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Abstract—This paper proposes an enhanced scheme of spread
spectrum - orthogonal frequency division multiplexing with index
modulation (ESS-OFDM-IM), which employs the rotated Zadoff-
Chu (ZC) sequences to improve the reliability of SS-OFDM-
IM. Particularly, unlike the conventional SS-OFDM-IM which
exploits traditional ZC codes only, we design novel rotated
ZC sequences for the ESS-OFDM-IM, aiming at maximizing
the diversity gain of the system. We then propose a new low-
complexity maximum likelihood (ML) detector that can achieve
optimal performance at a reduced complexity compared to the
ML detector. Moreover, the performance analysis is carried out to
clearly show that our proposed scheme can provide the maximum
diversity order of being the number of sub-carriers, which is
twice larger than that of SS-OFDM-IM. Simulation results are
presented to validate the superiority of our proposed scheme over
not only the SS-OFDM-IM but also various existing IM schemes.

Index Terms—OFDM-IM, SS-OFDM-IM, spread spectrum, in-
dex modulation, spreading, Zadoff-Chu, low-complexity detector.

I. INTRODUCTION

Orthogonal frequency division multiplexing with index

modulation (OFDM-IM) [1], [2] has recently emerged as

a promising multicarrier modulation technique, which can

achieve remarkably higher reliability and energy efficiency

than the conventional OFDM. In particular, OFDM-IM ac-

tivates only a subset of sub-carriers to convey information via

both M -ary complex symbols and the indices of active sub-

carriers. Thus, this scheme enjoys lower transceiver complex-

ity than the classical OFDM as it requires less modulators and

demodulators. Furthermore, OFDM-IM provides an attractive

trade-off between spectral efficiency (SE) and reliability, just

by adjusting sub-carrier activation patterns.

Recently, various IM concepts have been proposed to im-

prove either SE or reliability of OFDM-IM, which can be

found in the survey [3]. For example, the generalized OFDM-

IM is proposed in [4] to increase index bits by varying the

number of active sub-carriers. Also in [4], the IM notion is

applied separately to in-phase and quadrature components of

M -ary symbols to double the number of index bits. The outage

probability of OFDM-IM under generalized fading channels

is studied in [5]. The low-complexity greedy detector (GD)

is proposed for OFDM-IM in [6] and its bit error rate (BER)

is analyzed in presence of channel information state (CSI)

uncertainty in [7]. A tight bound on the BER of the maximum

likelihood (ML) detection is derived in [8], while a generalized

framework of analyzing the symbol error probability (SEP)

of both the ML and GD detectors under uncertain CSI is

proposed in [9]. The combination of OFDM-IM with multi-

antenna systems is introduced in [10]. In [11], the impact

of opportunistic transmission of OFDM-IM is investigated in

terms of diversity and coding gains. The SEPs of OFDM-

IM with hybrid low complexity greedy detection and various

diversity receptions are analyzed in [12] and then the BER of

this scheme under imperfect CSI is investigated in [13]. As

for the diversity issues, in [14], OFDM-IM with coordinate

interleaving (CI-OFDM-IM) which can provide the diversity

order of two is proposed. The repeated multicarrier index

keying OFDM (MCIK-OFDM)1 is proposed to carry the same

M -ary symbol over all active sub-carriers, resulting in the so-

called ReMO [15], [16] which also achieves the diversity order

of two at the expense of SE loss. Several other IM schemes

that enhance the diversity gain up to two are reported in [17],

[18]. Very recently, in [19], [20], the spread OFDM-IM is

proposed, in which various spreading matrices are exploited

to boost the diversity order of OFDM-IM.

Another type of IM termed as code index modulation

(CIM) is introduced in [21]. Different from OFDM-IM, the

CIM conveys additional data bits via the indices of spreading

sequences, in addition to the M -ary PSK/QAM modulation

symbols. Notice that CIM is performed in the time-domain

spreading. Meanwhile, in [22], the idea of CIM is exploited

in the OFDM framework, where the spread spectrum OFDM-

IM (SS-OFDM-IM) is proposed by combining both IM and

SS techniques. Specifically, SS-OFDM-IM selects one of the

Walsh-Hadamard (WH) or Zadoff-Chu (ZC) codes to spread

an M -ary data symbol over all sub-carriers, while additional

data is carried by the index of the chosen code without any

extra requirements of power or bandwidth. It is shown in [22]

that SS-OFDM-IM achieves a diversity order that equals half

of the number of sub-carriers.

