuning of these solitons
can asymptotically reach the two limits of a linear spectrum. These distinguishing features altogether make the newly found discrete solitons
different from all other classes of discrete solitons investigated earlier in binary waveguide arrays. Two transformation rules for constructing
even and odd components of these discrete solitons are also found for various combinations of signs of the propagation mismatch σ and
nonlinear coefficient γ .

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0079809

Discrete solitons have been intensively investigated in periodic
binary waveguide arrays (BWAs) from both the classical and
quantum points of view. Some of the discrete solitons in BWAs
are gap ones, while the others are out-gap. The general feature of
all these localized structures found earlier in BWAs is that each of
their even and odd components constantly changes its sign across
the transverse direction of the BWAs. In this work, we investi-
gate beyond-band discrete solitons, which present a completely
new class of stable localized out-gap solitons residing beyond the
two bands of linear plane waves in BWAs with a distinguishing
feature: each of their even and odd components does not change
its sign at all across the transverse direction of BWAs. These
beyond-band discrete solitons can be well approximated by two
hyperbolic functions, especially in the quasilinear regime.

I. INTRODUCTION

Waveguide arrays (WAs) are an interesting periodic system to
explore some basic photonic effects, such as discrete diffraction,1,2

discrete solitons,1,3 diffractive resonant radiation,4 just to mention
a few. From a practical viewpoint, one can use WAs for creat-
ing elements of photonic circuits, such as all-optical routers and
logic functions, such as AND and NOT.5 Moreover, WAs have been
widely exploited for simulating well-known effects in nonrelativis-
tic quantum mechanics, for instance, photonic Bloch oscillations1,6,7

and Zener tunneling,8 which are all governed by the Schrödinger
equation. Surprisingly, binary waveguide arrays (BWAs)—a special
class of WAs consisting of two alternating types of waveguides—can
be effectively used for mimicking relativistic quantum mechanics
effects rooted in the Dirac equations. Indeed, some fundamental rel-
ativistic quantum mechanics phenomena, such as zitterbewegung,9

Klein tunneling,10–12 Dirac solitons,13–18 topological Jackiw–Rebbi
states,19,20 and electron–positron pair production,21–23 have been
successfully replicated in BWAs.

The discrete gap solitons existing in BWAs have been studied
numerically24–26 and experimentally27 in the classical context. Gap,
out-gap solitons, and so-called breathers in BWAs have been found
in Refs. 28–30. These discrete gap solitons were first explored in

Chaos 32, 073113 (2022); doi: 10.1063/5.0079809 32, 073113-1

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/5.0079809
https://doi.org/10.1063/5.0079809
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0079809
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0079809&domain=pdf&date_stamp=2022-07-08
http://orcid.org/0000-0003-1176-7795
http://orcid.org/0000-0001-7213-0304
mailto:trancongminh@vlu.edu.vn
mailto:tranxtr@gmail.com
https://doi.org/10.1063/5.0079809


Chaos ARTICLE scitation.org/journal/cha

Ref. 31 for a discrete model of diatomic lattices and later derived in
the continuum-limit form for BWAs in Ref. 28, i.e., in the continuous
system with modulated parameters. In this continuous model stud-
ied in Ref. 28, the gap solitons are localized like a bright soliton with
a bell-shaped profile, whereas the out-gap solitons are delocalized
like a dark soliton with a dip at the center and non-zero back-
ground. The so-called discrete on-top breathers reported in Ref. 29
are also out-gap and localized, but they cannot go down in fre-
quency to the linear spectrum. In 2014, the discrete gap solitons in
BWAs were explicitly shown for the first time to be optical analogs
of one-dimensional Dirac solitons in Ref. 13 in a relativistic quan-
tum Dirac equation with Kerr nonlinearity. Other soliton solutions
with a different kind of nonlinearity have also been obtained earlier
for the nonlinear Dirac equation.32 After the derivation of the ana-
lytical Dirac soliton solution in BWAs in Ref. 13, its properties and
dynamics have been systematically investigated. For instance, the
Dirac soliton stability and different scenarios of interaction between
two and more Dirac solitons in BWAs have been analyzed in Ref. 14.
The generation and dynamics of two-dimensional Dirac solitons in
a square binary waveguide lattice have also been studied in Ref. 15.
The breathing effect of the higher-order Dirac solitons in BWAs
has been demonstrated in Ref. 16. The generation and dynamics of
so-called Dirac light bullets in BWAs with both Raman and Kerr
nonlinearities have been studied in Ref. 17 where an optical pulse
is launched into the system to generate spatiotemporal localized
structures. The dynamics of a Dirac soliton and its switching by
an extremely weak signal in BWAs with varying propagation mis-
matches (along the longitudinal axis) between adjacent waveguides
have been investigated in Ref. 18. Note also that the inverse Klein
tunneling effect has been mimicked in Ref. 12 by launching a Dirac
soliton into BWAs.

It is worth mentioning that discrete solitons can also be found
in other discrete systems, such as two-component discrete nonlin-
ear Schrödinger lattices, which can be implemented in arrays of
bimodal optical waveguides.33,34 Another class of discrete solitons
are so-called discrete embedded solitons, which are localized states
embedded in the continuous phonon spectrum and can be found in
a model, which describes a one-dimensional array of optical waveg-
uides with both χ (2) (second-harmonic generation) and χ (3) (Kerr)
nonlinearities.35

In this work, we show the existence of beyond-band discrete
solitons, which present a completely new class of out-gap discrete
and stable solitons in BWAs whose properties are totally different
from all other discrete solitons found earlier in BWAs. First, these
new discrete localized solitons are out-gap with detunings being
beyond the two bands of the linear plane waves in BWAs. Second,
their even and odd components do not change their respective signs
across the BWA in the transverse direction. The remainder of this
work is organized as follows: in Sec. II, we briefly re-introduce the
governing coupled-mode equations for light beams in BWAs and
the Dirac solitons solutions, which have been analytically found in
Ref. 13. Then, in Sec. III, we focus on the new class of discrete
solitons in the quasilinear regime when the light beam intensity
is low enough. In Sec. IV, we study these new discrete solitons in
the nonlinear regime of Kerr type when the light beam intensity
is enhanced enough. Finally, in Sec. V, we summarize our findings
with concluding remarks.

