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Introduction

0.1 Literature Overview and Research Problems

In this dissertation, we are concerned with several concrete topics in DC

programming and data mining. Here and in the sequel, the word “DC” stands

for Difference of Convex functions. Fundamental properties of DC functions

and DC sets can be found in the book [94] of Professor Hoang Tuy, who made

fundamental contributions to global optimization. The whole Chapter 7 of

that book gives a deep analysis of DC optimization problems and their appli-

cations in design calculation, location, distance geometry, and clustering. We

refer to the books [37,46], the dissertation [36], and the references therein for

methods of global optimization and numerous applications. We will consider

some algorithms for finding locally optimal solutions of optimization prob-

lems. Thus, techniques of global optimization, like the branch and bound

method and the cutting plane method, will not be applied herein. Note that

since global optimization algorithms are costly for many large-scale noncon-

vex optimization problems, local optimization algorithms play an important

role in optimization theory and real world applications.

First, let us begin with some facts about DC programming.

As noted in [93], “DC programming and DC algorithms (DCA, for brevity)

treat the problem of minimizing a function f = g − h, with g, h being lower

semicontinuous, proper, convex functions on Rn, on the whole space. Usually,

g and h are called d.c. components of f . The DCA are constructed on the

basis of the DC programming theory and the duality theory of J. F. Toland.

It was Pham Dinh Tao who suggested a general DCA theory, which has

been developed intensively by him and Le Thi Hoai An, starting from their

fundamental paper [77] published in Acta Mathematica Vietnamica in 1997.”

The interested reader is referred to the comprehensive survey paper of Le

Thi and Pham Dinh [55] on the thirty years (1985–2015) of the development
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of the DC programming and DCA, where as many as 343 research works

have been commented and the following remarks have been given: “DC pro-

gramming and DCA were the subject of several hundred articles in the high

ranked scientific journals and the high-level international conferences, as well

as various international research projects, and were the methodological basis

of more than 50 PhD theses. About 100 invited symposia/sessions dedi-

cated to DC programming and DCA were presented in many international

conferences. The ever-growing number of works using DC programming and

DCA proves their power and their key role in nonconvex programming/global

optimization and many areas of applications.”

DCA has been successfully applied to many large-scale DC optimization

problems and proved to be more robust and efficient than related standard

methods; see [55]. The main applications of DC programming and DCA

include:

- Nonconvex optimization problems : The trust-region subproblems, indefi-

nite quadratic programming problems,...

- Image analysis : Image analysis, signal and image restoration.

- Data mining and Machine learning : data clustering, robust support vec-

tor machines, learning with sparsity.

DCA has a tight connection with the proximal point algorithm (PPA, for

brevity). One can apply PPA to solve monotone and pseudomonotone vari-

ational inequalities (see, e.g., [85] and [89] and the references therein). Since

the necessary optimality conditions for an optimization problem can be writ-

ten as a variational inequality, PPA is also a solution method for solving

optimization problems. In [69], PPA is applied to mixed variational inequal-

ities by using DC decompositions of the cost function. Linear convergence

rate is achieved when the cost function is strongly convex. In the nonconvex

case, global algorithms are proposed to search a global solution.

Indefinite quadratic programming problems (IQPs for short) under linear

constraints form an important class of optimization problems. IQPs have var-

ious applications (see, e.g., [16,29]). In general, the constraint set of an IQP

can be unbounded. Therefore, unlike the case of the trust-region subproblem

(see, e.g., [58]), the boundedness of the iterative sequence generated by a

DCA and a starting point for a given IQP require additional investigations.
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For a general IQP, one can apply [82] the Projection DC decomposition

algorithm (which is called Algorithm A) and the Proximal DC decomposition

algorithm (which is called Algorithm B). Le Thi, Pham Dinh, and Yen [57]

have shown that DCA sequences generated by Algorithm A converge to a

locally unique solution if the initial points are taken from a neighborhood of

it, and DCA sequences generated by either Algorithm A or Algorithm B are

all bounded if a condition guaranteeing the solution existence of the given

problem is satisfied. By using error bounds for affine variational inequalities,

Tuan [92] has proved that any iterative sequence generated by Algorithm A

is R-linearly convergent, provided that the original problem has solutions.

His result solves in the affirmative the first part of the conjecture stated

in [57, p. 489]. It is of interest to know whether results similar to those

of [57] and [92] can be estanlished for Algorithm B, or not.

Now, we turn our attention to data mining.

Han, Kamber, and Pei [32, p. xxiii] have observed that “The computer-

ization of our society has substantially enhanced our capabilities for both

generating and collecting data from diverse sources. A tremendous amount

of data has flooded almost every aspect of our lives. This explosive growth

in stored or transient data has generated an urgent need for new techniques

and automated tools that can intelligently assist us in transforming the vast

amounts of data into useful information and knowledge. This has led to

the generation of a promising and flourishing frontier in computer science

called data mining, and its various applications. Data mining, also popularly

referred to as knowledge discovery from data (KDD), is the automated or

convenient extraction of patterns representing knowledge implicitly stored or

captured in large databases, data warehouses, the Web, other massive infor-

mation repositories, or data streams.” According to Wu [97, p. 1], the phrase

“data mining”, which describes the activity that attempts to extract inter-

esting patterns from some data source, appeared in the late eighties of the

last century.

Jain and Srivastava [40] have noted that data mining, as a scientific theory,

is an interdisciplinary subfield of computer science which involves computa-

tional processes of patterns discovery from large data sets. The goal of such

an advanced analysis process is to extract information from a data set and

transform it into an understandable structure for further use. The methods
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of data mining are at the juncture of artificial intelligence, machine learning,

statistics, database systems, and business intelligence. In other words, data

mining is about solving problems by analyzing the data already present in the

related databases. As explained in [32, pp.15–22], data mining functionalities

include

- characterization and discrimination;

- the mining of frequent patterns, associations, and correlations;

- classification and regression;

- clustering analysis;

- outlier analysis.

Cluster analysis or simply clustering is a technique dealing with problems

of organizing a collection of patterns into clusters based on similarity. So,

clustering can be considered a concise model of the data which can be in-

terpreted in the sense of either a summary or a generative model. Cluster

analysis is applied in different areas such as image segmentation, informa-

tion retrieval, pattern recognition, pattern classification, network analysis,

vector quantization and data compression, data mining and knowledge dis-

covery business, document clustering and image processing (see, e.g., [1, p. 32]

and [48]). For basic concepts and methods of cluster analysis, we refer to [32,

Chapter 10].

Clustering problems are divided into two categories: constrained cluster-

ing problems (see, e.g., [14, 23, 24]) and unconstrained clustering problems.

We will focus on studying some problems of the second category. Different

criteria are used for unconstrained problems. For example, Tuy, Bagirov, and

Rubinov [95] used the DC programming approach and the branch and bound

method to solve globally the problem of finding a centroid system with the

minimal sum of the Euclidean distances of the data points to the closest cen-

troids. Recently, Bagirov and Mohebi [8] and Bagirov and Taher [10] solved a

similar problem where L1−distances are used instead of the above Euclidean

distances. The first paper applies a hyperbolic smoothing technique, while

the second one relies on DC programming. Since the just mentioned prob-

lems are nonconvex, it is very difficult to find global solutions when the data

sets are large.

