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Abstract

The latent feature space of AutoEncoder-based structure models has
been widely developed for unsupervised learning in cyber-security
domain, and has shown remarkable performance. Our previous work
has introduced a hybrid AutoEncoders (AEs) and Self-Organizing Maps
(SOMs) for unsupervised IoT Malware detection. However, the paper
has only examined the characteristics of the latent representation of
ordinary AEs in comparison to that of Principle Component Anal-
ysis (PCA) on different ratios of IoT malware data. In this paper,
we extend our previous work by employing Denoising AEs (DAEs) to
enhance to the generalization ability of latent representation as well
as optimizing hyper-parameters of SOMs to improve the hybrid perfor-
mance. This aims to further examine the characteristics of AE-based
structure models (i.e. DAE) for the task of IoT malware detection,
particularly identifying unknown/new IoT attacks and transfer learn-
ing. Our model is evaluated and analyzed extensively by a number of
experiments on the NBaIoT dataset. Well-known feature representa-
tion methods such as PCA and AEs are included in the experiments
in order to highlight the behavior of the DAE learner. The experimen-
tal results demonstrate that the latent representation of DAEs is often
superior to that of AEs and PCAs in the task of identifying IoT malware.

Keywords: AutoEncoders, Denoising Autoencoders, Self-Organizing Maps,
IoT Malware, IoT anomaly detection, transfer learning
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1 Introduction

Internet of Things (IoTs) has played a vital role in developing smart ser-
vices for Human’s life, such as smart home, healthcare, transportation and
education services [1, 2]. However, the heterogeneous nature and the diversity
of IoT have make it vulnerable to many kinds of attacks [3]. Meanwhile, new
generations of IoT malware are continuously launching to bypass IoT secu-
rity systems and exploit valuable resources on IoT. Onboard attacks, security
gateway attacks, control server attacks, and eavesdropping attacks are just a
few typical examples of IoT attacks. Botnet Mirai which is one of the most
popular IoT malware has recently been employed to launch large-scale DDoS
attacks by exploiting vulnerabilities in IoT devices [4]. Therefore, the IoT secu-
rity solutions should be intensively and extensively developed in order to keep
up with the rapid evolution of IoT malware[4].

Machine learning (ML) has been widely used to develop solutions for many
security problems like detecting malicious codes, identifying and classifying
network attacks, and recognizing anomalous behaviors of network data [5–8].
When applying ML, IoT malware and malicious actions are often modelled
as anomalies while normal activities of IoT can be treated as normal [9–12].
Depending on the availability of anomaly data and the objective of detec-
tion task, supervised, unsupervised or semi-supervised learning approach can
be used for constructing detection models. In addition, advances in machine
learning (learning strategies), such as federated learning, transfer learning,
and few-shot learning have been introduced to strengthen ML in dealing with
challenging task in cyber-security, particularly IoT security [13]. Amongst the
above approaches, unsupervised learning is more popular due to the scarcity
of cyber-attack data and their labels as well as the high demand in identifying
unknown/new malicious activities.

Recently, AutoEncoder-based techniques, such as ordinary AutoEncoders
(AEs), Denoising AEs, Variational AE, have been used to construct useful
latent feature space from the input data for eliminating subsequent detection/-
classification methods [10, 12, 14, 15]. For semi-supervised anomaly detection,
Nguyen et al. [15] proposed a hybrid between AEs and K-means for auto-
matically discovering sub-classes in normal data. The hybrid was trained with
an iterative strategy, while AEs with a regularized loss function attempt to
learning a “good” latent representation in its middle hidden layer, K-means
try to explore sub-clusters in the latent representation. However, the subse-
quent clustering method, namely K-means, is quite simple makes the hybrid
difficult to learning complex latent representation produced from AEs without
any regularized terms in its loss function. Our previous work [16] has investi-
gated the latent representation of AEs in supporting an unsupervised learning
method, namely Self-Organizing Maps (SOMs), for identifying IoT malware.
In the work, we have extensively examined the characteristics of AEs on a
wide range of experiments (i.e. a number of IoT malware scenarios as well as
the ratio of IoT malware in data). Moreover, SOMs is an advanced clustering
method that can discover clusters from complex feature representations (i.e.
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clusters with arbitrary shapes). The experiments from [16] demonstrated that
the latent representation of AEs can help SOMs learn highly unbalanced data
and IoT malware whose behaviors being similar to benign. However, AEs tend
to learn identity from data that is more likely fall into overfitting. In addition,
SOMs are employed with default the hyper-parameter setting that is difficult
for SOMs to obtain the best performance.

In this paper, we extend our previous work [16] by introducing Denoising
AEs to avoid learning identity and employing optimization methods to search
for the best hyper-parameters of SOMs. This study aims to extensively inves-
tigate the latent representation of AE-based structure networks (i.e. Denoising
AEs) in learning multiple classes simultaneously for unsupervised anomaly
detection problems. In other words, we attempts to give answers for the ques-
tions that whatever the latent representation of DAEs can benefit unsupervised
learners better than that of AEs or not? What kinds of IoT malware groups
do DAEs prefer to learn? Similar to [16], we create a number of data sce-
narios with different ratios of IoT malware and benign to train DAEs. SOMs
are chosen as the subsequent clustering methods working on the latent rep-
resentation of DAEs. Instead of using default settings as in [16], we employ
well-known optimization techniques to search for the best hyper-parameter set-
tings of SOMs. Ordinary AEs and PCA are included in our study as baselines
for comparison with DAEs. AEs can help SOMs learn highly unbalanced data
and IoT malware whose behaviors being similar to Benign while PCA tends to
support SOMs working well on quite balanced data with its classes being very
separated from each others [16]. The NBaIoT dataset [17] is used for evaluat-
ing our proposed models on different aspects such as detecting unknown/new
malware, transferring knowledge for detecting IoT malware on different IoT
devices and detecting different IoT malware groups.

The contributions of this paper can be listed as follows:

• Investigate the latent representation of DAEs for unsupervised learning in
detecting IoT malware.

• Apply optimization techniques for estimating hyper-parameters of the
subsequent clustering methods, namely SOMs, in hybrid between latent
representation models (DAEs, AEs, or PCA) and SOMs.