II. GOVERNING EQUATIONS AND GAP DIRAC SOLITON

SOLUTIONS

In this section, we would like to briefly re-introduce the Dirac
soliton solutions found earlier in Ref. 13. This is relevant because one
can later compare the properties of gap Dirac solitons with beyond-
band discrete solitons found in this work.

Light evolution in a discrete, periodic BWA consisting of Kerr
nonlinear waveguides can be described in the continuous-wave
regime by the following well-known dimensionless coupled-mode
equations:10,24

i
dan(z)

dz
= −κ(an+1 + an−1) + (−1)nσan − γ |an|2an, (1)

where an denotes the electric field amplitude in the nth waveg-
uide, z is the longitudinal coordinate, 2σ and κ are, respectively,
the propagation mismatch and the coupling coefficient (which is
always positive) between two neighboring waveguides of the BWA,
and γ is the nonlinear coefficient of waveguides, which is positive
for self-focusing, but negative for self-defocusing media. For the sake
of simplicity, we suppose that all waveguides in the BWA have the
same value for γ . In this work, we study the BWA, which is per-
fect without any defect as schematically illustrated in Fig. 1(a). In
this case, parameter σ is a constant when n discretely runs from
[−(N − 1)/2, . . . , −1, 0, 1, . . . (N − 1)/2], where N is the total odd
number of waveguides in the BWA. Note that we can always nor-
malize variables of Eq. (1) such that |γ | and κ are both equal to
unity. Note also that we can use the same BWA to study two cases
when σ changes its sign from 1 ↔ −1 just by shifting the waveg-
uide position n in Eq. (1) by one. We will get back to this simple
but important remark later. System (1) has the Hamiltonian in the
following form:29

H =
∑

n

(

κ|an+1 − an|2 + [1 + (−1)nσ ]|an|2 + γ

2
|an|4

)

. (2)

The final solution for Dirac solitons in the case when γ and σ

are both positive has been obtained in Ref. 13 as follows:

[

a2n(z)
a2n−1(z)

]

=





i2n 2κ
n0

√
σγ

sech
(

2n
n0

)

eifz

i2n 2κ2

n2
0σ

√
σγ

sech
(

2n−1
n0

)

tanh
(

2n−1
n0

)

eifz



 , (3)

where parameter n0 characterizes the Dirac soliton width and the
detuning f = −σ + [2κ2/(n2

0σ)].
If γ and σ have other combinations of signs, then using the

transformation rules explained in detail in Ref. 13 for Dirac soli-
tons in BWAs, we can easily construct the Dirac soliton solutions
for these cases.

Note that the analytical Dirac soliton solutions in the form
of Eq. (3) are derived under two conditions: (i) the beam must be
wide enough such that one can operate in the quasicontinuous limit
instead of the discrete one and (ii) n0|σ | � 2κ . Surprisingly, the for-
mer condition can be easily satisfied if the width parameter n0 ≥ 4,
whereas the latter condition is easily satisfied if (i) is held true and if
σ is comparable to κ ,9 which is also often met in practice.11 This sec-
ond condition also means that 2κ2/(n2

0|σ |) � |σ |/2. Therefore, we
get the following important relation for the detuning f of the Dirac
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FIG. 1. (a) Illustrative sketch of a BWA. (b) Dispersion curvesω± as two functions of the normalized wave numberQ. These two curves create two green bands. Three points

M0, M−1, and M1 show the limits of the linear detunings δl = ±
√

σ 2 + 4κ2 of beyond-band discrete solitons at Q = 0 and ±π . In the nonlinear regime, the detunings of
beyond-band discrete solitons get the values as schematically shown by three arrows starting from these three points: if γ > 0, then the upward arrow is taken, whereas if
γ < 0, the two downward arrows are taken. The gray region is the bandgap of plane waves in BWAs. (c) The Dirac soliton profile an at z = 0 when σ = 1 and γ = 1. (d)
The Dirac soliton profile at z = 0 when σ = −1 and γ = 1. Other parameters are κ = 1 and n0 = 6.

solitons:17

|σ | > f > −|σ |. (4)

As pointed out in Refs. 9, 13, and 36, by introducing 91(n)

= (−1)na2n, 92(n) = i(−1)na2n−1, and bringing in the continuous
transverse coordinate ξ instead of n, Eq. (1) can be converted to the
nonlinear Dirac equation in relativistic quantum mechanics for the
two-component spinor 9(ξ , z) = (91, 92)

T as follows:

i∂z9 = −iκσ̂x∂ξ9 + σ σ̂z9 − γ G, (5)

where the Kerr nonlinearity is considered via the term

G ≡ (|91|291, |92|292)
T
; σ̂x and σ̂z are the well-known Pauli matri-

ces; and T denotes the matrix transposition operator. In the Dirac
equation (5), parameter σ is also often referred to as the Dirac
mass.19 By following above-mentioned transformation rules, one can
easily convert the discrete soliton solutions (3) of Eq. (1) into the
Dirac soliton solution of the Dirac equation (5) as demonstrated in
Ref. 19.