In the Minimum Sum-of-Squares Clustering (MSSC for short) problems
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(see, e.g., [5,11,15,18,22,28,44,48,60,75,87]), one has to find a centroid sys-

tem with the minimal sum of squared Euclidean distances of the data points

to the closest centroids. Since the square of the Euclidean distance from a

moving point to a fixed point is a smooth function, the MSSC problems have

attracted much more attention than the clustering problems which aim at

minimizing the sum of the minimum distances of the data points to the clos-

est centroids. The MSSC problems with the required numbers of clusters

being larger or equal to 2 are NP-hard [3]. This means that solving them

globally in a polynomial time is not realistic. Therefore, various methods have

been proposed to find local solutions of the MSSC problems: the k-means

algorithm and its modifications, the simulated annealing method, variable

neighborhood search method, genetic algorithms, branch and bound algo-

rithms, cutting plane algorithms, interior point algorithms, etc.; see [76] and

references therein. Of course, among the local solutions, those with smaller

objective functions are more preferable.

Algorithms proposed for solving the MSSC problem in the past 5 decades

can be divided into the following groups [71]:

- Clustering algorithms based on deterministic optimization techniques :

The MSSC problem is a nonconvex optimization problem, therefore differ-

ent global and local optimization algorithms were applied to solve it. The

dynamic programming, the interior point method, the cutting plane method

are local methods (see, e.g., [28, 71, 75] and the references therein). Global

search methods include the branch and bound and the neighborhood search

methods [18,27,34,47].

- Clustering algorithms relied on heuristics : Since above mentioned algo-

rithms are not efficient to solve MSSC problems with large data sets, var-

ious heuristic algorithms have been developed. These heuristics include k-

means algorithms [66] and their variations such as h-means, j-means [35,76].

However, these algorithms are very sensitive to the choice of initial centroid

system. Hence, Ordin and Bagirov [71] have proposed a heuristic algorithm

based on control parameters to find good initial points, which make the value

of objective function at the resulted centroid systems smaller.

- Heuristics based on the incremental approach: These algorithms start

with the computation of the centroid of the whole data set and attempt to

optimally add one new centroid at each stage. This means that one creates

a k-th centroid from the (k − 1) available centroids. The global k-means,
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modified global k-means, and fast global k-means are representatives of the

algorithms of this type [6, 11, 12,33,44,49,61,98].

- Clustering algorithms based on DC programming : Such an algorithm

starts with representing the objective function of the MSSC problem as a dif-

ference of two convex functions (see e.g. [7,11,42,44,51,52]). Le Thi, Belghiti,

and Pham Dinh [51] suggested an algorithm based on DC programming for

the problem. They also showed how to find a good starting point for the

algorithm by combining the k-means algorithm and a procedure related to

DC programming. Based on a suitable penalty function, another version of

the above algorithm was given in [52]. Bagirov [7] suggested a method which

combines an heuristic algorithm, and an incremental algorithm with DC al-

gorithms to solve the MSSC problem. The purpose of this combination is to

find good starting points, work effectively with large data sets, and improve

the speed of computation.

It is well known that a deep understanding on qualitative properties of

an optimization problem is very helpful for its numerical solution. To our

knowledge, apart from the fundamental necessary optimality condition given

recently by Ordin and Bagirov [71], qualitative properties of the MSSC prob-

lem have not been addressed in the literature until now. Thus, it is of interest

to study the solution existence of the MSSC problem, chracterizations of the

global and local solutions of the problem, as well as its stability properties

when the data set is subject to change. In addition, it is worthy to analyze

the heuristic incremental algorithm of Ordin and Bagirov and the DC in-

cremental algorithm of Bagirov, and propose some modifications. Numerical

tests of the algorithms on real-world databases are also important.

0.2 The Subjects of Research

• Indefinite quadratic programming problems under linear constraints;

• The Minimum Sum-of-Squares Clustering problems with data sets con-

sisting of finitely many data points in Euclidean spaces.

• Solution algorithms for Minimum Sum-of-Squares Clustering problems,

where the number of clusters is given in advance.

0.3 The Range of Research

• Qualitative properties of the related nonconvex optimization problems;

• Algorithms for finding local solutions;
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•Numerical tests of the algorithms on radomly generated indefinite quadratic

programming problems and Minimum Sum-of-Squares Clustering problems

with several real-world databases.

0.4 The Main Results

We will prove that, for a general IQP, any iterative sequence generated by

Algorithm B converges R-linearly to a Karush-Kuhn-Tucker point, provided

that the problem has a solution. Our another major result says that DCA

sequences generated by the algorithm converge to a locally unique solution

of the problem if the initial points are taken from a suitably-chosen neigh-

borhood of it. To deal with the implicitly defined iterative sequences, a local

error bound for affine variational inequalities and novel techniques are used.

Numerical results together with an analysis of the influence of the decomposi-

tion parameter, as well as a comparison between Algorithm A and Algorithm

B will be given. Our results complement a recent and important paper of Le

Thi, Huynh, and Pham Dinh [53].

A series of basic qualitative properties of the MSSC problem will be es-

tablished herein. We will also analyze and develop solution methods for the

MSSC problem. Among other things, we suggest several modifications for

the incremental algorithms of Ordin and Bagirov [71] and of Bagirov [7]. We

focus on Ordin and Bargirov’s approaches, because they allow one to find

good starting points, and they are efficient for dealing with large data sets.

Properties of the new algorithms are obtained and preliminary numerical

tests of those on real-world databases are shown.

Thus, briefly speaking, we will prove the convergence and the R−linear

convergence rate of DCA applied to IQPs, establish a series of basic qual-

itative properties of the MSSC problem, suggest several modifications for

the incremental algorithms in [7, 71], and study the finite convergence, the

convergence, and the Q−linear convergence rate of the algorithms.

0.5 Scientific and Practical Meanings of the Results

• Solve the open question from [57, p. 488] on IQPs.

• Clarify the influence of the decomposition parameter for Algorithm A

and Algorithm B to solve IQPs.

• Clarify the solution existence, structures of the local solution set and the
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global solution set of the MSSC problem, as well as the problem’s stability

under data perturbations.

• Present for the first time finite convergence, convergence, and theQ−linear

convergence rate of solution methods for the MSSC problem.

• Deepen one’s knowledge on DC algorithms for solving IQPs, as well as

properties of and solution algorithms for the MSSC problem.

0.6 Tools of Research

• Convex analysis;

• Set-valued analysis;

• Optimization theory.

0.7 The Structure of Dissertation

The dissertation has four chapters and a list of references.

Chapter 1 collects some basic notations and concepts from DC program-

ming and DCA.

Chapter 2 considers an application of DCA to indefinite quadratic pro-

gramming problems under linear constraints. Here we prove convergence and

convergence rate of DCA sequences generated by the Proximal DC decom-

position algorithm. We also show that if the initial points are taken from a

suitably-chosen neighborhood of it, DCA sequences generated by the algo-

rithm converge to a locally unique solution of the IQP problem. In addition,

we analyze the influence of the decomposition parameter on the speed of

computation of the Proximal DC decomposition algorithm and the Projec-

tion DC decomposition algorithm, as well as a comparison between two these

algorithms.