Notice that most of the aforementioned schemes have the

diversity order limited to two, which is far from the optimal

1MCIK-OFDM is regarded as another name of OFDM-IM.
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gain, i.e., the number of sub-carriers. To overcome this lim-

itation, in this paper we propose an enhanced SS-OFDM-IM

(ESS-OFDM-IM) by applying rotated ZC spreading sequences

to OFDM-IM. Particularly, we design novel rotated ZC codes

for ESS-OFDM-IM in order to maximize the diversity gain,

thereby improving the reliability as compare to SS-OFDM-

IM with the traditional ZC or WH codes. Next, we design a

new low-complexity ML detector, which can attain the optimal

performance as the ML detector at much lower complexity. We

then analyze the bit error probability (BEP) to clearly show

that using the proposed rotated ZC codes, ESS-OFDM-IM can

achieve the maximum diversity order equal to the number of

sub-carriers, and thus twice larger than that of SS-OFDM-IM.

As as result, our proposed scheme offers better BEP than not

only SS-OFDM-IM but also various existing schemes whose

diversity orders equal two.
The rest of this paper is organized as follows. Section II

describes the system model, while Section III presents the

proposed low-complexity detector. The performance analysis

is conducted in Section IV and simulation results are provided

in Section V. Finally, Section VI concludes the paper.2

II. SYSTEM MODEL

Consider an ESS-OFDM-IM system with Nc sub-carriers

which are partitioned into G clusters, each of which con-

tains N sub-carriers, i.e., Nc = GN . Since each cluster

has the same signal processing operation, without loss of

generality, we address one cluster only for simplicity. In every

transmission of one cluster, p = p1 + p2 incoming bits are

divided into two bit streams. The first p1 bits are fed to

the code selector to identify a spreading code c ∈ C, where

C = {c1, ..., cN} ⊆ C
N×1 is the set of rotated ZC sequences

to be designed below. The remaining p2 bits are mapped to an

M -ary complex symbol s ∈ S , where S is the M -ary signal

constellation.
In the proposed set C, the first rotated ZC sequence c1 =

[c1, ..., cN ]
T

is the ZC sequence [23] defined as follows

cn =

⎧⎨
⎩e

− j2πk
N

(
n2

2 +bn
)

for even N

e−
j2πk
N [n(n+1)

2 +bn] for odd N
, (1)

where n = 1, 2, ..., N , b is any integer and k is any integer

relatively prime to N . The n-th rotated code cn for n ≥ 2 is

given as the n-th cyclically shifted version of c1 rotated by an

angle e
j2π(n−1)

D , where D is chosen to be an integer greater

and relatively prime to both N and M . When N = 2p1 , we

can simply choose D = max {M,N} + 1 to make elements

of all codes different from each other, and in other cases of

N , we can select D = MN + 1. For example, for n = 2
we obtain c2 = e

j2π
D [cN , c1, ..., cN−1]

T
. Though simple, this

approach can significantly improve the diversity gain of ESS-

OFDM-IM, compared with SS-OFDM-IM, as shown in the

performance analysis afterwards.

2Notation: Upper-case bold and lower-case bold letters are used for matrices
and vectors, respectively. (.)T and (.)H stand for the transpose operation and
the Hermitian operation, respectively. ‖.‖ denotes the Frobenious norm. The
floor function is denoted by �.�. CN (

0, σ2
)

represents the complex Gaussian

distribution with zero mean and variance σ2. The ring of complex number is
denoted by C.

Unlike the WH codes, the length of the ZC is more flexible,

which can be any positive integer, leading to p1 = �log2 N�.

Thus, for given N and M , the data rate of the system is

R =
�log2 N�+ log2 M

N
(bps/Hz). (2)

After determining c and s based on the incoming bits, the

transmitted vector x is obtained by spreading s across N
sub-carriers, using c, i.e., x = cs. Then, x is processed by

the inverse fast Fourier transform (IFFT). At the receiver, the

received signal vector in the frequency domain is given by

y = Hx+ n = Hcs+ n, (3)

where H = diag {h1, ..., hN} denotes the Rayleigh fading

channel matrix with hn ∼ CN (0, 1) and n is the additive

white Gaussian noise vector with its entries ∼ CN (0, N0) .
For signal detection, the maximum likelihood (ML) detector

can be used to attain the optimal performance as follows

(ŝ, ĉ) = argmin
s,c

‖y −Hcs‖2 . (4)

Since the ML is not practical when system parameters such

as N, M increase. In [22], the low complexity maximal ratio

combining (MRC) detector is proposed for SS-OFDM-IM.