Now, it is also important to remind that the Dirac solitons
in the form of Eq. (3) are gap solitons. Indeed, by inserting the

following Anstaz for a plane wave,

an(Q) ∼ exp[i(Qn − ωz)], (6)

into Eq. (1), one can obtain the dispersion relations in the linear
regime as follows:24

ω±(Q) = ±
√

σ 2 + 4κ2cos2Q, (7)

where Q is the normalized wave number of the plane wave, which
represents the phase difference between two adjacent waveguides
occurred, for instance, due to the inclination of beams inside BWAs.
In Fig. 1(b), we plot two dispersion curves ω± described by Eq. (7) in
the first Brillouin zone with −π ≤ Q ≤ π , which create two green
bands therein. As seen from Eq. (7), these two bands ω− and ω+
are separated by a gap from −|σ | to |σ |, which is the gray region in
Fig. 1(b). At the same time, as pointed out above, the propagation
constant parameter f of the Dirac solitons satisfies the relation (4).
Therefore, it is now clear that Dirac solitons in the form of Eq. (3)
are gap solitons13,17 and are found in the gray region in Fig. 1(b).
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As an example, in Fig. 1(c), we show the profile of a Dirac soli-
ton when σ = 1, γ = 1 [i.e., the right condition for using a Dirac
soliton solution in the form of Eq. (3)], κ = 1, and n0 = 6. Mean-
while, in Fig. 1(d), we show the profile of a Dirac soliton when
σ = −1 and γ = 1 using a transformation rule given in Ref. 13. Due
to the factor i2n in Dirac soliton solutions in the form of Eq. (3)
for both the even components a2n and odd components a2n−1, it
is obvious that adjacent even components have opposite signs, i.e.,
a2na2n+2 < 0 for all n after dropping the common factor eifz. This
is also true for adjacent odd components where a2n−1a2n+1 < 0 for
all n, apart from the central point at n = 0 because the hyperbolic
function tanh changes its sign while crossing this point. In other
words, both the even and odd components of the Dirac solitons
constantly change their signs across the transverse direction of the
BWA. Thanks to that, 91 and 92 are quite smooth functions with
respect to variable ξ (or n), and the derivative ∂ξ9 in the Dirac
equation (5) mathematically makes sense. That is the reason why
one can construct the soliton solution of the Dirac equation (5) from
the discrete soliton solution (3) of Eq. (1), and why the soliton solu-
tion in the form of Eq. (3) is called the Dirac soliton in Ref. 13. This is
one of the significant differences between Dirac solitons and the new
class of beyond-band discrete solitons in BWAs discussed below.

III. BEYOND-BAND DISCRETE SOLITONS IN THE

QUASILINEAR REGIME

Now, we use the following Anstaz to look for a new class of
beyond-band discrete solitons in BWAs:20

an = bn eiδz, (8)

where bn is real and just depends on n but not on z and δ is the
detuning, which is equivalent to the detuning f of Dirac solitons in
the form of Eq. (3). This is the case in which the discrete solitons
propagate parallel to the longitudinal axis z of BWAs and the nor-
malized wave number can get three central values Q = 0 or ±π in
the first Brillouin zone. By inserting the Anstaz (8) into Eq. (1), one
can easily get the following system of algebraic equations:13

− δbn + κ[bn+1 + bn−1] − (−1)nσbn + γ |bn|2bn = 0. (9)

From Eq. (9), we can easily get the following subset of equations
for even component b2n,

− δb2n + κ[b2n+1 + b2n−1] − σb2n + γ |b2n|2b2n = 0, (10)

and subset of equations for odd component b2n+1,

− δb2n+1 + κ[b2n+2 + b2n] + σb2n+1 + γ |b2n+1|2b2n+1 = 0, (11)

which now has another sign in front of σ .
Before proceeding further, it is useful to mention two general

transformation rules of discrete solitons:
First, when σ just changes its sign while all other parameters

are fixed, we actually have the same physical system of BWAs, but
now, all waveguide positions n are just shifted by one as mentioned
in Sec. II. Therefore, the only difference in the system and the soliton
solution is that the component, which was even before, now turns to
odd and vice versa.

Second, suppose that b2n, b2n−1, and δ are the even component,
the odd component, and the detuning of the discrete soliton, respec-
tively; now, if we change the sign for both σ and γ , i.e., if σ → −σ

and γ → −γ , then from Eqs. (10) and (11), one can easily see that
the discrete soliton will be now b2n → b2n, b2n−1 → −b2n−1, and
δ → −δ; i.e., the odd component and the detuning will change their
sign, while the even component is the same.

In the quasilinear regime, the intensity of all components is low;
therefore, we can ignore the nonlinear term in Eqs. (1) and (9). In
this quasilinear regime, it turns out that we can approximately find
the beyond-band discrete solitons in a simple form of two hyperbolic
functions for even and odd components as follows:

[

b2n

b2n−1

]

=





p.sech
(

2n
n0

)

q.sech
(

2n−1
n0

)



 , (12)

where p and q are the peak amplitude of the even and odd compo-
nents, respectively.

If we insert Eq. (12) into Eq. (10), then in the linear regime, we
obtain the following relationship:

p(δl + σ) = 2κq, (13)

where δl denotes the linear detuning δ in the absence of nonlinearity.
Similarly, if we insert Eq. (12) into Eq. (11), then in the linear regime,
we obtain the following relationship:

q(δl − σ) = 2κp. (14)

If the central amplitude b0 = p is given at the waveguide with
n = 0, then one can easily calculate two quantities δl and q from
Eq. (13) and Eq. (14) as follows:

δl = ±
√

σ 2 + 4κ2, (15)

q =
b0

(

σ ±
√

σ 2 + 4κ2
)

2κ
. (16)