In Chapter 3, several basic qualitative properties of the MSSC problem

are established. Among other things, we clarify the solution existence, prop-

erties of the global solutions, characteristic properties of the local solutions,

locally Lipschitz property of the optimal value function, locally upper Lip-

schitz property of the global solution map, and the Aubin property of the

local solution map.

Chapter 4 analyzes and develops some solution methods for the MSSC

problem. We suggest some improvements of the incremental algorithms of

xiv



Ordin and Bagirov, and of Bagirov based on the DCA in DC programming

and qualitative properties of the MSSC problem. In addition, we obtain sev-

eral properties of the new algorithms and preliminary numerical tests of those

on real-world databases. Finite convergence, convergence, and convergence

rate of solution methods for the MSSC problem are presented here for the

first time.

The dissertation is written on the basis of the following four articles in the

List of author’s related papers (see p. 112): paper No. 1 (submitted), paper

No. 2 published in Optimization, paper No. 3 and paper No. 4 published in

Journal of Nonlinear and Convex Analysis.

The results of this dissertation were presented at

- International Workshop “Some Selected Problems in Probability The-

ory, Graph Theory, and Scientific Computing” (February 16–18, 2017, Hanoi

Pedagogical University 2, Vinh Phuc, Vietnam);

- The 7th International Conference on High Performance Scientific Com-

puting (March 19–23, 2018, Hanoi, Vietnam);

- 2019 Winter Workshop on Optimization (December 12–13, 2019, National

Center for Theoretical Sciences, Taipei, Taiwan);

- Seminar of Department of Numerical Analysis and Scientific Comput-

ing, Institute of Mathematics, Vietnam Academy of Science and Technology

(Hanoi, Vietnam);

- The Scientific Seminar of Department of Computer Science, Faculty of

Information Technology, Le Quy Don University (February 21, 2020, Hanoi,

Vietnam);

- The Expanded Scientific Seminar of Department of Computer Science,

Faculty of Information Technology, Le Quy Don University (June 16, 2020,

Hanoi, Vietnam).

xv



Chapter 1

Background Materials

In this chapter, we will review some background materials on Difference-of-

Convex Functions Algorithms (DCAs for brevity), which were developed by

Pham Dinh Tao and Le Thi Hoai An. Besides, two kinds of linear convergence

rate of vector sequences will be defined.

It is well known that DCAs have a key role in nonconvex programming

and many areas of applications [55]. For more details, we refer to [77,79] and

the references therein.

1.1 Basic Definitions and Some Properties

By N we denote the set of natural numbers, i.e., N = {0, 1, 2, . . .}. Consider

the n-dimensional Euclidean vector space X = Rn which is equipped with the

canonical inner product 〈x, u〉 :=
n∑
i=1

xiui for all vectors x = (x1, . . . , xn) and

u = (u1, . . . , un). Here and in the sequel, vectors in Rn are represented as

rows of real numbers in the text, but they are interpreted as columns of real

numbers in matrix calculations. The transpose of a matrix A ∈ Rm×n is

denoted by AT . So, one has 〈x, u〉 = xTu.

The norm in X is given by ‖x‖ = 〈x, x〉1/2. Then, the dual space Y of X

can be identified with X.

A function θ : X → R, where R := R ∪ {+∞,−∞} denotes the set of

generalized real numbers, is said to be proper if it does not take the value −∞
and it is not equal identically to +∞, i.e., there is some x ∈ X with θ(x) ∈ R.
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The effective domain of θ is defined by dom θ := {x ∈ X : θ(x) < +∞}.

Let Γ0(X) be the set of all lower semicontinuous, proper, convex functions

on X. The Fenchel conjugate function g∗ of a function g ∈ Γ0(X) is defined

by

g∗(y) = sup{〈x, y〉 − g(x) | x ∈ X} ∀ y ∈ Y.

Note that g∗ : Y →R is also a lower semicontinuous, proper, convex function

[38, Propostion 3, p. 174]. From the definition it follows that

g(x) + g∗(y) ≥ 〈x, y〉 (∀x ∈ X, ∀y ∈ Y ).

Denote by g∗∗ the conjugate function of g∗, i.e.,

g∗∗(x) = sup{〈x, y〉 − g∗(y) | y ∈ Y }.

Since g ∈ Γ0(X), one has g∗∗(x) = g(x) for all x ∈ X by the Fenchel-Moreau

theorem ( [38, Theorem 1, p. 175]). This fact is the basis for various duality

theorems in convex programming and DC programming.

Definition 1.1 The subdifferential of a convex function ϕ : Rn → R∪{+∞}
at u ∈ domϕ is the set

∂ϕ(u) := {x∗ ∈ Rn | 〈x∗, x− u〉 ≤ ϕ(x)− ϕ(u) ∀x ∈ Rn}. (1.1)

If x /∈ domϕ then one puts ∂ϕ(x) = ∅.

Clearly, the subdifferential ∂ϕ(u) in (1.1) is a closed, convex set. The Fer-

mat Rule for convex optimization problems asserts that x̄ ∈ Rn is a solution

of the minimization problem

min{ϕ(x) | x ∈ Rn}

if and only if 0 ∈ ∂ϕ(x̄).

We now recall some useful properties of the Fenchel conjugate functions.

The proofs of the next two propositions can be found in [77].

Proposition 1.1 The inclusion x ∈ ∂g∗(y) is equivalent to the equality

g(x) + g∗(y) = 〈x, y〉.

Proposition 1.2 The inclusions y ∈ ∂g(x) and x ∈ ∂g∗(y) are equivalent.

In the sequel, we use the convention (+∞)−(+∞)=+∞.
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Definition 1.2 The optimization problem

inf{f(x) := g(x)− h(x) : x ∈ X}, (P)

where g and h are functions belonging to Γ0(X), is called a DC program. The

functions g and h are called d.c. components of f .

Definition 1.3 For any g, h ∈ Γ0(X), the DC program

inf{h∗(y)− g∗(y) | y ∈ Y }, (D)

is called the dual problem of (P).

Proposition 1.3 (Toland’s Duality Theorem; see [79]) The DC programs

(P) and (D) have the same optimal value.

Definition 1.4 One says that x̄ ∈ Rn is a local solution of (P) if the value

f(x̄) = g(x̄) − h(x̄) is finite (i.e., x̄ ∈ dom g ∩ domh) and there exists a

neighborhood U of x̄ such that

g(x̄)− h(x̄) ≤ g(x)− h(x) ∀x ∈ U.

If we can choose U = Rn, then x̄ is called a (global) solution of (P).

The set of the solutions (resp., the local solutions) of (P) is denoted by

sol(P) (resp., by loc(P)).

Proposition 1.4 (First-order optimality condition; see [77]) If x̄ is a local

solution of (P), then ∂h(x̄) ⊂ ∂g(x̄).

Definition 1.5 A point x̄ ∈ Rn satisfying ∂h(x̄) ⊂ ∂g(x̄) is called a station-

ary point of (P).

The forthcoming example, which is similar to Example 1.1 in [93], shows

that a stationary point needs not to be a local solution.

Example 1.1 Consider the DC program (P) with f(x) = g(x)−h(x), where

g(x) = |x − 1| and h(x) = (x − 1)2 for all x ∈ R. For x̄ :=
1

2
, one has

∂g(x̄) = ∂h(x̄) = {−1}. Since ∂h(x̄) ⊂ ∂g(x̄), x̄ is a stationary point of (P).