However, the MRC does not perform well in our proposed

scheme. Therefore, a novel low-complexity ML detector is

developed in the following section to resolve the issue.

III. LOW COMPLEXITY ML DETECTOR

In this section, the proposed ML detector is presented. Then

its computational complexity is evaluated and compared with

both the ML and the MRC.

A. Proposed Detector

The proposed low-complexity ML (lowML) detector first

estimates the M -ary data symbol sn for each spreading

sequence cn ∈ C, utilizing the MRC approach, as follows

sn = D {
HH

n y/T
}
, (5)

where T = ‖H‖2, Hn = Hcn for n = 1, ..., 2p1 , and D (s)
denotes the digital demodulator function that returns the M -

ary symbol being closest to s. Then, using sn, we calculate the

distance Δn = ‖y −Hnsn‖2 . Finally, the transmitted M -ary

symbol and spreading code are respectively recovered by

ŝ = sn̂, ĉ = cn̂, (6)

where n̂ = argminn=1,...,2p1 Δn. The proposed lowML

detector can be summarized in Algorithm 1.

It is worth noting that the lowML detector obviously does

not involve any approximation or assumption, thereby exhibit-

ing the same optimal performance as the ML detector. In

addition, while the MRC separately estimates the spreading

code and the M -ary symbol, the lowML jointly decodes both

these signal dimensions. Hence, our proposed detector can

provide better performance than the MRC at the cost of higher

computational complexity.
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Algorithm 1 Low-complexity ML detection algorithm

Input: y, H, and C
Output: ŝ and ĉ

1) Calculate T = ‖H‖2.

2) for n = 1 to 2p1 do
3) Calculate Hn = Hcn, where cn ∈ C.

4) Estimate sn = D {
HH

n y/T
}

.

5) Compute Δn = ‖y −Hnsn‖2 .
6) end for
7) Estimate n̂ = argminn=1,...,2p1 Δn.

8) Generate the output ŝ = sn̂ and ĉ = cn̂.

B. Complexity Analysis and Comparison

We evaluate the computational complexity of the proposed

detector with respect to the number of floating point operations

(flops) per sub-carrier. Notice that a flop can be counted as a

real summation, a real division, a real multiplication or a real

square root. For example, a complex multiplication contains 4

real multiplications and 2 real additions, thus is considered as

6 flops. We also compute the complexities of the ML and the

MRC for comparison.

For simplicity in the calculation, we assume N = 2p1 .

According to Algorithm 1, numbers of flops involved in steps

1, 3, 4 and 5 are approximately 4N , 6N , 8N and 12N,
respectively. As a result, the complexity of the proposed

detector is 28N + 4 (flops/sub-carrier), which is the order of

O (N). Here, it should be noted that since the complexity

of the digital demodulator function in step 4 is negligible

in comparison with other calculations, the complexity of the

proposed detector is roughly independent of the modulation

size M . Similarly, the complexities of the ML and the MRC

are approximated by 18MN and 14N+15 (flops/sub-carrier),

respectively, and their corresponding orders are O (MN) and

O (N). It is clear that the complexity of the ML detector relies

on both M and N , while that of the proposed lowML, similar

to the MRC, depends almost on N only.

The complexity comparison among three detectors for var-

ious values of N and M is depicted in Table I. It can be seen

that the complexity of the proposed detector is much lower

than that of the ML, while it is slightly higher than the MRC.

For example, when (N,M) = (4, 64), the proposed lowML

can save 97.5% computational complexity compared to the

ML, while the reduction of the MRC is 98.5%.

TABLE I
COMPLEXITY COMPARISON AMONG THE PROPOSED DETECTOR, THE ML

AND THE MRC UNDER VARIOUS CONFIGURATIONS (N,M)

(N,M) (4, 4) (4, 64) (4, 512) (8, 32) (8, 1024)

ML 288 4608 36864 4608 147456
MRC [22] 71 71 71 127 127
Proposed 116 116 116 228 228

IV. PERFORMANCE ANALYSIS

We analytically evaluate the pairwise error probability (PEP)

of ESS-OFDM-IM to show the enhancement of the diversity

gain when employing the proposed rotated ZC sequences.

Then, the upper bound on the BEP is derived.