The two limits of the linear spectrum calculated by Eq. (15) are
marked by three points M0, M1, and M−1 in Fig. 1(b). As shown
later in Fig. 5(b), if the nonlinearity is taken into account, then if
γ is positive (negative), one has to get the positive (negative) sign
in front of the square in Eqs. (15) and (16). As a result, if γ > 0,
then from Eqs. (13) and (15), we can easily see that two peak ampli-
tudes of the even and odd components (p and q) must have the same
sign because δl + σ > 0 and κ is always positive. This means that all
the components (both even and odd) of these discrete solitons have
just the same sign. Therefore, when γ > 0, the normalized wave
number Q = 0, and the detuning δ of the nonlinear beyond-band
discrete solitons increases if the central amplitude b0 also increases
[see two upper curves in Fig. 5(b)] as illustrated by the upward arrow
starting from point M0 in Fig. 1(b). On the contrary, if γ < 0, then
p and q must have opposite signs because δl + σ < 0; therefore,
the even and odd components have opposite signs. Therefore, when
γ < 0, the normalized wave number Q = ±π , and the detuning δ of
the nonlinear beyond-band discrete solitons decreases if the central
amplitude b0 increases [see two lower curves in Fig. 5(b)] as illus-
trated by two downward arrows starting from points M−1 and M1

in Fig. 1(b). Note that the values of linear detuning δl in the form
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of Eq. (15) are obviously located outside of the gap from −|σ | to
|σ | created by the dispersion relationship (7). These linear detun-
ings correspond to the case when the normalized wave number in
Eq. (7) gets the values Q = kπ when k is a whole number, such
as 0, ±1, ±2, . . .. Within the first Brillouin zone, our beyond-band
discrete solitons in this work show that Q = 0 or ±π not only in
the quasilinear regime [see Fig. 2(d)], but also in all ranges of the
peak amplitudes. This is also different from Dirac solitons found in
Ref. 13 where the normalized wave number is centered at Q = ±π/2
[see Fig. 2(b) therein], which corresponds to the so-called Bragg
angle of a beam launched into BWAs.9,37 Note also that the discrete
gap soliton in BWAs has been observed by launching two beams
under two opposite Bragg angles with opposite inclinations.25

In general, it is difficult to derive the analytical soliton solutions
for the system of nonlinear coupled-mode equations (1). In this case,
one can use some numerical methods to find soliton solutions. In
this work, we use the so-called shooting method38 to search for a
new class of discrete solitons by “shooting” from the BWA center at
the site n = 0 to the two edges.

Thanks to the system symmetry as schematically illustrated in
Fig. 1(a), we can look for discrete soliton solutions to Eq. (9) with
the following property: bn = b−n. Therefore, if the center amplitude
of the discrete soliton b0 is given, then all other values of bn can be
calculated from Eq. (9). However, we just want to find bright dis-
crete solitons with a bell-like shape where two wings decrease to
zero when n → ±∞. To achieve this aim, we just have to refine the
detuning δ such that the condition bn → 0 is satisfied when |n| is
large enough. Therefore, the eigenvalue of the detuning δ of the dis-
crete soliton will be a function of its center amplitude b0. With this
simple shooting method, we can numerically find all exact discrete
solitons of the new class below in this work.

As an example, in Fig. 2(a), we plot the profile of a beyond-band
discrete soliton in the quasilinear regime with σ = −1, γ = 1, and
κ = 1 when we fix the central amplitude b0 = p = 0.1. The upper
blue curve with round markers and the lower black curve with round
markers represent the even component b2n and the odd component
b2n−1 of the discrete soliton numerically calculated using the shoot-
ing method for Eq. (9), which gives us the detuning δ = 2.2402.

FIG. 2. A weak beyond-band discrete soliton with peak amplitude b0 = 0.1. (a) The profile of this discrete soliton when σ = −1, γ = 1, δ = 2.2402, and κ = 1. The
two upper curves represent the even component b2n, whereas the two lower curves represent the odd component b2n−1. The curves with round markers are numerically
calculated for the discrete soliton, which coincide well with the solid curves representing two secant functions. (b) Propagation of the discrete soliton whose input profile is
plotted in (a). (c) The profile of another discrete soliton when all parameters are the same as in (a) with exceptions that σ = 1 and the central amplitude b0 ' 0.0617 now.
(d) Evolution of the spectra of the discrete soliton whose input profile is plotted in (c).
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This value is quite close and just above point M0 in Fig. 1(b) repre-

senting the theoretical value for the linear detuning δl =
√

σ 2 + 4κ2

= 2.2361 shown in Eq. (15). As seen in Fig. 2(a), bn has the same
sign for all values of n; therefore, the normalized wave number of
this beyond-band discrete soliton Q = 0. The upper red curve and
the lower green curve in Fig. 2(a) are two fitted curves based on two
hyperbolic secant functions with the width parameter n0 = 14.66
and two peak amplitudes p = b0 = 0.1 and q = 0.0618 as predicted
by Eq. (16). As clearly seen in Fig. 2(a), the two fitted curves coin-
cide perfectly well with two curves numerically calculated such that
two latter curves would be totally hidden by the two former ones
if we did not use the round markers for them. It is also clear from
Fig. 2(a) that the even component of the new discrete soliton does
not change its sign across the transverse direction of the BWA when
n runs. This feature is also held true for the odd component of this
new discrete soliton. This makes new discrete solitons totally differ-
ent from Dirac solitons illustrated in Fig. 1 whose even (and odd)
component constantly changes its sign when n runs.

In Fig. 2(b), we show the propagation of this discrete
soliton using the initial condition, which is shown by two
numerical curves with round markers in Fig. 2(a) for numer-
ically integrating Eq. (1) along z. As seen in Fig. 2(b), which
plots |an(z)|, this discrete soliton is stable and can conserve
its profile perfectly well during propagation for a very long
distance.