But x̄ is not a local solution of (P), because f(x) = x− x2 for all x ≤ 1.

Definition 1.6 A vector x̄ ∈ Rn is said to be a critical point of (P) if

∂g(x̄) ∩ ∂h(x̄) 6= ∅.
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If ∂h(x̄) 6= ∅ and x̄ is a stationary point of (P), then x̄ is a critical point of

(P). The reverse implication does not hold in general. The following example

is similar to Example 1.2 in [93].

Example 1.2 Consider the DC program (P) with f(x) = g(x) − h(x) with

g(x) = (x − 1
2
)2 and h(x) = |x − 1| for all x ∈ R. For x̄ := 1, we have

∂g(x̄) = {1} and ∂h(x̄) = [−1, 1]. Hence ∂g(x̄)∩∂h(x̄) 6= ∅. So x̄ is a critical

point of (P). But, x̄ is not a stationary point of (P), because ∂h(x̄) is not a

subset of ∂g(x̄).

Consider problem (P). If the set ∂h(x̄) is a singleton, then h is Gâteaux dif-

ferentiable at x̄ and ∂h(x̄) = {∇Gh(x̄)}, where ∇Gh(x̄) denotes the Gâteaux

derivative of h at x̄. The converse is also true, i.e., if h is Gâteaux differen-

tiable at x̄, then ∂h(x̄) is a singleton and ∂h(x̄) = {∇Gh(x̄)}. In that case,

the relation ∂g(x̄) ∩ ∂h(x̄) 6= ∅ is equivalent to the inclusion ∂h(x̄) ⊂ ∂g(x̄).

So, if h is Gâteaux differentiable at x̄, then x̄ is a critical point if and only if

it is a stationary point.

1.2 DCA Schemes

The main idea of the theory of DCAs in [77] is to decompose the given

difficult DC program (P) into two sequences of convex programs (Pk) and

(Dk) with k ∈ N which, respectively, approximate (P) and (D). Namely,

every DCA scheme requires to construct two sequences {xk} and {yk} in

an appropriate way such that, for each k ∈ N, xk is a solution of a convex

program (Pk) and yk is a solution of a convex program (Dk), and the next

properties are valid:

(i) The sequences {(g − h)(xk)} and {(h∗ − g∗)(yk)} are decreasing;

(ii) Any cluster point x̄ (resp. ȳ) of {xk} (resp., of {yk}) is a critical point

of (P) (resp., of (D)).

Following Tuan [93], we can formulate and analyze the general DC algo-

rithm of [77] as follows.
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Scheme 1.1

Input: f(x) = g(x)− h(x).

Output: {xk} and {yk}.
Step 1. Choose x0 ∈ dom g. Set k = 0.

Step 2. Calculate

yk ∈ ∂h(xk); (1.2)

xk+1 ∈ ∂g∗(yk). (1.3)

Step 3. Set k = k + 1 and return to Step 2.

For each k ≥ 0, we have constructed a pair (xk, yk) satisfying (1.2) and (1.3).

Thanks to Proposition 1.2, we can transform the inclusion (1.2) equiva-

lently as
yk ∈ ∂h(xk)

⇔ xk ∈ ∂h∗(yk)
⇔ h∗(y)− h∗(yk) ≥ 〈xk, y − yk〉 ∀ y ∈ Y
⇔ h∗(y)− 〈xk, y〉 ≥ h∗(yk)− 〈xk, yk〉 ∀ y ∈ Y.

Consequently, the condition (1.2) is equivalent to the requirement that yk is

a solution of the problem

min{h∗(y)− [g∗(yk−1) + 〈xk, y − yk−1〉] | y ∈ Y }, (Dk)

where yk−1 ∈ dom g∗ is the vector defined at the previous step k − 1.

The inclusion xk ∈ ∂g∗(yk−1) means that

g∗(y)− g∗(yk−1) ≥ 〈xk, y − yk−1〉 ∀ y ∈ Y.

Hence

g∗(y) ≥ g∗(yk−1) + 〈xk, y − yk−1〉 ∀ y ∈ Y.
Thus, the affine function g∗(yk−1) + 〈xk, y− yk−1〉 is a lower approximation of

g∗(y). If at step k we replace the term g∗(y) in the object function of (D) by

that lower approximation, we get the auxiliary problem (Dk).

Since (Dk) is a convex program, solving (Dk) is much easier than solving

the DC program (D). Recall that yk is a solution of (Dk).

Similarly, at each step k+1, the DC program (P) is replaced by the problem

min
{
g(x)− [h(xk) + 〈x− xk, yk〉] | x ∈ X

}
, (Pk)
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where xk ∈ domh∗ has been defined at step k.

Since (Pk) is a convex program, solving (Pk) is much easier than solving

the original DC program (P). As xk+1 satisfies (1.3), it is a solution of (Pk).

The objective function of (Dk) is a convex upper approximation of the

objective function of (D). Moreover, the values of these functions at yk−1

coincide. Deleting some real constants from the expression of the objective

function of (Dk), we get the following equivalent problem

min{h∗(y)− 〈xk, y〉 | y ∈ Y }. (1.4)

The objective function of (Pk) is a convex upper approximation of the ob-

jective function of (P). Moreover, the values of these functions at xk coincide.

Deleting some real constants from the expression of the objective function of

(Pk), we get the following equivalent problem

min{g(x)− 〈x, yk〉 | x ∈ X}. (1.5)

If xk is a critical point of (P), i.e., ∂g(xk) ∩ ∂h(xk) 6= ∅, then DCA may

produce a sequence {(x`, y`)} with

(x`, y`) = (xk, yk) ∀` ≥ k.

Indeed, since there exists a point x̄ ∈ ∂g(xk) ∩ ∂h(xk), to satisfy (1.2) we

can choose yk = x̄. Next, by Proposition 1.2, the inclusion (1.3) is equivalent

to yk ∈ ∂g(xk+1). So, if we choose xk+1 = xk then (1.3) is fulfilled, because

yk = x̄ ∈ ∂g(xk).

In other words, DCA leads us to critical points, but it does not provide any

tool for us to escape these critical points. Having a critical point, which is not

a local minimizer, we need to use some advanced techniques from variational

analysis to find a descent direction.

The following observations can be found in Tuan [93]:

• The DCA is a decomposition procedure which decomposes the solution

of the pair of optimization problems (P) and (D) into the parallel solution of

the sequence of convex minimization problems (Pk) and (Dk), k ∈ N;

• The DCA does not include any specific technique for solving the convex

problems (Pk) and (Dk). Such techniques should be imported from convex

programming;
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• The performance of DCA depends greatly on a concrete decomposition

of the objective function into DC components;

• Although the DCA is classified as a deterministic optimization, each

choice of the initial point x0 may yield a variety of DCA sequences {xk} and

{yk}, because of the heuristic selection of yk ∈ sol(Dk) and xk ∈ sol(Pk) at

every step k, if (Dk) (resp., (Pk)) has more than one solution.

The above analysis allows us to formulate a simplified version of DCA,

which includes a termination procedure, as follows.

Scheme 1.2

Input: f(x) = g(x)− h(x).

Output: Finite or infinite sequences {xk} and {yk}.
Step 1. Choose x0 ∈ dom g. Take ε > 0. Put k = 0.

Step 2.

Calculate yk by solving the convex program (1.4).