The conditional PEP that the transmitted x = cs is erro-

neously detected as x̂ = ĉŝ 	= x, for given H, is given by

P (x → x̂|H) = Q

⎛
⎝
√

‖H (cs− ĉŝ)‖2
2N0

⎞
⎠ , (7)

where Q (.) represents the Gaussian tail probability. We as-

sume that N0 = 1/γ̄ where γ̄ is the average signal-to-noise ra-

tio (SNR) per sub-carrier, c = [c1, ..., cN ]
T

, ĉ = [ĉ1, ..., ĉN ]
T

and κn = |cns− ĉnŝ|2 for n = 1, ..., N . Then, (7) can be

rewritten as

P (x → x̂|H) = Q

⎛
⎝
√∑N

n=1 κnγn
2

⎞
⎠ , (8)

where γn = γ̄ |hn|2 is the instantaneous SNR at the n-th sub-

carrier. Using the approximation of Q-function as Q (x) ≈
e−x2/2/12 + e−2x2/3/4, (8) can be approximated as

P (x → x̂|H) ≈ 1

12
e−

Λ
4 +

1

4
e−

Λ
3 , (9)

where Λ =
∑N

n=1 κnγn. Note that under Rayleigh fading

channel model, the moment generating function (MGF) of Λ
is given by MΛ (t) =

∏N
n=1 (1− κnγ̄t). Here, applying the

MGF approach to (9), the unconditional PEP is obtained as

P (x → x̂) ≈ 1/12∏N
n=1

(
1 + κnγ̄

4

) +
1/4∏N

n=1

(
1 + κnγ̄

3

) . (10)

It can be seen from (10) that the diversity order of the

PEP is the number of non-zero elements κn. To determine

the diversity order of the proposed scheme, we consider three

following possible cases of PEP error events x → x̂. Firstly,

c = ĉ and s 	= ŝ, leading to κn = |s|2 	= 0 for every n, thus

the diversity order in this case is N .

Secondly, c 	= ĉ and s = ŝ, we obtain κn = |s|2 |cn − ĉn|2.

Thus, the diversity order becomes the Hamming distance

between two different codes, which is proved to be N as

follows. When N is even, it is assumed from (1) that cn =

e−
jπmk2

1
N +

j2πq1
D and ĉn = e−

jπmk2
2

N +
j2πq2

D , where 0 ≤ q1 <
q2 < N and 1 ≤ k1, k2 ≤ N . Here, we select k = 1 and

b = 0 in (1) to define such cn and ĉn. If cn = ĉn, we attain

Dm
(
k22 − k21

)
= 2 (q2 − q1)N. (11)

Since D is relatively prime to both 2 and N , it is obtained

from (11) that q2 − q1 ≡ 0 (mod D). However, this conflicts

with the fact of 0 < q2 − q1 < D. Hence, cn 	= ĉn for every

n, which leads to the diversity order in this case is N . Notice

that for odd N , we also arrive such the same conclusion.

In the last case of c 	= ĉ and s 	= ŝ, we assume s = e
j2πl1

M

and ŝ = e
j2πl2

M , 0 ≤ l1 < l2 < M when the M -ary PSK

modulation is used. Note that cns− ĉnŝ = 0 is equivalent to

D
[
2 (l1 − l2) +Mm

(
k22 − k21

)]
= 2 (q2 − q1)MN. (12)

Applying the same approach as in the second case to (12), it

is shown that κn is always non-zero for every n, leading to

the diversity order achieved in this case is still N .



192

2018 5th NAFOSTED Conference on Information and Computer Science (NICS)

Remark 1: In conventional SS-OFDM-IM which relies

on traditional ZC or WH codes, there always exists two

distinct codes so that their Hamming distance is N/2. This

makes the diversity order of SS-OFDM-IM in the second

case above always limited to N/2. By contrast, as analyzed

above, applying the proposed rotated ZC codes, ESS-OFDM-

IM ensures to achieve the maximum diversity gain, i.e., N . As

a consequence, the proposed scheme can achieve significantly

higher reliability than SS-OFDM-IM as well as other IM

schemes as will be validated in Section V.

Remark 2: Utilizing (10), we obtain the upper bound on the

BEP of ESS-OFDM-IM, based on the union bound theory, as

Pb ≤ 1

pMN

∑
x

∑
x̂

P (x → x̂)β (x, x̂) , (13)

β (x, x̂) is the number of bit errors in the error event (x → x̂).

V. SIMULATION RESULTS

In this section, simulation results are presented to validate

the error performance of the proposed ESS-OFDM-IM as well

as lowML detector. We compare our scheme with OFDM-

IM and several recent IM schemes such as SS-OFDM-IM

[22], ReMO [16] and CI-OFDM-IM [14]. The configurations

of ReMO, CI-OFDM-IM and OFDM-IM are denoted as

(N,K,M) where N and M are the same as the proposed

scheme, while K is the number of active sub-carriers.