Now, we want to check the validity of the first transformation
rule given in Sec. III in the quasilinear regime. In order to do that we
look for a discrete soliton of the new class when σ = 1 and γ = 1,
i.e., we just change the sign of σ while keeping all other parameters
unchanged as compared to the case analyzed in Fig. 2(a). In order to
obtain the profile of this discrete soliton using the shooting method
and to verify the first transformation rule, we now fix the detuning of
this soliton as the one analyzed in Fig. 2(a), i.e., δ = 2.2402, then we
refine the central amplitude b0 until the moment when we obtain the
localized structure, i.e., when bn → 0 if n is large enough. With this
technique, the central amplitude is tuned to be b0 ' 0.0617 [which
turns out to be practically the same value for q = 0.0618 of the fitted
lower curve for the discrete soliton shown in Fig. 2(a)]. The profile
of this beyond-band discrete soliton is shown in Fig. 2(c) where the
upper black curve with round markers now plots the odd component
b2n−1 and the lower blue curve with round markers plots the even
component b2n of the new discrete soliton calculated by the shoot-
ing method. In Fig. 2(c), we also plot two fitted curves using Eq. (12)
where p = b0 ' 0.0617, q = 0.1, which is practically the same as the
value q = 0.0998 calculated by Eq. (16), and n0 is also equal to 14.66
as two fitted curves in Fig. 2(a). In short, everything is the same as
in Fig. 2(a) with the only exception that the peaks p and q swap their
values because the even component of one soliton is the odd com-
ponent of the other soliton and vice versa, as expected from the first
transformation rule.

In Fig. 2(d), we show the propagation of the spectra of the
discrete soliton whose profile is plotted in Fig. 2(c). This profile is
first used as the initial condition for numerically integrating Eq. (1)
along z to obtain an(z). We then use the Fourier transformation
an(z) → ã(Q, z) to calculate the spectra of the discrete soliton by
going from the spatial domain n into the normalized wave number
domain Q at each z. As seen in Fig. 2(d), the spectra of this discrete

soliton are just centered around the normalized wave number Q = 0
as discussed below Eq. (16) for beyond-band discrete solitons in the
quasilinear regime. This is understandable because all components
(both even and odd) of these solitons have the same sign when n
runs; therefore, we should have Q = 0 as shown by Eq. (6). Note that
these spectra are also stable and can conserve their profile perfectly
well during propagation for a very long distance as seen in Fig. 2(d).

We want to stress that we always set the nonlinear coeffi-
cient γ = 1 (not 0) for calculating the profiles of two discrete
solitons in Figs. 2(a) and 2(c) and simulating their propagation in
Figs. 2(b) and 2(d). Therefore, Fig. 2 represents a good example of
new beyond-band discrete solitons in the quasilinear regime when
the nonlinear coefficient γ 6= 0, but the peak amplitude is low so
that they operate as in the linear regime.

IV. BEYOND-BAND DISCRETE SOLITONS WITH

ENHANCED NONLINEARITY

In this section, we look for beyond-band discrete solitons when
the nonlinearity of Kerr type is enhanced, i.e., when their peak
amplitudes are not low anymore. In Fig. 3(a), we show the pro-
file of a discrete soliton with the central amplitude b0 = 0.4 with
the following set of parameters: σ = −1, γ = 1, and κ = 1. Like
in Fig. 2(a), the upper blue curve with round markers representing
the even component and the lower black curve with round markers
representing the odd component are both numerically calculated by
the shooting method, whereas the red curve and the green one are
two fitted curves in the form of two hyperbolic secant functions as
shown by Eq. (12) with now p = b0 = 0.4, n0 = 3.6, and q = 0.2362,
which is different, as expected, from the value q = 0.2472 provided
by Eq. (16) in the linear regime. The detuning of this discrete soliton
is calculated to be δ = 2.3004, which is also significantly different
from the linear detuning δl = 2.2361 obtained from Eq. (15). There-
fore, the detuning of this soliton with γ > 0 is represented by a
point in the upward arrow in Fig. 1(b), which is noticeably higher
than point M0 therein. Note that the normalized wave number Q of
this soliton is also equal to zero as shown in Fig. 3(e) and discussed
below. We can see from Fig. 3(a) that two hyperbolic secant func-
tions can appropriately fit their corresponding numerical curves,
but not perfectly well. This is different from the situation shown
in Figs. 2(a) and 2(c) where the fitted curves perfectly well coincide
with their numerical curves. This difference can be easily noticed
if we enlarge both Figs. 2(a), 2(c), and 3(a) in the electronic ver-
sion of this paper. For instance, in Fig. 3(a), the upper red fitted
curve is wider at the top but narrower at the bottom as compared
to the upper blue curve with round markers. Meanwhile, the lower
green fitted curve is always narrower than its numerical black curve
with round markers, both at the top and at the bottom. This kind
of deviation between the fitted curves and exactly calculated curves
will become more pronounced if the peak amplitude of the discrete
solitons gets higher.

In Fig. 3(a), we plot the profile of the new discrete soliton when
σ = −1 and γ = 1. Now, we change both signs of these two param-
eters at the same time and plot the profile of the new discrete soliton
in Fig. 3(c) with central amplitude b0 = 0.4 as in Fig. 3(a). As exactly
dictated by the second transformation rule given in Sec. III, the
detuning of this new discrete soliton is δ = −2.3004, which has the

Chaos 32, 073113 (2022); doi: 10.1063/5.0079809 32, 073113-6

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 3. (a) The profile of a beyond-gap discrete soliton with peak amplitude b0 = 0.4 when σ = −1, γ = 1, δ = 2.3004, and κ = 1. The two upper curves represent the
even component b2n, whereas the two lower curves represent the odd component b2n−1. The curves with round markers are numerically calculated for the discrete soliton,
which coincide well with the solid curves representing two secant functions. (b) Propagation of the discrete soliton whose input profile is plotted in (a). (c) The same as (a)
but now, we switch the signs such that σ = 1, γ = −1; therefore, δ = −2.3004. (d) Propagation of the discrete soliton whose input profile is plotted in (c). (e) Evolution of
the spectra of the discrete soliton analyzed in (a) and (b). (f) Evolution of the spectra of the discrete soliton analyzed in (c) and (d).

same absolute value but with the opposite sign of the detuning of the
discrete soliton plotted in Fig. 3(a). Therefore, the detuning of this
soliton with γ < 0 is represented by two points in two downward
arrows in Fig. 1(b), which are noticeably lower than two points M−1

and M1 therein. Note that the normalized wave number Q of this
soliton is centered around ±π as shown in Fig. 3(f) and discussed

below. Moreover, from Figs. 3(a) and 3(c), we can clearly see that the
even components b2n of these two discrete solitons are absolutely the
same, whereas their odd components b2n−1 are just different in their
signs, as exactly dictated by the second transformation rule.