Calculate xk+1 by solving the convex program (1.5).

Step 3. If ‖xk+1 − xk‖ ≤ ε then stop, else go to Step 4.

Step 4. Set k = k + 1 and return to Step 2.

To understand the performance of the above DCA schemes, let us consider

the following example.

Example 1.3 Consider the function f(x) = g(x)−h(x) with g(x) = (x−1)2

and h(x) = |x− 1| for all x ∈ R. Here Y = X = R and we have

g∗(y) = sup{xy − g(x) | x ∈ R} = sup{xy − (x− 1)2 | x ∈ R} =
1

4
y2 + y.

Hence, ∂g∗(y) = {1
2
y + 1} for every y ∈ Y . Clearly, ∂h(x) = {−1} for

x < 1, ∂h(x) = {1} for x > 1, and ∂h(x) = [−1, 1] for x = 1. Using DCA

Scheme 1.1, we will construct two DCA sequences {xk} and {yk} satisfying the

conditions yk ∈ ∂h(xk) and xk+1 ∈ ∂g∗(yk) for k ∈ N. First, take any x0 > 1.

From the condition y0 ∈ ∂h(x0) = {1}, we get y0 = 1. As x1 ∈ ∂g∗(y0) = {3
2
},

one has x1 = 3
2
. Thus, the condition y1 ∈ ∂h(x1) implies that y1 = 1. It is

easy to show that xk = 3
2

and yk = 1 for all k ≥ 2. Therefore, the DCA

sequences {xk} and {yk} converge respectively to x̄ = 3
2

and ȳ = 1. Similarly,
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starting from any x0 < 1, one obtains the DCA sequences {xk} and {yk}
with xk = 1

2
and yk = −1 for all k ≥ 1. These DCA sequences {xk} and {yk}

converge respectively to x̄ = 1
2

and ȳ = −1. Since

f(x) =

x2 − x for x ≤ 1

x2 − 3x+ 2 for x ≥ 1,

one finds that x̄ = 3
2

and x̂ = 1
2

are global minimizers of (P), and x̃ := 1 is

the unique critical point of the problem.

With the initial point x0 = x̃ = 1, since y0 ∈ ∂h(x0) = [−1, 1], we can

choose y0 = 0. So, x1 ∈ ∂g∗(y0) = ∂g∗(0) = {1}. Hence x1 = 1. Since

y1 ∈ ∂h(x1) = [−1, 1], we can choose y1 = 0. Continuing the calculation, we

obtain DCA sequences {xk} and {yk}, which converge respectively to x̃ = 1

and ȳ = 0. Note that the limit point x̃ of the sequence {xk} is the unique

critical point of (P), which is neither a local minimizer nor a stationary point

of (P).

To ease the presentation of some related programs, we consider the follow-

ing scheme.

Scheme 1.3

Input: f(x) = g(x)− h(x).

Output: Finite or infinite sequences {xk} and {yk}.
Step 1. Choose x0 ∈ dom g. Take ε > 0. Put k = 0.

Step 2. Calculate yk by using (1.2) and find

xk+1 ∈ argmin{g(x)− 〈x, yk〉 | x ∈ X}. (1.6)

Step 3. If ‖xk+1 − xk‖ ≤ ε then stop, else go to Step 4.

Step 4. Set k = k + 1 and return to Step 2.

1.3 General Convergence Theorem

We will recall the fundamental theorem on DCAs of Pham Dinh Tao and

Le Thi Hoai An [77, Theorem 3], which is a firm theoretical basis for intensive

uses of these algorithms in practice. Before doing so, we have to recall the
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concepts of ρ-convex functions, modulus of convexity of convex functions,

and strongly convex functions.

Definition 1.7 Let ρ ≥ 0 and C be a convex set in the space X. A function

θ : C → R ∪ {+∞} is called ρ-convex if

θ
(
λx+ (1− λ)x′

)
≤ λθ(x) + (1− λ)θ(x′)− λ(1− λ)

2
ρ ||x− x′ ||2

for all numbers λ ∈ (0, 1) and vectors x, x′ ∈ C. This amounts to saying that

the function θ(·)− (ρ/2)‖ · ‖2 is convex on C.

Definition 1.8 The modulus of convexity of θ on C is given by

ρ(θ, C) = sup
{
ρ ≥ 0 | θ − (ρ/2)‖ · ‖2 is convex on C

}
.

If C = X then we write ρ(θ) instead of ρ(θ, C). Function θ is called strongly

convex on C if ρ(θ, C) > 0.

Consider the problem (P). If ρ(g) > 0 (resp., ρ(g∗) > 0), let ρ1 (resp.,

ρ∗1) be a real number such that 0 ≤ ρ1 < ρ(g) (resp., 0 ≤ ρ∗1 < ρ(g∗)). If

ρ(g) = 0 (resp., ρ(g∗) = 0), let ρ1 = 0 (resp., ρ∗1 = 0). If ρ(h) > 0 (resp.,

ρ(h∗) > 0), let ρ2 (resp., ρ∗2) be a real number such that 0 ≤ ρ2 < ρ(h) (resp.,

0 ≤ ρ∗2 < ρ(h∗)). If ρ(h) = 0 (resp., ρ(h∗) = 0), let ρ2 = 0 (resp., ρ∗2 = 0).

The convenient abbreviations dxk := xk+1 − xk and dyk := yk+1 − yk were

adopted in [77].

Theorem 1.1 ( [77, Theorem 3]) Let α := inf{f(x) = g(x)−h(x) | x ∈ Rn}.
Assume that the iteration sequences {xk} and {yk} are generated by DCA

Scheme 1. Then, the following properties are valid:

(i) The inequalities

(g − h)(xk+1) ≤ (h∗ − g∗)(yk)−max
{
ρ2
2
‖dxk‖2, ρ

∗
2

2
‖dyk‖2

}
≤ (g − h)(xk)−max

{
ρ1+ρ2

2
‖dxk‖2, ρ

∗
1

2
‖dyk−1‖2

+ρ2
2
‖dxk‖2, ρ

∗
1

2
‖dyk−1‖2 + ρ∗2

2
‖dyk‖2

}
hold for every k;

(ii) The inequalities

(h∗ − g∗)(yk+1) ≤ (g − h)(xk+1)−max
{
ρ1
2
‖dxk+1‖2, ρ

∗
1

2
‖dyk‖2

}
≤ (h∗ − g∗)(yk)−max

{
ρ∗1+ρ∗2

2
‖dyk‖2, ρ1

2
×

‖dxk+1‖2 + ρ2
2
‖dxk‖2, ρ

∗
1

2
‖dyk‖2 + ρ2

2
‖dxk‖2

}
9



hold for every k;

(iii) If α is finite, then {(g − h)(xk)} and {(h∗ − g∗)(yk)} are decreasing

sequences that converge to the same limit β ≥ α. Furthermore,

(a) If ρ(g) + ρ(h) > 0 (resp., ρ(g∗) + ρ(h∗) > 0), then

lim
k→∞

(xk+1 − xk) = 0 (resp., lim
k→∞

(yk+1 − yk) = 0);

(b) lim
k→∞

[g(xk) + g∗(yk)− 〈xk, yk〉] = 0;

(c) lim
k→∞

[h(xk+1) + h∗(yk)− 〈xk+1, yk〉] = 0.