• Carry out a number of experiments to evaluate hybrid the latent repre-
sentation models and SOMs, called AESOM, DAESOM and PCASOM on
different aspects of IoT malware detection models such as the ability to
detect unknown/new IoT attacks, and to transfer model knowledge.

The remainder of paper is organized as follows. Section 2 and 3 briefly
present some related works and background, respectively. Our proposed models
are described in details in Section 4. Following this, experiments, results and
discussions are presented and illustrated in Sections 5 and 6. Section 7 draws
some conclusion and future directions for the paper.
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2 Related Works

In this section, we’ll go through some recent research that has been
used to detect IoT anomalies. Most of approaches used are based on
unsupervised/semi-supervised learning methods. We discuss the use of AEs
in particular. Next, we also carry out some studies that tend to solve the
classification problem using the unsupervised technique.

As a feature learner for latent representation, AE-based approaches have
been frequently used [9, 12, 14, 17–21]. Later on, this latent is used in anomaly
detection models. The latent feature representation can be trained in a vari-
ety of ways, including supervised learning [9, 17], semi-supervised learning
[12], and unsupervised learning [14, 20]. The common approach is as follow:
all algorithms are trained on the training data (usually one-class learning),
and only the encoder is utilized for further stages when the training process
is completed. This encoder attempts to extract latent features from the input,
which are then used in typical machine learning approaches to develop detec-
tion models. Because the dimension of latent data is smaller and less than that
of input data, classification models are often faster.

Recently Cao et al. [12] introduced two regularized AEs, namely SAE and
DVAE for capture the normal behaviors of network data. The purpose of these
regularizers AEs is to direct normal data to a small region near the origin of the
latent feature space, so saving the remainder of the space for future anomalies.
The purpose of these regularized AEs was to solve the problem of detecting
anomalies in high-dimensional network data. The latent representation of SAE
and DVAE was then employed to improve simple one-class classifiers. In a
supervised manner, Vu et al. [9] proposed Multi-distribution VAE (MVAE)
to represent normal data and anomalous data into two separate regions in
the latent feature space of VAE. Originally, Variational EutoEncoders (VAEs)
learn to map input data into a standard Gaussian distribution N (0, 1) in its
middle hidden layer. The suggested model was tested on two publicly available
network security datasets and showed encouraging results.

In unsupervised manner, Gustavo et. al. [22] explore the power of SOM for
multi-label classification. Since the SOM has ability to map input instances to
a map of neurons. Similar instances are grouped into the same class after SOM.
Also using SOM, Andreas Rauber et. al. [23] presented the LabelSOM model,
which can automatically label and train the SOM with the features of the most
relevant input data in a particular cluster. In [24] J. Tian et. al. proposed a
method that can improve SOM for anomaly detection. For a given test data,
all the neighbors are identified by using the k-nearest neighbor algorithm. The
Euclidean distance was used to measure the distance between the test data
observation and the centroid of the neighbors.

In [25], Ferles et. al. presented the DASOM which incorporates the lat-
ter into a hierarchically organized hybrid model with a grid of topologically
ordered neurons as the front-end component. The idea is to put a layer of
hidden representations between the input space and the self-organizing map’s
neural lattice. DASOM’s efficiency, performance, and projection capabilities
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are demonstrated through a variety of studies that include optical recognition
of text and images, as well as cancer type grouping and categorization. With
the same approach, Wickramasinghe et. al. [26] also presented the DeepSOM
for unsupervised image classification.

This work attempt to investigate the latent representation of AEs for IoT
malware detection tasks in an unsupervised manner. This means that we use
AEs to learn a latent representation for both normal and IoT malware without
labels. The capacity of Denoising AutoEncoder (DAE) to data denoise, enhanc-
ing model accuracy on IoT latent feature representation, was then examined.
The latent representation then facilitate SOMs for discovering clusters.

3 Background

3.1 AutoEncoder

An AutoEncoder is a feed-forward neural network that attempts to recon-
struct the original input data at the output layer [27, 28]. The traditional AE
is used for dimensional reduction and feature learning. The AE architecture
is shown in Fig. 1 consists of two parts, Encoder, Decoder, connecting by its
bottleneck layer. The hidden layer h that described a code used to represent
the input [29]. The encoder function f is used to learn the input and repre-
sented as code, the decoder function g is used to reconstruct the data from the
encoded representation.

Mathematically, given data x with no-labels and the function f for encoder
and function g for decoder. Then we have the following equations:

z = f(x) = ae(wx+ b) (1a)

x̂ = g(z) = g(f(x)) = ad(w
′.f(x) + b′) (1b)

where ae and ad are the activation functions of the encoder and decoder, x̂ is
x’s reconstruction. The reconstruction loss function (e.g. squared loss error) is
to minimize the difference between the input x and the output x̂.

L(x, x̂) = ∥x− x̂∥2 = ∥x− ad(w
′.f(x) + b′)∥2

= ∥x− ad(w
′.ae(wx+ b) + b′)∥2

(2)

3.2 Denoising AutoEncoder

The Denoising AutoEncoder (DAE) [30] works like traditional AE, but
instead of directly reconstructing from the latent representation of the input, it
tries to reconstruct the input from the “noise” version. Firstly, the initial input
x is used to build the corrupted version x̃. The “noise” xnoise is drawn using the
additive isotropic Gaussian noise: xnoise = N (0, σnoise). In the experiments,
the σnoise is set to 1.0. Next, the corrupted version x̃ is calculated by adding
noise to the original input: x̃ = x+ xnoise.
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The original formula of AE is rewritten as follow:

z = f(x̃) = ae(wx̃+ b) (3a)

x̂ = g(z) = g(f(x̃)) = ad(w
′.f(x̃) + b′) (3b)

As the same to AE, the reconstruction loss function of DAE is also to
minimize the difference between output x̂ and original input x.

L(x, x̂) = ∥x− x̂∥2 = ∥x− ad(w
′.f(x̃) + b′)∥2

= ∥x− ad(w
′.ae(wx̃+ b) + b′)∥2

= ∥x− ad(w
′.ae(w(x+ xnoise) + b) + b′)∥2

(4)

where ae and ad are the activation functions of the encoder and decoder,
respectively; the output x̂ is x̃’s reconstruction. The reconstruction loss func-
tion (e.g. squared loss error) is to minimize the difference between the input x
and the re x̂. The difference from the traditional AE is x̂ is obtained from the
corrupted input instead original x.