In Figs. 3(b) and 3(d), we show the propagation of two dis-
crete solitons using numerical curves plotted in Figs. 3(a) and 3(c),
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respectively, as the initial conditions for numerically integrating
Eq. (1) along z. As seen in Figs. 3(b) and 3(d), which plot |an(z)|,
these two discrete solitons are also stable and can conserve their
profile perfectly well during propagation for a very long distance.

In Fig. 3(e), we show the propagation of the spectra of the dis-
crete soliton analyzed in Figs. 3(a) and 3(b). As seen in Fig. 3(e), the
spectra of this discrete soliton are mainly centered around the nor-
malized wave number Q = 0 just like the solitons in Fig. 2 because
all components of these solitons have the same sign. Note that the
spectra of the soliton shown in Fig. 2 are much narrower than those
in Fig. 3(e) because of the difference in the spatial width of these
solitons.

In Fig. 3(f), we show the propagation of the spectra of the dis-
crete soliton analyzed in Figs. 3(c) and 3(d). As seen in Fig. 3(f), the
spectra of this discrete soliton are now mainly centered around the
normalized wave number Q = ±π because, as shown in Fig. 3(c), bn

constantly changes its sign when n runs, which is equivalent to the
situation when Q = ±π as shown by Eq. (6).

Now, we want to look for a discrete soliton of the new class
when σ = 1 and γ = 1; i.e., we just change the sign of σ while
keeping all other parameters unchanged as compared to the case
analyzed in Fig. 3(a). As expected, this situation must completely
obey the first transformation rule given in Sec. III. In order to obtain
the profile of this discrete soliton using the shooting method and
to verify the first transformation rule, we now fix the detuning of
this soliton as the one analyzed in Fig. 3(a); i.e., δ = 2.3004, then, we
refine the central amplitude b0 until the moment when we obtain the
localized structure, i.e., when bn → 0 if n is large enough. With this
technique, the central amplitude is tuned to be b0 ' 0.2363 [which
turns out to be the same value for q of the fitted lower curve for the
discrete soliton shown in Fig. 3(a)], and the profile bn of this new
discrete soliton is shown in Fig. 4(a).

In Fig. 4(b), the upper black curve with round markers plots
the odd component b2n−1, whereas the lower blue curve with round
markers plots the even component b2n of the new discrete soliton
calculated by the shooting method. In Fig. 4(b), we also plot two
fitted curves using Eq. (12) where p ' 0.2363 is now equal to the
central amplitude b0, q = 0.4, and n0 = 3.6. In short, everything is
the same as in Fig. 3(a) with the only exception that the peaks p and
q swap their values. Note that, like in Fig. 3(a), these two analyt-
ical curves can only appropriately fit the two numerical curves in
Fig. 4(b), but not perfectly well. To better show the validity of the
first transformation rule, in Fig. 4(c), we plot four curves: the pur-
ple one is the profile of the new discrete soliton taken from Fig. 4(a)
when σ = 1 and γ = 1, the upper black curve and the lower blue
curve are the odd b2n−1 and even components b2n of this discrete
soliton (which are the upper and lower envelopes of bn), and the
dashed green curve is the profile bn of the discrete soliton analyzed
in Fig. 3(a) when σ = −1 and γ = 1. As clearly seen in Fig. 4(c),
the two envelopes of the discrete soliton with σ = 1 and γ = 1 are
also the envelopes of the discrete soliton with σ = −1 and γ = 1
with the only difference that the even component of one soliton is
the odd component of the other soliton and vice versa, as expected
from the first transformation rule.

In Fig. 4(d), we show the propagation of the discrete soliton
using bn plotted in Fig. 4(a) as the initial condition for numeri-
cally integrating Eq. (1) along z. As seen in Fig. 4(d), which shows

|an(z)|, this discrete soliton is also stable and can conserve their
profile perfectly well during propagation for a very long distance.

In Fig. 5(a), we show the even (upper curve) and odd (lower
curve) components of a beyond-band discrete soliton when σ = −1
and γ = −1, i.e., when both of these parameters change the sign as
compared to the case shown in Fig. 4(a). As predicted by the second
transformation rule, one can find a new discrete soliton in this case
just by changing the sign of both the detuning and the odd compo-
nent b2n−1 while keeping the even component and other parameters
the same as in the case of the discrete soliton analyzed in Fig. 4.
Indeed, the second transformation rule is once again verified in this
case as one can clearly see the profile of this new discrete soliton in
Fig. 5(a) with its detuning is δ = −2.3004 and all properties dictated
by the second transformation rule. This discrete soliton is also stable,
which can propagate for a very long distance without any distortion
of its profile.

Note also that profiles of the discrete soliton shown in Fig. 5(a)
and the one shown in Fig. 3(c) also obey the first transformation
rule when σ changes its sign, while γ and other parameters are
unchanged. Therefore, these discrete solitons of the new type must
have the same detuning δ = −2.3004, while their even and odd
components just swap each other.