(iv) If α is finite, and {xk} and {yk} are bounded, then for every cluster

point x̄ of {xk} (resp., ȳ of {yk}), there is a cluster point ȳ of {yk} (resp., x̄

of {xk}) such that:

(d) (x̄, ȳ) ∈ [∂g∗(ȳ) ∩ ∂h∗(ȳ)]× [∂g(x̄) ∩ ∂h(x̄)];

(e) (g − h)(x̄) = (h∗ − g∗)(ȳ) = β;

(f) lim
k→∞
{g(xk) + g∗(yk)} = lim

k→∞
〈xk, yk〉.

The estimates in the assertions (i) and (ii) of the above theorem can be

slightly improved as shown in the next remark.

Remark 1.1 If ρ(h) > 0, then ρ2 is a real number such that ρ2 ∈ [0, ρ(h)).

Since the construction of the sequences {xk} and {yk} does not depend on

the choice of the constants ρ1, ρ
∗
1, ρ2, and ρ∗2, by assertion (i) of Theorem 1.1

we have for each k ∈ N the inequality

(g − h)(xk+1) ≤ (h∗ − g∗)(yk)−max
{ρ2

2
‖dxk‖2,

ρ∗2
2
‖dyk‖2

}
.

Passing the last inequality to the limit as ρ2 → ρ(h), we get

(g − h)(xk+1) ≤ (h∗ − g∗)(yk)−max
{ρ(h)

2
‖dxk‖2,

ρ∗2
2
‖dyk‖2

}
.

Using this trick simultaneously for the constants related to strongly convex

functions among the family {g, h, g∗, h∗}, we can show that the following

improved versions of the estimates in the assertions (i) and (ii) of Theorem 1.1

are valid:

(g − h)(xk+1) ≤ (h∗ − g∗)(yk)−max
{
ρ(h)

2
‖dxk‖2, ρ(h∗)

2
‖dyk‖2

}
≤ (g − h)(xk)−max

{
ρ(g)+ρ(h)

2
‖dxk‖2, ρ(g∗)

2
‖dyk−1‖2

+ρ(h)

2
‖dxk‖2, ρ(g∗)

2
‖dyk−1‖2 + ρ(h∗)

2
‖dyk‖2

}
,
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(h∗ − g∗)(yk+1) ≤ (g − h)(xk+1)−max
{
ρ(g)

2
‖dxk+1‖2, ρ(g∗)

2
‖dyk‖2

}
≤ (h∗ − g∗)(yk)−max

{
ρ(g∗)+ρ(h∗)

2
‖dyk‖2, ρ(g)

2
×

‖dxk+1‖2 + ρ(h)

2
‖dxk‖2, ρ(g∗)

2
‖dyk‖2 + ρ(h)

2
‖dxk‖2

}
.

The forthcoming example is designed as an illustration for Theorem 1.1.

Example 1.4 Consider the function f(x) = g(x) − h(x) in Example 1.1,

where g(x) = |x − 1| and h(x) = (x − 1)2 for all x ∈ R. Here Y = X = R
and we have

h∗(y) = sup{xy − h(x) | x ∈ R} = sup{xy − (x− 1)2 | x ∈ R} =
1

4
y2 + y.

Using DCA Scheme 1.2, we calculate DCA sequences {xk} and {yk} by solv-

ing, respectively, the convex programs (1.4) and (1.5) for k ∈ N. Choose

ε = 0. First, select x0 = 2
3
. Since y0 is a solution of (1.4) for k = 0, we get

y0 = −2
3
. As x1 is a solution of (1.5) for k = 0, one has x1 = 1. Continuing

the calculation, we obtain yk = 0 for k ≥ 1 and xk = 1 for k ≥ 2. The

condition in Step 3 of DCA Scheme 1.2 is satisfied at k = 1, so the algorithm

stops after one step and yields the point x̄ = x2, which is the unique local

solution of (P). It is not difficult to show that one has the same result for

any initial point x0 ∈
(

1
2
, 3

2

)
. If x0 ∈

{
1
2
, 3

2

}
, then the algorithm stops at k = 0

and one gets the point x̄ = x1 = x0. Note that this x̄ is a stationary point of

(P), which is not a local solution. If x0 < 1
2

or x0 > 3
2
, then f(xk)→ −∞ as

k →∞. So, {xk} does not have any cluster point.

1.4 Convergence Rates

In Chapter 2 and Chapter 4, we will prove several results on convergence

rates of iterative sequences. The following two types of linear convergence will

be discussed in the sequel: Q-linear convergence and R-linear convergence.

Let us recall these notions.

Definition 1.9 (See, e.g., [70, p. 28] and [88, pp. 293–294]) One says that

a sequence {xk} ⊂ Rn converges Q-linearly to a vector x̄ ∈ Rn if there exits

β ∈ (0, 1) such that ‖xk+1 − x̄‖ ≤ β‖xk − x̄‖ for all k sufficiently large.

Clearly, if xk 6= x̄, then the relation ‖xk+1−x̄‖ ≤ β‖xk−x̄‖ in Definition 1.9
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can be rewritten equivalently as
‖xk+1 − x̄‖
‖xk − x̄‖

≤ β. The word “Q”, which

stands for “quotient”, comes from this context.

Definition 1.10 (See, e.g., [70, p. 30]) One says that a sequence {xk} ⊂ Rn

converges R-linearly to a vector x̄ ∈ Rn if there is a sequence of nonnegative

scalars {µk} such that ‖xk − x̄‖ ≤ µk for all k sufficiently large, and {µk}
converges Q-linearly to 0.

If a sequence {xk} converges Q-linearly to a vector x̄, then it converges R-

linearly to x̄. To see this, it suffices to select a constant β ∈ (0, 1) satisfying

the condition stated in Definition 1.9, put µk = β‖xk−1 − x̄‖ for all k ≥ 1,

and note that ‖xk − x̄‖ ≤ µk for all k sufficiently large, while {µk} converges

Q-linearly to 0 because µk+1 ≤ µk for all k sufficiently large. It well known

that the R-linear convergence may not imply the Q-linear convergence. As

an example, one may follow [70, p. 30] to consider the sequence of positive

scalars

xk =

1 + (0.5)k, k is even,

1, k is odd,

and observe that {xk} converges R-linearly to 1, while the sequence does not

converge Q-linearly to 1.

Sometimes, one says that a sequence {xk} ⊂ Rn converges R-linearly to a

vector x̄ ∈ Rn whenever

limsup
k→∞

‖xk − x̄‖1/k < 1 (1.7)

(see, e.g., [92]). The word “R”, which stands for “root”, comes from this

context.

The next proposition clarifies the equivalence between the definition of

Q−linear convergence in (1.7) and the one given in Definition 1.9.

Proposition 1.5 A sequence {xk} ⊂ Rn converges R-linearly to a vector

x̄ ∈ Rn if and only if the strict inequality (1.7) holds.

Proof. First, to prove the necessity, suppose that {xk} converges Q-linearly

to a vector x̄. Then, there is a sequence of nonnegative scalars {µk} such

that ‖xk − x̄‖ ≤ µk for all k sufficiently large, and {µk} converges Q-linearly

to 0. Therefore, we can find a constant β ∈ (0, 1) and a number k1 ∈ N such
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that µk+1 ≤ βµk for all k ≥ k1. Without loss of generality, we may assume

that µk1 > 0. For any k > k1, one has

‖xk − x̄‖ ≤ µk ≤ βµk−1 ≤ · · · ≤ βk−k1µk1.