3.3 Principle Component Analysis

One of the most significant techniques in Machine Learning is dimension-
ality reduction. It is to find a function that takes the input of a data point
x ∈ RD (D is the number of dimensions) and create a new data point z ∈ RK

with K < D.
One of the simplest dimensionality reduction algorithms is based on a linear

model. This algorithm is called Principal Component Analysis (PCA) [31,
32]. This method is based on the observation that the data are not normally
distributed randomly in space, but are often distributed near-certain special
lines/faces. PCA considers a special case when those special faces are linear in
sub-spaces. Some modern PCA algorithms are Kernel PCA [33], Sparse PCA
[34], Nonlinear PCA [35], Robust PCA [36].

3.4 Self-Organizing Maps

The Self-Organizing Maps (SOM) [37, 38] are self-organizing neural net-
works that are able to map similar instances to a group in a map, then
each neuron is placed next to each other. This map provides a mapping from
a high-dimensional input space to lower-dimensional output space (usually
two dimension). SOMs employ competitive learning as opposed to error-
correction learning (such as back-propagation with gradient descent), and
they use a neighborhood function to preserve the topological properties of the
input space. In other words, competitive learning is an unsupervised learning
method, and it is most suitable to illustrate the appropriateness of learning
from a single-layer neural network.
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The winning neuron is archived on the training SOM using Euclidean
distance, which is represented in Equation 5.

dj(x) =

√√√√ A∑
i=1

(xi − wji)2 (5)

where x is the attribute vector of the instance and wj is the weight vector of
the jth neuron, A is the number of attributes of an instance.

When the winning neuron is obtained, its weights will be adjusted to
approximate it to the instance. Since then, a map of its neighborhood is
defined. The process is continued as follow: the weights of each neighborhood
also is updated, and approximate to the winning neuron; a good choice for
finding for the neighborhood is using Gaussian function 6, where hj,i is the
neighborhood of the winning neuron i, while j is the older winning neuron,
the distance dj,i is a distance between neurons, the σ defines the spreading of
neighborhoods. [22].

hj,i = exp(−
d2j,i
2σ2

) (6)

The weight update process is given by Equation 7, where wj is the weight
vector, x is input instance, η is a learning rate.

∆wj = ηhj,i(x− wj) (7)

Finally, the weight vector at iteration (t+ 1) is updated by Equation 8.

∆wj(t+ 1) = wj(t) + ηhj,i(x− wj(t)) (8)

The training process of the algorithm is shown in Algorithm 1. Firstly, the
weight matrix is initialized by generating randomly or using PCA method.
Secondly, the winning neuron is selected from the neuron grid Ω by using the
distance metric (e.g. Euclidean). Finally, the weights of all related neurons will
be updated using Equation 8 [22]. The process is terminated when the network
is converged, and the weights in the map might have the same distribution as
the input vectors. It means, after the finite number of iterations, the inputs
are placed in appropriate positions in the Kohonen network (another name of
Self-organizing maps).

In Algorithm 1, X is a dataset, q is a number of instances, a is a number
of attributes, l is a number of labels and n is a number of neurons.

3.5 Transfer Learning

Transfer learning is the application of skills/knowledge learned from one
problem (source domain - DS), with specific application (source task - TS) to
another problem (target domain - DT ) with another application (target task
- TT ) which is relevant. Transfer learning aims to improve the learning of the
function fT (·) for the application TT on the domain DT [39].
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Algorithm 1 The SOM algorithm

Input: X = [q, (a+ l)], e: number of epochs
Output: W = [n, a]
Main loop

for i ← 1 to e do
Initialize weight matrix W
for j ← 1 to q do

o(xj) = argmink∥xj − wk∥, k ∈ Ω
wk(i+ 1) = wk(i) + η(i)hk,o(xj)(i)(xj(i)− wk(i))

end for
end for

return W

4 The Hybrid DAESOM

This section presents our proposed hybrid model for detecting IoT malware.
Similar to our previous study [16], our approach also consists of two phases
as shown in Fig. 1. The difference is that, a DAE is used instead an ordinary
AE as in [16], and training SOM in phase 2 includes the task of optimizing
hyper-parameters. The details of these phases are described as follows:

• Phase 1 : A DAE is trained on unlabeled data (normal data and IoT Mal-
ware) to construct its latent representation. The latent feature space which
is in a lower dimension often discover more meaningful features. The feature
space is then fed into the subsequent clustering method.

• Phase 2 : A SOM plays as a classification-based method working directly
on the DAE’s feature space. It will learn to discover clusters in the feature
space in training stage, and classify data into proper clusters (normal data
and IoT malware) in the querying stage. The hyper-parameter optimization
is included in this phase.

Fig. 1: The system architecture
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Another feature representation such as AEs and PCA are also involved in
phase 1 of the our proposed model to highlight the performance of DAEs.

4.1 Latent Representation of DAEs

In this work, we employ an ordinary DAE with a 3-layer in its encoder
and a 3-layer in its decoder. The DAE architecture is shown in Fig. 1. The
DAE is trained in the unsupervised learning manner. This means that the
training dataset is a unlabelled dataset consisting of both normal data and
IoT malware. To investigate the effectiveness of the DAE feature space in
unsupervised learning task, we create four versions of the training datasets with
four different level of unbalances (ratio r) between IoT malware and normal
data on each IoT malware group. The values of r are manually chosen as 0.01,
0.1, 1.0, and 5.0, they are most the same as described in [16]. To examine the
behavior of DAE on different IoT malware groups, the normal data is combined
with each of IoT malware groups to generate training datasets for each IoT
device. For training process, a training dataset is passed into an AE model
with the objective of minimizing the difference between the original data and
its reconstruction. The process is terminated if the training error is satisfied an
early-stopping criteria. Once the training process is done, the decoder part is
discarded while the encoder part is preserved as a feature learning component
facilitating the subsequent clustering-based technique.

On visualizing data (more details are described in section Results and Anal-
ysis in [16]), the graph shows that Gafgyt tends to be close to Benign. This
can lead to bad results when the model classifies because Gafgyt and Benign
look like noise to each other. To overcome this situation, the DAE is used to
denoise before passing the data into the model.