Therefore, now, it is clear to us that each of the even and
odd components of all beyond-band discrete solitons found in this
work does not change its sign when n runs. This is one of their
distinguishing features. Because of this property, each of functions
91 and 92 of the two-component spinor appearing in the Dirac
equation (5) constantly changes its sign when n runs (or when its
corresponding variable ξ jumps with a step equal to unity). There-
fore, the derivative ∂ξ9 in the Dirac equation (5) does not make
any mathematical sense in this case. Therefore, unlike the Dirac
solitons, all beyond-band discrete solitons found in this work are
just solutions to the coupled-mode equation (1) describing light
evolution in BWAs but cannot be approximate solutions to the
Dirac equation (5). Because, as mentioned above, each of the even
and odd components of all beyond-band discrete solitons found
in this work does not change its sign when n runs, and each of
these two components can be regarded as an unstaggered soliton.
Therefore, we can say that these beyond-band discrete solutions
are out-gap unstaggered–unstaggered solitons in two-component
BWAs. Note that unstaggered–staggered solitons have been found
in two-component discrete nonlinear Schrödinger lattices where
the unstaggered component is coupled to the staggered one whose
sign constantly changes when n runs.33,34 In this context, Dirac soli-
tons described by Eq. (3) can be considered staggered–staggered
solitons.

In the rest of this work, we want to further study the detun-
ing δ of beyond-band discrete solitons. In Fig. 5(b), we plot the
dependence of the detuning δ as a function of the central ampli-
tude b0 for all four combinations of signs of σ and γ . Two dot-
ted horizontal cyan curves show the linear limits of the detuning

δl = ±
√

σ 2 + 4κ2 = ±2.2361 as provided by Eq. (15) and marked
by three points M0, M1, and M−1 in Fig. 1(b). The space between
the upper dotted horizontal cyan curve and the top of the bandgap
in Fig. 5(b) is the upper band ω+ of linear plane waves in BWAs,
which correspond to the upper green band in Fig. 5(b). Meanwhile,
the space between the lower dotted horizontal cyan curve and the
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FIG. 4. (a) The profile of a beyond-band discrete soliton with peak amplitude b0 = 0.2363 when σ = 1, γ = 1, δ = 2.3004, and κ = 1. (b) The two upper curves represent
the odd component b2n−1, whereas the two lower curves represent the even component b2n of this discrete soliton. The curves with round markers are numerically calculated
for the discrete soliton, which coincide well with the solid curves representing two secant functions. (c) The profile and two components (even and odd) of this discrete soliton
are plotted together with the profile of the discrete soliton (dashed line) analyzed in Fig. 3. (d) Propagation of the discrete soliton whose input profile is plotted in (a).

bottom of the bandgap in Fig. 5(b) is the lower band ω− of linear
plane waves in BWAs, which correspond to the lower green band
in Fig. 5(b). Apart from these two analytical curves showing δl, all
other four curves in Fig. 5(b) are calculated by the shooting method
and then verified by the two transformation rules given in Sec. III.
Indeed, the top solid blue curve with σ = 1 and γ = 1 is totally sym-
metrical to the bottom blue curve with round markers when σ = −1
and γ = −1 with respect to the zero-level axis. In order to verify this
symmetry, we also plot the mirror image (bottom solid red curve) of
the top solid blue curve through the zero-level axis in Fig. 5(b), and
we can clearly see that the bottom blue curve with round markers
absolutely coincides with this mirror image. This symmetry is also
true for two curves: the solid green one (when σ = −1 and γ = 1)
and the green curve with round markers (when σ = 1 and γ = −1)
where the latter completely coincides with the mirror image (solid
black curve) of the former.

As expected, when the central amplitude b0 decreases toward
zero, all the four numerical curves asymptomatically reach the two
linear limits of the detuning (two horizontal dotted curves) given
by Eq. (15). As clearly seen in Fig. 5(b), all these new discrete soli-
tons are out-gap because their detunings δ lie outside of the bandgap

from -|σ | to |σ |, which is represented by the gray region. They are
also located just above the upper band ω+ of linear plane waves in
BWAs if γ is positive or below the lower band ω− of linear plane
waves in BWAs if γ is negative. That is the reason why we pro-
pose to use the term beyond-band for them. Note that the detuning
δ of the new discrete solitons is always positive if the nonlinear
coefficient γ is positive. On the contrary, if γ < 0, then δ of all
new discrete solitons is negative. Note also that two discrete soli-
tons with the same detuning δ but opposite σ shown in Fig. 5(b)
can be considered one discrete soliton obeying the first transforma-
tion rule when its even and odd components swap each other [as
the case shown in Figs. 3(a) and 4 or the case shown in Figs. 3(c)
and 5(a)]. As discussed above, the normalized wave numbers Q
of these beyond-band discrete solitons are just centered around 0
(when the nonlinear coefficient γ > 0) or ±π (when γ < 0). There-
fore, all three upper curves in Fig. 5(b) are represented by the upward
arrow shown in Fig. 1(b), whereas all three lower curves in Fig. 5(b)
are represented by two downward arrows shown in Fig. 1(b).

In Fig. 5(c), we plot the dependence of the Hamiltonian H as
a function of the detuning δ for two beyond-band discrete solitons
with γ = 1, κ = 1, σ = 1 (upper curve) and σ = −1 (lower curve).
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FIG. 5. (a) The even component b2n (upper curve) and the odd component b2n−1 (lower curve) of a beyond-band discrete soliton with central amplitude b0 ' 0.2363 when
σ = −1, γ = −1, δ = −2.3004, and κ = 1. (b) The dependence of the detuning δ as a function of the central amplitude b0 for different sets of parameters σ and γ ,

while κ is also equal to unity. Two dotted horizontal lines in (b) plot two limits of the linear detuning δl = ±
√

σ 2 + 4κ2. The gray region in (b) is the bandgap spanning from
−|σ | to |σ | of linear plane waves in BWAs. (c) and (d) The dependence of the Hamiltonian H as a function of the detuning δ when γ = 1 and −1, respectively. Two dotted
vertical lines in (c) and (d) denote two values of the linear detuning δl . Parameters for (b)–(d): γ = ±1, κ = 1, and σ = ±1.