It follows that ‖xk − x̄‖ ≤ µk1
βk1

βk for all k > k1. Therefore,

limsup
k→∞

‖xk − x̄‖1/k ≤ β limsup
k→∞

[(µk1
βk1

)1/k
]

= β < 1.

Thus, the inequality (1.7) holds.

Now, to prove the sufficiency, suppose (1.7) is valid. Then, there exist a

constant γ ∈ (0, 1) and a natural number k2 ∈ N such that ‖xk − x̄‖1/k ≤ γ

for all k ≥ k2. Hence, ‖xk − x̄‖ ≤ γk for all k ≥ k2. Setting µk = γk for

k ∈ N, we have {µk} such that ‖xk − x̄‖ ≤ µk for all k ≥ k2. In addition,

the fulfillment of the equality µk+1 = γµk for all k ≥ k2 together with the

property lim
k→∞

µk = 0 shows that {µk} converges Q-linearly to 0. Hence, the

sequence {xk} converges R-linearly to x̄.

The proof is complete. 2

1.5 Conclusions

In this chapter, we have recalled basic facts concerning the DCA theory

from [55, 77, 93] and analyzed some fundamental properties of DC program-

ming and DCA by presenting various remarks and examples. In addition,

two types of linear convergence of vector sequences have been defined and

compared.

The facts formulated in Remark 1.1 are new. They will be useful for our

investigations in the next chapter.

Example 1.4 has shown that the performance of DCA depends greatly on

the chosen d.c. decomposition of the objective function and the selection of

the initial point.
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Chapter 2

Analysis of an Algorithm in Indefinite

Quadratic Programming

In this chapter, we will study two algorithms for solving the indefinite

quadratic programming problem: the Projection DC decomposition algorithm

(Algorithm A) and the Proximal DC decomposition algorithm (Algorithm B).

Our first aim is to prove that any DCA sequence generated by Algorithm B

converges R-linearly to a KKT point. Hence, combining this with Theorem

2.1 from [92], we have a complete solution for the Conjecture in [58, p. 489].

Our result is obtained by applying some arguments of [92] and a new tech-

nique in dealing with implicitly defined DCA sequences.

By [58, Theorem 3], we know that DCA sequences generated by the Algo-

rithm A converge to a locally unique solution of the IQP if the initial points

are taken from a suitably-chosen neighborhood of it. In the terminology

of [59], this means that the locally unique solutions of the IQP are asymptot-

ically stable with respect to Algorithm A. The open question of [58, p. 488]

can be reformulated as follows: Is it true that the locally unique solutions of

the IQP are asymptotically stable with respect to Algorithm B? The second

aim of the present chapter is to use a novel technique to establish the asymp-

totic stability of the locally unique solutions with respect to Algorithm B

under a mild additional assumption on the DCA decomposition parameter.

It is still unclear to us whether that assumption can be dropped, or not.

Our third aim is to analyze the influence of the decomposition parameter

on the rates of convergence of DCA sequences and compare the performances

of the algorithms A and B upon randomly generated data sets.

14



This chapter is written on the basis of paper No. 1 in the List of author’s

related papers (see p. 112).

2.1 Indefinite Quadratic Programs and DCAs

The importance of the indefinite quadratic programming problem under

linear constraints (IQP for brevity) in optimization theory and its various

applications is well known. Roughly speaking, the sequential quadratic pro-

gramming methods (Wilson’s method, Pang’s method, the local Maratos-

Mayne-Polak method, global MMP method, the Maratos-Mayne-Polak-Pang

method, etc.) [83, Section 2.9] reduce the given nonlinear mathematical pro-

gramming program with smooth data to solving a sequence of IQPs. For other

theoretical aspects of IQP, we refer to [16]. Gupta [30] gives a review on ap-

plications of IQP in finance, agriculture, economics, production operations,

marketing, and public policy. Chapters 5 and 6 of the book by Cornuéjols

et al. [21] are devoted to quadratic programming models in finance. Jen and

Wang [41] shows that the image enhancement problem can be formulated as

a quadratic programming problem. Both the methodological and functional

applications of quadratic programming are reviewed by McCarl et al. [68].

Akoa [2] discusses the IQP in the context of training support vector ma-

chines of nonpositive–semidefinite kernels by using the Difference-of-Convex

algorithms. Recently, similar questions in machine learning have been stud-

ied by Xu et al. [99] and Xue et al. [100] by other methods. Liu et al. [62,63]

have studied the IQP associated with support vector machine with indefinite

kernel - a model that has attracted increasing attentions in machine learning.

For applications of quadratic programming under quadratic constraints, we

refer to the paper by Wiebking [96].

Numerical methods for solving IQP have been addressed in many research

works; see, e.g., [17, 19, 78–80, 82, 101–103]. Note that most of the known

algorithms yield just stationary points (that is, the Karush-Kuhn-Tucker

points, or KKT points for short), or local minimizers. In other words, most

of the known algorithms are local solution methods. Since the IQP is NP-

hard (see [72] and also [17]), finding its global solutions remains a challenging

question.

We are interested in studying and implementing two methods to solve the
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IQP, that are based on a general scheme for solving DC (Difference-of-Convex-

functions) programs due to Pham Dinh and Le Thi [77, 79] (see also [54,

81]). A combination of DCA (DC Algorithms) with interior point techniques

for solving large-scale nonconvex quadratic programming has been proposed

in [82]. The two DC decompositions suggested in [82] are the projection

DC decomposition and the proximal DC decomposition. They lead to two

algorithms for solving the IQP: the Projection DC decomposition algorithm

(Algorithm A) and the Proximal DC decomposition algorithm (Algorithm B);

see [57, 82], and the detailed descriptions given below. It is worthy to stress

the following features of these algorithms:

- The algorithm descriptions are simple;

- The implementation is easy;

- No line searches are required.

Nevertheless, using the DCA theory one can only assert [58, Theorem 1]

that any cluster point of a DCA sequence generated by the above-mentioned

algorithms is a KKT point of the IQP. To be sure that such cluster points

do exist, one must establish the boundedness of the DCA sequence. In gen-

eral, DCA sequences need not be bounded [58, Example 1]. But there is

a Conjecture [58, p. 489] saying that if the IQP has global solutions, then

every DCA sequence generated by one of the algorithms A and B must be

bounded. Recently, the Conjecture has been solved in the affirmative for the

two-dimensional IQP by Tuan [91]. To solve it in the general case, Tuan [92]

has used a local error bound for affine variational inequalities and several

specific properties of the KKT point set of the IQP which were obtained by

Luo and Tseng [65] (see also Tseng [90] and Luo [64]). The main result of [92]

is the following theorem: If the IQP has a nonempty solution set, then ev-

ery DCA sequence generated by Algorithm A converges R-linearly to a KKT

point.

Numerous numerical tests, which will be reported in Section 2.4, lead us

to the following observations:

- For both the the algorithms A and B, the closer is the positive decom-

position parameter to the lower bound of the admissible parameter interval,

the higher is the convergence rate of DCA sequences;

- Applied to the same problem with the same initial point, Algorithm B
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is more efficient than Algorithm A in terms of the number of computation

steps and the execution time.