4.2 SOM-based Classification Algorithm

Given instance xi, and the task is to classify it into an appropriate class.
Firstly, all classes are represented by binary vector vi. The j

th position in this
vector is corresponding to the jth class (cj). If the instance xi is a member of
class cj , then the vi,j has value 1, and 0 vice versa [22].

The trained SOM maps test instance into labels-map. Once its closest neu-
rons found, a vector (known as the prototype vector) is produced by averaging
the class vectors of the training instances mapping to this neuron, denoted by
v̄. It is the classification probability of the test instance falling into each class.
The formulation of the prototype vector is shown in Equation 9. The Sn is the
training set which mapped to neuron n, while the Sn,j is the training instances
which mapped to the neuron n and classified to class cj .

v̄n,j =
Sn,j
Sn

(9)

To map instance n to class cj , a predetermined threshold is set, typically 0.5,
on the v̄n,j . The position whose the v̄n,j value is not smaller than the threshold
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receives the value 1, and 0 otherwise. The more details about algorithm 2 are
presented in the previous paper [16].

Algorithm 2 SOM-based classification algorithm

Input: Xtrain = [q, (a+ l)], W = [n, a]
Output: P
Main loop

for j ← 1 to m do
o(xtest

j ) = argmink∥xtest
j − wk∥, k ∈ Ω

T ← instances mapped to o(xtest
j );

v̄j ← average of the label vectors from T ;
xtest
j ← xtest

j + v̄j
pj ← v̄j
pj compares to threshold

end for

return P

In the Algorithm 2 q is the number of training instances, a is the number
of attributes dataset, l is the number of labels, m is the number of instances
in the testing set, W is the weight matrix and P is the prediction matrix.

4.3 Hyper-parameters Optimization for SOM

The machine learning model includes two types of parameters:

• Parameters of model: they are all the parameters (e.g. weights, bias) those
values are changed (updated) through training process.

• Hyper-parameters: all parameters that are set independently before train-
ing and their values can not be changed through training process (e.g., an
estimate of the number of people in a random forest).

In SOM, the hyper-parameters includes: n - the dimension of the SOM
map, η - the learning rate and σ - the spreading of the neighborhood function
(see Eq. 6).

To find the best hyper-parameters for the model, the best way is to optimize
them by using different optimization algorithms [40]. Some algorithms that
are used to optimize SOM model are listed below:

• Random search [41]: it is another version of grid search. It selects the values
of parameters randomly from predefined set to find the best solution for the
model. But the drawback of this method is missing some optimized values
from search space.

• Tree-structured Parzen Estimators (TPE) [40, 41]: The main idea of this
algorithm is to handle the hyper-parameters in a tree-structured form. The
number of layers of neural nets and the number of neurons in each layer
defines a tree structure. Given the configuration space χ, the TPE models
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Table 1: The SOM classification results on hyper-parameters tuning

Algorithm Algorithm

tpe rand atpe anneal tpe rand atpe anneal
Device Test

Train on gafgyt Train on Mirai
Gafgyt 0.998 0.994 0.997 0.998 0.996 0.978 0.994 0.881

D1
Mirai 0.662 0.777 0.796 0.709 0.998 0.995 0.998 0.994

D3 Gafgyt 0.995 0.995 0.994 0.994
Gafgyt 0.997 0.998 0.998 0.997 0.961 0.985 0.994 0.985

D5
Mirai 0.822 0.684 0.675 0.723 0.991 0.992 0.995 0.991
Gafgyt 0.996 0.996 0.998 0.997 0.968 0.965 0.981 0.891

D6
Mirai 0.682 0.679 0.681 0.683 0.999 0.995 0.996 0.998
Gafgyt 0.993 0.996 0.996 0.995 0.652 0.958 0.981 0.960

D8
Mirai 0.778 0.675 0.670 0.645 0.989 0.995 0.995 0.992

p(x | y) by transforming the generative process, replacing the distributions
of the configuration space is described using uniform, log-uniform, quantized
log-uniform, and categorical variables.

• Adaptive TPE [40]: The Adaptive TPE (ATPE) is a variant of TPE, which
yields a model over χ by placing density in the vicinity of K observations
β = x(1), ...x(K) ⊂ H (H is a list of observed variables). Each continuous
hyper-parameter was specified by a uniform prior over some interval (a, b)
or a Gaussian, or a log-uniform distribution.

• Annealling [41]: This algorithm is a simple variation of random search which
tries to select one of the previous testing points as the starting, and then
sample each hyper-parameter from a distribution similar to the one specified
in the prior.

In our experiments, we use the HyperOpt 1 (Bergstra et. al. [42]) to find the
best algorithm for optimizing the SOM hyper-parameters. The steps to find
the optimized values for hyper-parameters are following:

• Define a minimize function
• Define a search space
• Build a database in which all the current evaluation values of the search are
stored

• Build the search algorithm

In experiments, devices (D1, D3, D5, D6, D8) are used for testing. SOM is
trained and tested on the same/unknown attack type in the same device. As
the result show in table 1, the best result is with ATPE algorithm. Since that,
the ATPE is used inside the SOM to find optimized hyper-parameters.

1https://github.com/hyperopt/hyperopt
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5 Experiments

In this section, we describe a set of experiments to evaluate the feature
space of AEs for IoT Malware detection using unsupervised learning. To do
this, we employ a SOM method as the subsequent classification-based method.
In order to highlight the characteristics of AEs, the SOM working with other
feature reduction method like PCA and the stand-alone SOM are assessed in
comparison to the hybrid AEs and SOMs. We use the terms AESOM, DAE-
SOM and PCASOM to refer to the hybrid an AEs and a SOM, the hybrid
PCA and a SOM respectively. The rest of this section contains a description
of the IoT dataset, hyper-parameter settings, and assessment metrics.

We set out to examine the properties of the AE feature space for unsu-
pervised learning IoT Malware detection in three separate experiments. The
experiments consists of (1) IoT data analysis; (2) the ability in identifying
unknown/new IoT attacks; and (3) the ability in transferring learning. The
details are as follows:

• The goal of IoT data analysis is to learn about the characteristics of three
groups of data: benign, Gafgyt, and Mirai. This consideration is presented
in this study [16],

• Unknown/new IoT attacks is to evaluate our proposed model on
unknown/new IoT attacks from the same IoT device,

• Transfer learning is to evaluate our proposed model on the data from other
devices.