Fig. 1. compares the BEP of ESS-OFDM-IM with SS-

OFDM-IM and OFDM-IM, at the data rate of 1.5 bps/Hz,

when N = 2, M = 4 and K = 1. Since ReMO and CI-

OFDM-IM require K ≥ 2, they do not work in this case. The

proposed scheme employs three detectors including the ML,

MRC [22] and the proposed lowML detector, while others use

the ML. As seen via Fig. 1, ESS-OFDM-IM is superior to the

benchmarks in terms of the BEP performance. For example,

at BEP = 10−4, our scheme achieves SNR gains of 9 dB and

12 dB over OFDM-IM and SS-OFDM-IM, respectively. This

is because using the proposed rotated ZC sequences, ESS-

OFDM-IM attains the maximum diversity order, which is 2,

i.e., N as proved in Section IV, while both SS-OFDM-IM and

OFDM-IM only provide the diversity order of one. Moreover,

the proposed lowML detector exhibits the optimal BEP as the

ML. Meanwhile, compared to the MRC, our detector has the

considerably better BEP performance. Fig. 1 also confirms

the tightness of the derived upper bound on the BEP of ESS-

OFDM-IM, especially when the SNRs get higher.

In Fig. 2, the BEP comparison among ESS-OFDM-IM,

SS-OFDM-IM, ReMO, CI-OFDM-IM and OFDM-IM is il-

lustrated, at the data rate of 1 bps/Hz, when N = 4,

M = {2, 4} and K = {1, 2}. Once again, a significant BEP

improvement of the proposed scheme can be seen from Fig.

2 in comparison with its benchmark schemes, especially at

the increasing SNRs. Particularly, this figure clearly shows

that our scheme can provide the diversity order of four, while

the benchmark schemes only offer the diversity orders of two

or one. For instance, at BEP = 10−5, there are remarkable

SNR gains of approximately 5, 7, 8 and 20 dB achieved by

ESS-OFDM-IM over SS-OFDM-IM, ReMO, CI-OFDM-IM

0 5 10 15 20 25 30 35 40
SNR (dB)

10-5

10-4

10-3

10-2

10-1

100

B
E

P

ESS-OFDM-IM, (N,M)=(2,4), ML
ESS-OFDM-IM, (N,M)=(2,4), lowML
ESS-OFDM-IM, (N,M)=(2,4), MRC
SS-OFDM-IM, (N,M)=(2,4), ML
OFDM-IM, (N,K,M)=(2,1,4), ML
Upper bound, ESS-OFDM-IM

1.5 bps/Hz

Fig. 1. BEP comparison among ESS-OFDM-IM, SS-OFDM-IM and OFDM-
IM at the data rate 1.5 bps/Hz, when N = 2, M = 4 and K = 1.

0 5 10 15 20 25 30 35 40
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SS-OFDM-IM, (N,M)=(4,4), ML
ReMO, (N,K,M)=(4,2,4), ML
OFDM-IM, (N,K,M)=(4,1,4), ML
CI-OFDM-IM, (N,K,M)=(4,2,2), ML
Upper bound, ESS-OFDM-IM

1 bps/Hz

Fig. 2. BEP comparison among ESS-OFDM-IM, SS-OFDM-IM, ReMO, CI-
OFDM-IM and OFDM-IM at the data rate 1 bps/Hz, when N = 4, M =
{2, 4} and K = {1, 2}.

and OFDM-IM, respectively. In addition, Fig. 2 once again

clearly demonstrates the superiority of the proposed detector

over the MRC detector.

VI. CONCLUSION

We have proposed an enhanced SS-OFDM-IM scheme,

which employs the rotated ZC codes to improve the reliability

over SS-OFDM-IM exploiting the traditional ZC or WH codes.

In particular, we provided a novel method to design the rotated

ZC codes that can maximize the diversity order. The BEP

performance was analyzed to clearly show that employing

the proposed rotated ZC codes, ESS-OFDM-IM achieves the

maximum diversity order which is twice larger than that of

SS-OFDM-IM. We also derived a novel lowML detector that

exhibits the optimal performance as the ML, at the much

lower complexity. Specifically, unlike the ML, the lowML

detector has the complexity which is roughly independent of

the modulation size. Simulation results clearly show that our

proposed scheme significantly outperforms the benchmarks.

Furthermore, the proposed detector performs considerably

better than the MRC at slightly higher complexity.
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