The dotted vertical cyan curve in Fig. 5(c) denotes the position of the
linear detuning δl = 2.2361. These three curves in Fig. 5(c) corre-
spond to three upper curves with positive δ in Fig. 5(b). Analogously,
in Fig. 5(d), we plot the dependence of H as a function of δ for
two beyond-band discrete solitons with γ = −1. The dotted vertical
cyan curve in Fig. 5(d) denotes the position of the linear detuning
δl = −2.2361. These three curves in Fig. 5(d) correspond to three
lower curves with negative δ in Fig. 5(b). We want to emphasize that
when the peak amplitude of beyond-band discrete solitons decreases
to zero, their detunings will asymptotically reach the linear detuning

δl = ±
√

σ 2 + 4κ2 as clearly shown in Figs. 5(b)–5(d). This feature
makes the beyond-band discrete solitons analyzed in this work dif-
ferent from the discrete on-top breathers analyzed in Ref. 29 because
these breathers cannot be continued in frequency down (up) to the
linear spectrum for positive (negative) γ .

So far, we have analyzed the beyond-band discrete solitons in
the parameter range when |γ | = 1, |σ | = 1, and κ = 1; i.e., their
absolute values are all equal to each other. Now, we want to investi-
gate the situation in a different parameter range when both σ and κ

are much smaller than |γ |, which can happen if the nonlinear-index

coefficient n2 of waveguides is large. In this situation, even a very
weak amplitude of signals can undergo enhanced nonlinear effects.
To be specific, we now use |σ | = 0.1, κ = 0.02, but γ = 1. These
parameters are exactly the same as those in Ref. 29 where the discrete
on-top breathers were analyzed (see Fig. 8 therein). In Fig. 6(a), we
plot two curves showing the dependence of the detuning δ as a func-
tion of the central amplitude b0 for two values of σ with opposite
signs. The dotted horizontal cyan curve in Fig. 6(a) shows the linear

limit of the detuning δl =
√

σ 2 + 4κ2 = 0.1077, which completely
corresponds to the limit ωu = 1.1477 calculated by Eq. (9) in Ref. 29
(the difference between these two linear limits is 1 + 2κ due to the
structure difference of governing equations in these two works). In
Fig. 6(b), we plot the dependence of the Hamiltonian H as a function
of the detuning δ for two values σ = ±0.1. The dotted vertical cyan
curve in Fig. 6(b) denotes the position of the linear limit δl = 0.1077.
As clearly shown in Fig. 6, the detuning of discrete solitons can get as
close as desired to the linear limit δl if we decrease the central ampli-
tude b0 to zero. Note that the discrete on-top breathers analyzed in
Ref. 29 do not have this feature [see four lower curves in Fig. 8(a)
therein].
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FIG. 6. (a) The dependence of the detuning δ as a function of the central amplitude b0. The dotted horizontal line in (a) shows the limit of the linear detuning

δl =
√

σ 2 + 4κ2 = 0.1077. (b) The dependence of the Hamiltonian H as a function of the detuning δ. The dotted vertical line in (b) denotes δl = 0.1077. Parameters:
γ = 1, κ = 0.02, and σ = ±0.1.

As mentioned above, because γ in Fig. 6 is much larger than
both σ and κ , therefore, even when the central amplitude b0 is small
(for instance, b0 = 0.1), these discrete solitons are under action of
strong nonlinearity. This can be seen in Fig. 6(a) when their detun-
ings are quite far from the linear limit δl and far from each other
instead of being close to δl and close to each other as shown in
Fig. 5(b). The beam profiles of these solitons (not shown here) are
localized just in a few waveguides instead of spreading out widely as
shown in Fig. 2(b). Note that in Fig. 6, we just focus in the case with
γ = 1. If we switch the sign of γ , we will also obtain pictures, which
are qualitatively similar to Figs. 5(b)–5(d).

It is worth mentioning that the beyond-band discrete soli-
tons investigated in this work are also different from the discrete
embedded solitons reported in Ref. 35 and embedded solitons in
a continuous model reported in Ref. 39. These localized embedded
solitons (both discrete and continuous) are isolated solitary waves,
existing at discrete values of the propagation constant inside the con-
tinuous spectrum of linear waves.35,39 On the contrary, as clearly
shown in Figs. 1(b), 5(b), and 6, the beyond-band discrete solitons
investigated in this work have continuous values of the detuning δ,
which is the correction to their propagation constant ω [see Eqs. (6)
and (8)]. Moreover, unlike embedded solitons, the continuous val-
ues δ of these beyond-band discrete solitons are not located inside
the continuous spectrum ω± of linear waves, but beyond-band in the
sense that the detuning δ is above the band ω+ if γ is positive and δ

is below the band ω− if γ is negative as clearly shown in Figs. 1(b)
and 5(b).

V. CONCLUSIONS

In conclusion, we have demonstrated the existence of a com-
pletely new class of beyond-band discrete solitons in BWAs with
Kerr nonlinearity whose detunings are located out of the bandgap
(out-gap) and beyond the two bands of the linear plane waves.
The even and odd components of these discrete solitons can be
appropriately approximated by two hyperbolic secant functions.
This approximation is perfectly good in the quasilinear regime when

their peak intensity is low. In this case, the detuning and two peaks
of these two secant functions can be simply obtained by analytical
formulas. If the peak intensity becomes higher, then this approxima-
tion is still satisfactory, but not perfectly good anymore. These new
beyond-band discrete solitons are different from all other discrete
solitons investigated earlier in BWAs because they simultaneously
possess three features: (i) their normalized wave numbers Q are just
centered around 0 (when the nonlinear coefficient γ > 0) or ±π

(when γ < 0); (ii) each of their even and odd components, as a result
of (i), does not change their signs across the transverse direction of
BWAs when n runs (specifically, all components have the same sign
if γ > 0, whereas the even and odd components have opposite signs
if γ < 0); and (iii) their frequency can asymptotically reach the lin-
ear spectrum when their peak amplitude decreases to zero. We have
also provided two general transformation rules, which can help us
from a beyond-band discrete soliton to construct all the other ones
for different combinations of signs of the propagation mismatch σ

and nonlinear coefficient γ .
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