All experiments are implemented in Python using Keras2, Scikit-learn3 and
Minisom4 frameworks.

5.1 Datasets

The NBaIoT dataset 5 was introduced by Y. Meidan et al. [17]. Data sam-
ples from NBaIoT are collected from nine different IoT devices, as described
in Table 2. For each device, the two most popular kinds of IoT Malware
are launched such as Mirai and BASHLITE (or Gafgyt) for generating Mal-
ware data together with benign data. These devices can be categorized into
four main groups: doorbell, thermostat, monitor and camera/webcam. Each
record in the dataset consists of 115 features extracted by using Kitsune [43].
In addition, the NBaIoT dataset contains two main different groups of IoT
attack types, namely Mirai and Gafgyt. Each group of IoT attacks consists of
many sub-classes of attack types. However, our experiments focus on classify-
ing benign and IoT attacks, thus Mirai and Gafgyt are examined instead of
sub-classes of IoT attacks.

In our experiments, we use two groups of IoT devices: doorbell (D1 and
D3) and camera (D5, D6 and D8) with different scenarios as presented in our

2https://keras.io/
3https://scikit-learn.org/
4https://github.com/JustGlowing/minisom
5https://archive.ics.uci.edu/ml/datasets/detection of IoT botnet attacks N BaIoT



Springer Nature 2021 LATEX template

Denoising Latent Representation with SOMs for Unsupervised IoT Malware Detection 13

Table 2: The nine IoT datasets in NBaoIoT

Device ID Device Name Type Benign Gafgyt Mirai
D1 Danmini Doorbell Doorbell 49548 652100 316650
D2 Ecobee Thermostat Thermostat 13113 512133 310630
D3 Ennio Doorbell Doorbell 39100 316400
D4 Philips B120N10 Baby Monitor Monitor 175240 312273 610714
D5 Provision PT 737E Security Camera Camera 62154 330096 436010
D6 Provision PT 838 Security Camera Camera 98514 309040 429337
D7 Samsung SNH 1011 N Webcam Webcam 52150 323072
D8 SimpleHome XCS7 1002 WHT Camera 46585 303223 513248

Security Camera
D9 SimpleHome XCS7 1003 WHT Camera 19528 316438 514860

Security Camera

previous research [16]. The dataset is divided into two parts: train (70%) and
test (30%). To avoid over-fitting, the early-stopping technique is used. For each
IoT device, all benign data is used for training because it is much less than
the amount of IoT Malware. The IoT Malware data for training is randomly
selected from the original IoT Malware data with ratios of 0.01, 0.1, 1.0, 5.0 in
comparison to the amount of the benign data, respectively. The relative ratio
between IoT attacks and benign data is signed as r.

5.2 Parameters Settings

Firstly, we set up the size of the encoded layer (bottleneck) for the AE
and PCA. We choose the ratio between the size of the encoded layer and the
original feature space as 0.25. Thus, the size of the bottleneck (encoded layer)
is 29 (0.25∗115). The sizes of other hidden layers are set as 0.75, 0.5, 0.33, 0.25
(the encoded layer) of the input layer’s size, respectively. In training phase, we
split the training data into training set (80%) and validation set (20%). The
Adam method is used for parameter optimization with the loss function of
Mean Squared Error (MSE). The maximum number of epochs is 50 (with the
early-stopping method) and the batch size is 200. The tanh activation function
is used in all layers.

The size of the bottleneck (encoded size) in PCA is set as the AE. All other
PCA hyperparameters are set to default values. For training SOM, we use tun-
ing techniques to search for the best hyperparameters. The hyper-parameters
are n (dimension of SOM map), σ (the spreading of the neighborhood func-
tion) and learning rate η. Once these parameters found, SOM is trained to
build the label-maps and determine the outlier percentage.

5.3 Evaluation Metrics

We utilize Area Under the Curve (AUC) for evaluating the performance of
our proposed methods. To estimate AUC, the true positive rate (TPR) and
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false positive rate (FPR) need to be calculated first by the following formulas.

TPR =
TP

TP + FN
FPR =

FP

FP + TN
(10)

The Receiver Operating Characteristic curve (ROC curve) is received by plot-
ting TPR against FPR at a number of thresholds. AUC can be calculated
as the entire area underneath the ROC curve. AUC provides an aggregate
measure of performance across all possible classification thresholds.

6 Results and Discussion

The experimental results are described and discussed in this section. The
following tables and figures in this section provide more information about the
results. In the next subsections, we present the reports and associated analysis
for IoT data analysis, unknown IoT attack detection and transfer learning,
respectively.

The analysis of the data was carried in previous research [16]. Based on
the visualization and data investigation, we made conclusion that Mirai devi-
ates significantly from both Benign and Gafgyt whereas Gafgyt and Benign
may share some common features. Therefore, typical machine learning-based
methods can achieve good performance on Mirai, but they may struggle to
distinguish Gafgyt from Benign. Furthermore, the results of this analysis sug-
gest that a training data comprised of Benign and Gafgyt may benefit AE
learners while PCA may prefer the combination of Benign and Mirai. Due to
this issue, we used the DAE to separate Gafgyt and Benign better. They can
be considered as “noise” of each other. The DAE is used to deal with this
“noise”. In the following subsections, we will conduct a number of analyses on
the results of the unknown/new IoT attack ability and the transfer learning
ability to validate this suggestion.

6.1 Unknown/new IoT Attack Detection

In this subsection, we present some analyses on the results of detecting
unknown/new IoT attacks of our proposed models. The results of experiments
are shown in Table 3 and AUC values are plotted in Fig. 2. For all the exper-
iments, the models are trained on training data which consists of Mirai and
Benign, and evaluated on Gafgyt, and vice versa. The device D3 is not included
in these experiments because it misses Mirai. For each device, we report the
AUC values produced by the three models on each setting of the training data,
and also the mean and median over the four different settings of training data.
The highest values amongst three methods on each setting of training data are
highlighted in the gray color.

It can be seen from Table 3 that the DAESOM dominates other methods for
attack detection. Because the DAESOM has filtered out noise from the input
data and learn the best features of the data, it brought the better results than
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Table 3: Unknown/new attack detection results on D1, D5, D6 and D8
Data Ratio Metrics Data Ratio Metrics

0.01 0.10 1.00 5.00 mean median 0.01 0.10 1.00 5.00 mean median
Devices Models

Train on Gafgyt - test on Mirai Train on Mirai - test on Gafgyt
AESOM 0.668 0.620 0.809 0.988 0.771 0.738 0.535 0.950 0.841 0.972 0.825 0.896

DAESOM 0.620 0.880 0.997 0.994 0.873 0.937 0.856 0.962 0.961 0.985 0.941 0.961

PCASOM 0.795 0.713 0.903 0.996 0.852 0.849 0.874 0.976 0.982 0.861 0.923 0.925D1

SOM 0.914 0.674 0.673 0.804 0.767 0.739 0.642 0.976 0.966 0.985 0.892 0.971
AESOM 0.679 0.584 0.802 0.919 0.746 0.741 0.946 0.874 0.959 0.637 0.854 0.910

DAESOM 0.657 0.716 0.895 0.921 0.797 0.806 0.839 0.572 0.973 0.990 0.844 0.906

PCASOM 0.644 0.666 0.821 0.975 0.776 0.743 0.641 0.984 0.654 0.979 0.815 0.817D5

SOM 0.508 0.746 0.737 0.869 0.715 0.742 0.631 0.968 0.983 0.972 0.889 0.970
AESOM 0.567 0.657 0.663 0.810 0.674 0.660 0.634 0.859 0.843 0.937 0.818 0.851

DAESOM 0.650 0.642 0.813 0.894 0.750 0.731 0.500 0.656 0.955 0.952 0.766 0.804

PCASOM 0.680 0.674 0.680 0.924 0.740 0.680 0.965 0.560 0.654 0.979 0.790 0.810D6

SOM 0.650 0.680 0.681 0.684 0.674 0.681 0.949 0.952 0.821 0.964 0.922 0.950
AESOM 0.606 0.729 0.692 0.736 0.691 0.710 0.583 0.965 0.954 0.949 0.863 0.952

DAESOM 0.566 0.661 0.718 0.924 0.717 0.689 0.546 0.943 0.976 0.981 0.861 0.959

PCASOM 0.603 0.661 0.593 0.746 0.651 0.632 0.912 0.954 0.971 0.648 0.871 0.933D8

SOM 0.543 0.657 0.816 0.970 0.747 0.737 0.504 0.641 0.673 0.953 0.693 0.657

(a) D1G - D1M (b) D5G - D5M (c) D6G - D6M (d) D8G - D8M

(e) D1M - D1G (f) D5M - D5G (g) D6M - D6G (h) D8M - D8G

Fig. 2: Unknown/new attack detection results on the same device

AESOM and remaining methods (PCASOM and pure SOM). The AUC values
of DAESOM are increasing stable as the data rate increases. With traditional
AE, the AESOM seems to perform better than PCASOM and pure SOM on
some highly unbalanced settings, such as r = 0.01 and 0.1 while PCASOM
prefers balanced training data (r = 1.0 and 5.0). When r = 0.01 and 0.1,
benign dominates in training data. Thus, training data can be considered as
a single class which will benefit the AE learners. On the other hand, PCA
can yield good AUC values on r = 1.0. In the balance case, training data
will have two equal classes, PCA can find a coordinate system in which the
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training data can be highest separated. Moreover, the figure 2 illustrates some
interesting characteristics of training data. All models trained on the training
data of Benign and Gafgyt yield AUC values very similar to each others on the
four ratios. While the AUC values of the models trained on the combination
of Benign and Mirai tend to be deviated from each others.

6.2 Transfer Learning

The purpose of this subsection is to assess the ability to transfer models
to various IoT devices. The models trained on a device using one kind of IoT
attacks can be used to detect IoT attacks on other devices. We investigate
two groups of transferring model knowledge such as doorbell (D1 and D3) and
camera (D5, D6, D8). The detailed results are presented in the subsections
that follow.

6.2.1 Transfer learning on the doorbell devices

There are two devices D1 and D3 in the doorbell. Firstly, the models are
trained on Gafgyt and Mirai of the device D1, and tested on Gafgyt of the
device D3 respectively. We then train the models on Gafgyt of the device D3,
and test on Mirai and Gafgyt of the device D1, each. The experimental results
are reported in Tables 4 and 5. The highest AUC values over three models are
indicated in the gray color. Note that Mirai does not include in the data of
the device D3.

Table 4: Transfer learning: train on D1 and test on D3
Data Ratio Metrics Data Ratio Metrics

0.01 0.10 1.00 5.00 mean median 0.01 0.10 1.00 5.00 mean median
Test Models

Train on D1 Gafgyt Train on D1 Mirai
AESOM 0.984 0.985 0.987 0.951 0.977 0.985 0.605 0.934 0.896 0.715 0.787 0.805

DAESOM 0.970 0.995 0.995 0.964 0.981 0.982 0.627 0.968 0.968 0.938 0.875 0.953

PCASOM 0.939 0.995 0.994 0.936 0.966 0.966 0.624 0.968 0.954 0.807 0.838 0.881D3G

SOM 0.981 0.991 0.993 0.948 0.978 0.986 0.615 0.957 0.944 0.794 0.827 0.869

When training on Gafgyt, DAESOM often outperforms the other methods
in identifying both Gafgyt and Mirai from other devices. This can be seen from
the first row on each devices in Tables 4 and 5. The reason can be that the
AE learners may prefer to learn from data points that are not too separated
from each other. In particular, the DAE has excluded noise from the input
data and learned the nature of the data. Regard to the aspect, based on the
data analysis [16], the combination of Benign and Gafgyt can be considered
better than the training data consisting of Benign and Mirai.

On the other hand, we can see that PCASOM often yields good AUC values
the balanced case (r = 1.0). The PCASOM has given the better results than
AESOM and pure SOM. This suggests that PCA can create a better feature
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Table 5: Transfer learning: train on D3 and test on D1
Data Ratio Metrics Data Ratio Metrics

0.01 0.10 1.00 5.00 mean median 0.01 0.10 1.00 5.00 mean median
Test Models

Train on D3 Gafgyt No Mirai on D3
AESOM 0.935 0.995 0.997 0.976 0.976 0.986

DAESOM 0.934 0.997 0.997 0.995 0.981 0.996

PCASOM 0.993 0.994 0.997 0.951 0.984 0.993D1G

SOM 0.977 0.995 0.986 0.967 0.981 0.981

AESOM 0.563 0.685 0.848 0.577 0.668 0.631

DAESOM 0.560 0.754 0.834 0.975 0.781 0.794

PCASOM 0.676 0.722 0.684 0.950 0.758 0.703D1M

SOM 0.710 0.674 0.811 0.950 0.786 0.761

(a) D1G-D3G (b) D1M-D3G (c) D3G-D1G (d) D3G-D1M

Fig. 3: The AUC visualization for D1-D3

space for the case when training data consists of two highly separated classes.
SOM working on the original data also produces the highest values in few cases.

The AUC scores are plotted against data ratio (see Fig. 3). The direction
of the the line tends to permanently on training and testing on Gafgyt and
fluctuating on training or testing on Mirai.

6.2.2 Transfer learning on camera devices

The camera group consists of the D5, D6, and D8 devices. D5 and D6
are the two device versions of the same brand, whereas D8 is from a different
brand. In this experiment, we use the data from one device for training and
data from the other two devices for testing. The experimental results are shown
in Tables 6, 7 and 8.

The AUC scores are also plotted in Fig. 4. The AUC scores are the results
of training on Gafgyt of device D5, and testing on D6 and D8. All algorithms
DAESOM, AESOM, PCASOM and SOM give the better results when testing
on Gafgyt (Fig. 4e and Fig. 4g), and worse when testing on Mirai (Fig. 4f, Fig.
4h).

The plot for D5-Mirai in shown in Fig. 4. This figure shows AUC scores
for training on Mirai of device D5 and testing on D6 and D8. As described
above, the Gafgyt data tends to be close to the benign, so it is more difficult
when distinguishing between the benign and attack data. But as we see from
the graph, the DAESOM is stable in detecting attacks with high AUC values.
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Table 6: Transfer learning: train on D5 and test on D6 and D8
Data Ratio Metrics Data Ratio Metrics

0.01 0.10 1.00 5.00 mean median 0.01 0.10 1.00 5.00 mean median
Test Models

Train on D5 Gafgyt Train on D5 Mirai
AESOM 0.988 0.997 0.996 0.958 0.985 0.992 0.640 0.622 0.839 0.944 0.761 0.739

DAESOM 0.983 0.996 0.997 0.987 0.991 0.992 0.942 0.965 0.968 0.971 0.961 0.966

PCASOM 0.979 0.996 0.998 0.961 0.983 0.988 0.554 0.969 0.910 0.928 0.840 0.919D6G

SOM 0.964 0.995 0.994 0.948 0.975 0.979 0.849 0.966 0.646 0.916 0.844 0.882
AESOM 0.672 0.660 0.883 0.941 0.789 0.777 0.969 0.986 0.991 0.974 0.980 0.980

DAESOM 0.647 0.671 0.873 0.974 0.791 0.772 0.996 0.998 0.998 0.977 0.992 0.997

PCASOM 0.673 0.694 0.680 0.925 0.743 0.687 0.961 0.999 0.999 0.966 0.981 0.983D6M

SOM 0.521 0.680 0.702 0.943 0.712 0.691 0.995 0.996 0.994 0.946 0.983 0.995
AESOM 0.985 0.989 0.768 0.702 0.861 0.877 0.610 0.615 0.681 0.858 0.691 0.648

DAESOM 0.982 0.993 0.989 0.960 0.981 0.986 0.942 0.963 0.956 0.771 0.908 0.949

PCASOM 0.974 0.993 0.947 0.720 0.909 0.960 0.549 0.967 0.906 0.691 0.778 0.798D8G

SOM 0.963 0.993 0.969 0.953 0.969 0.966 0.848 0.938 0.579 0.906 0.818 0.877
AESOM 0.807 0.650 0.685 0.699 0.710 0.692 0.740 0.743 0.521 0.819 0.705 0.741

DAESOM 0.634 0.660 0.831 0.944 0.767 0.746 0.950 0.980 0.983 0.775 0.922 0.965

PCASOM 0.658 0.671 0.627 0.669 0.656 0.664 0.697 0.942 0.730 0.713 0.771 0.722D8M

SOM 0.595 0.664 0.647 0.949 0.714 0.656 0.722 0.729 0.767 0.934 0.788 0.748

(a) D5M-D6G (b) D5M-D6M (c) D5M-D8G (d) D5M-D8M

(e) D5G-D6G (f) D5G-D6M (g) D5G-D8G (h) D5G-D8M

Fig. 4: AUC when train on D5, test on D6 and D8

In the remaining devices (D6, D8) we used the D6 and D8 as training
devices, respectively. The trained models are applied later to the other devices
(D5, D8 for the trained model from D6 and D5, D6 for the trained model from
D8). The results are shown in the Table 7 and 8. The DAESOM continues
giving better results than other methods. The AUC scores from test scripts
are also plotted. Fig. 5 is a representation of testing results from device D6,
while Fig. 6 is from device D8.

In experiments, DAESOM seems to perform better than AESOM, PCA-
SOM, and SOM on almost devices when training data including Gafgyt. This
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Table 7: Transfer learning: train on D6 and test on D5 and D8
Data Ratio Metrics Data Ratio Metrics

0.01 0.10 1.00 5.00 mean median 0.01 0.10 1.00 5.00 mean median
Test Models

Train on D6 Gafgyt Train on D6 Mirai
AESOM 0.982 0.996 0.998 0.993 0.992 0.994 0.934 0.850 0.851 0.887 0.881 0.869

DAESOM 0.964 0.996 0.997 0.997 0.989 0.997 0.857 0.973 0.972 0.971 0.943 0.971

PCASOM 0.994 0.997 0.997 0.982 0.992 0.995 0.957 0.963 0.953 0.968 0.960 0.960D5G

SOM 0.995 0.996 0.998 0.992 0.995 0.996 0.968 0.968 0.641 0.966 0.886 0.967
AESOM 0.648 0.714 0.909 0.938 0.802 0.812 0.946 0.993 0.981 0.984 0.976 0.982

DAESOM 0.648 0.750 0.819 0.841 0.764 0.784 0.993 0.997 0.998 0.996 0.996 0.997

PCASOM 0.656 0.679 0.850 0.893 0.770 0.765 0.986 0.996 0.998 0.994 0.994 0.995D5M

SOM 0.660 0.676 0.680 0.728 0.686 0.678 0.983 0.997 0.997 0.995 0.993 0.996
AESOM 0.981 0.986 0.970 0.942 0.970 0.975 0.928 0.844 0.835 0.563 0.792 0.839

DAESOM 0.965 0.992 0.991 0.988 0.984 0.989 0.853 0.973 0.966 0.846 0.909 0.910

PCASOM 0.993 0.994 0.940 0.760 0.922 0.967 0.776 0.956 0.843 0.952 0.882 0.898D8G

SOM 0.993 0.991 0.993 0.881 0.964 0.992 0.953 0.969 0.637 0.838 0.849 0.895
AESOM 0.618 0.803 0.806 0.814 0.760 0.804 0.956 0.777 0.799 0.660 0.798 0.788

DAESOM 0.658 0.871 0.922 0.907 0.839 0.889 0.928 0.990 0.990 0.872 0.945 0.959

PCASOM 0.655 0.721 0.694 0.682 0.688 0.688 0.564 0.981 0.886 0.758 0.797 0.822D8M

SOM 0.634 0.628 0.657 0.719 0.660 0.646 0.726 0.753 0.786 0.713 0.745 0.740

(a) D6G-D5G (b) D6G-D5M (c) D6G-D8G (d) D6G-D8M

(e) D6M-D5G (f) D6M-D5M (g) D6M-D8G (h) D6M-D8M

Fig. 5: AUC when train on D6, test on D5 and D8

can be seen from the second row of the result table on each device, particularly
on mean values. However, the table 8 does not demonstrate this point clearly
on training on Gafgyt. This is because the device D8 was produced from a dif-
ferent brand to the devices D5 and D6. But in that case, the dataset is more
“balanced” compare to other values of 0.01 and 0.1. Similar to the analysis of
transferring model between D1 and D3, PCASOM and SOM stand-alone tend
to produce high AUC values when training data is not too highly unbalanced.

The number of IoT devices in IoT networks is enormous, the IoT protocols
are various, and the ratio between Benign and IoT malware is varied. It is
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Table 8: Transfer learning: train on D8 and test on D5 and D6
Data Ratio Metrics Data Ratio Metrics

0.01 0.10 1.00 5.00 mean median 0.01 0.10 1.00 5.00 mean median
Test Models

Train on D8 Gafgyt Train on D8 Mirai
AESOM 0.917 0.986 0.990 0.921 0.954 0.954 0.525 0.958 0.926 0.828 0.809 0.877

DAESOM 0.990 0.968 0.822 0.813 0.898 0.895 0.821 0.649 0.967 0.846 0.821 0.833

PCASOM 0.841 0.970 0.931 0.927 0.917 0.929 0.509 0.968 0.964 0.717 0.790 0.841D5G

SOM 0.949 0.982 0.990 0.693 0.903 0.965 0.509 0.960 0.975 0.769 0.803 0.864
AESOM 0.627 0.665 0.683 0.785 0.690 0.674 0.662 0.938 0.889 0.843 0.833 0.866

DAESOM 0.656 0.675 0.510 0.787 0.657 0.666 0.920 0.977 0.991 0.856 0.936 0.949

PCASOM 0.643 0.660 0.654 0.784 0.685 0.657 0.830 0.953 0.959 0.752 0.873 0.891D5M

SOM 0.641 0.675 0.684 0.589 0.647 0.658 0.789 0.830 0.959 0.781 0.840 0.809
AESOM 0.917 0.989 0.993 0.866 0.941 0.953 0.524 0.957 0.914 0.779 0.794 0.847

DAESOM 0.989 0.972 0.860 0.805 0.907 0.916 0.819 0.649 0.966 0.890 0.831 0.855

PCASOM 0.840 0.975 0.910 0.889 0.904 0.899 0.506 0.964 0.963 0.752 0.796 0.858D6G

SOM 0.952 0.985 0.984 0.745 0.916 0.968 0.508 0.965 0.976 0.709 0.790 0.837
AESOM 0.628 0.665 0.683 0.729 0.677 0.674 0.663 0.937 0.880 0.796 0.819 0.838

DAESOM 0.656 0.676 0.546 0.778 0.664 0.666 0.922 0.977 0.991 0.900 0.948 0.950

PCASOM 0.643 0.660 0.633 0.747 0.671 0.652 0.830 0.951 0.961 0.785 0.882 0.891D6M

SOM 0.642 0.676 0.677 0.642 0.659 0.659 0.790 0.835 0.961 0.726 0.828 0.813

beneficial to apply the trained model on an existing device to new devices.
Based on the discussion in this section, it is highly recommended that the
feature representation of AEs be utilized to detect both unknown attacks and
transfer learning. The representation based on AEs learners combined with
SOM appears to be best suited for transfer learning when training data is very
imbalanced and contains IoT attacks similar to benign.

(a) D8G-D5G (b) D8G-D5M (c) D8G-D6G (d) D8G-D6M

(e) D8M-D5G (f) D8M-D5M (g) D8M-D6G (h) D8M-D6M

Fig. 6: The AUC visualization for D8 (Train of Gafgyt)
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7 Conclusions and Future work

This work investigates intensively and extensively the feature representa-
tion of DAEs for the unsupervised IoT Malware detection task. The study
is operated to show different aspects of the proposed model such as identify-
ing unknown/new attacks, transferring model knowledge (to build a detection
model for different IoT devices, and to identify different IoT malware groups),
and performing on highly unbalanced data. To extend our previous work,
Denoising AEs is employed instead of AEs for enhancing the generalization
ability of its latent representation as well as the hyper-parameter optimization
task is involved in constructing hybrid DAEs and SOMs. Our models are eval-
uated and analyzed extensively by a number of experiments on the NBaIoT
dataset. Well-known feature representation methods such as AEs and PCA are
included in the experiments in order to highlight the behavior of DAE learners.

The experimental results strongly recommend that DAESOM can have the
ability to transfer model knowledge: detecting IoT malware on different IoT
devices, and identifying different IoT malware groups (also known as detecting
new/unknown IoT malware). In particular, it can identify IoT attacks in some
difficult situations such as highly unbalanced data and IoT malware whose
behaviors being similar to benign. Developing better feature representation
models for unsupervised IoT malware detection is a promising direction, and
it is postponed to the near future.
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