Our results complement a recent paper of Le Thi, Huynh, and Pham

Dinh [53], where by original proofs the authors have obtained a series of im-

portant convergence theorems for DCA algorithms, which solve optimization

problems with subanalytic data. To be more precise, from Theorems 3.4, 3.5,

and 4.2 of [53] it follows that any DCA sequence generated by Algorithm B

converges R-linearly to a KKT point, if the sequence is bounded. Since the

boundedness of DCA sequences cannot be obtained by the Lojasiewicz in-

equality (see [53, Theorem 2.1]) and the related results on Kurdyka-Lojasie-

wicz properties (see [4] and the references therein), Theorem 2.2 and its proof

are new contributions to the analysis of the existing solution algorithms in

indefinite quadratic programming.

Consider the indefinite quadratic programming problem under linear con-

straints (called the IQP for brevity):

min
{
f(x) :=

1

2
xTQx+ qTx | Ax ≥ b

}
, (2.1)

where Q ∈ Rn×n and A ∈ Rm×n are given matrices, Q is symmetric, q ∈ Rn

and b ∈ Rm are arbitrarily given vectors. The constraint set of the problem

is C :=
{
x ∈ Rn | Ax ≥ b

}
.

Since xTQx is an indefinite quadratic form, the objective function f(x)

may be nonconvex; hence (2.1) is a nonconvex optimization problem.

Now we describe some standard notations that will be used later on. The

unit matrix in Rn×n is denoted by E. The eigenvalues of a symmetric matrix

M ∈ Rn×n are ordered in the sequence λ1(M) ≤ ... ≤ λn(M) with counting

multiplicities. For an index set α ⊂ {1, . . . ,m}, by Aα we denote the matrix

composed by the rows Ai, i ∈ α, of A. Similarly, bα is the vector composed

by the components bi, i ∈ α, of b. The pseudo-face of C corresponding to α

is the set {
x ∈ Rn | Aαx = bα, Aᾱx > bᾱ

}
,

where ᾱ := {1, . . . ,m}\α. Let B(x, ε) (resp., B̄(x, ε)) denote the open (resp.,

closed) ball with center x and radius ε > 0. Given s vectors v1, . . . , vs in Rn,

we denote by pos{v1, . . . , vs} the closed convex cone generated by v1, . . . , vs,
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that is

pos{v1, . . . , vs} =
{
v =

s∑
i=1

λiv
i | λi ≥ 0 for i = 1, . . . , s

}
.

The metric projection of u ∈ Rn onto C is denoted by PC(u), that is PC(u)

belongs to C and ∥∥u− PC(u)
∥∥ = min

x∈C
‖u− x‖.

The tangent cone to C at x ∈ C is denoted by TC(x), i.e.,

TC(x) = {t(y − x) | t ≥ 0, y ∈ C} = {v ∈ Rn | Aαv ≥ 0},

where α = {i | Aix = bi}. The normal cone to C at x ∈ C is denoted by

NC(x), that is

NC(x) =
(
TC(x)

)∗
= {ξ ∈ Rn | 〈ξ, v〉 ≤ 0 ∀v ∈ TC(x)}
= −pos{Ai | i ∈ α}.

Following [82], to solve the IQP via a sequence of strongly convex quadratic

programs, one decomposes f(x) into the difference of two convex linear-

quadratic functions

f(x) = ϕ(x)− ψ(x) (2.2)

with ϕ(x) = 1
2
xTQ1x+ qTx and ψ(x) = 1

2
xTQ2x, where Q = Q1 −Q2, Q1 is a

symmetric positive definite matrix andQ2 is a symmetric positive semidefinite

matrix. Then (2.1) is equivalent to the DC program

min
{
g(x)− h(x) | x ∈ Rn

}
with g(x) := ϕ(x) + δC(x), h(x) := ψ(x), where δC(x) = 0 for x ∈ C and

δC(x) = +∞ for x /∈ C is the indicator function of C. Let x0 ∈ Rn be a

given initial point. In accordance with the general solution method of [79,81]

(see Schemes 1 and 2 in Chapter 1), at every step k ≥ 0 one computes

yk =
(
∇h(xk)

)T
= Q2x

k and finds the unique solution, denoted by xk+1 of

the convex minimization problem

min
{
g(x)− [h(xk) + 〈x− xk, yk〉] | x ∈ Rn

}
.

The latter is equivalent to the strongly convex quadratic program

min
{1

2
xTQ1x+ qTx− xTQ2x

k | x ∈ C
}
. (2.3)

The obtained sequence {xk} is called the DCA sequence generated by the DC

algorithm and the initial point x0.
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Definition 2.1 For x ∈ Rn, if there exists a multiplier λ ∈ Rm such thatQx+ q − ATλ = 0,

Ax ≥ b, λ ≥ 0, λT (Ax− b) = 0,
(2.4)

then x is said to be a Karush-Kuhn-Tucker point (a KKT point) of the IQP.

This definition can be rephrased (see, e.g., [50]) as follows: If x ∈ C and

〈∇f(x), v〉 = (Qx+ q)Tv ≥ 0 ∀v ∈ TC(x), (2.5)

then x is said to be a KKT point of (2.1). Since condition (2.5) is equivalent

to 〈∇f(x), y−x〉 ≥ 0 for all y ∈ C, x ∈ C is a KKT point of the IQP in (2.1)

if and only if it is a solution of the affine variational inequality

x ∈ C, 〈Qx+ q, u− x〉 ≥ 0 ∀u ∈ C. (2.6)

Denote the KKT point set (resp., the global solution set) of IQP by C∗ (resp.,

S). It is well known (see, e.g., [50]) that S ⊂ C∗.

We now recall some basic properties of DCA sequences which follow from

applying the fundamental theorem on DCAs (see Theorem 1.1) and Re-

mark 1.1 to the IQP in (2.1). In doing so, we observe that the modulus

of convexity of the function g(x) = ϕ(x)+δC(x) with ϕ(x) = 1
2
xTQ1x+qTx is

larger or equal to λ1(Q1). Similarly, the modulus of convexity of the function

h(x) = ψ(x) with and ψ(x) = 1
2
xTQ2x is equal to λ1(Q2).

Theorem 2.1 (See [81, Theorem 3] and [82, Theorem 2.1]) Every DCA se-

quence {xk} generated by the above DC algorithm and an initial point x0 ∈ Rn

has the following properties:

(i) f(xk+1) ≤ f(xk)− 1

2
[λ1(Q1) + λ1(Q2)]‖xk+1 − xk‖2 for every k ≥ 1;

(ii) {f(xk)} converges to an upper bound f∗ for the optimal value of (2.1);

(iii) Every cluster point x̄ of {xk} is a KKT point of (2.1);

(iv) If inf
x∈C

f(x) > −∞, then lim
k→∞
‖xk+1 − xk‖ = 0.

Remark 2.1 By [81, Theorem 3], if x0 ∈ C then we have the inequality in

(i) for every k ≥ 0. To see this, it suffices to note that x0 ∈ C = domg, where

g = ϕ+ δC and dom := {x | g(x) < +∞}.
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As one can easily compute the smallest eigenvalue λ1(Q) and the largest

eigenvalue λn(Q) of Q = Q1 − Q2 by some algorithm (for instance, by the

Newton-Raphson algorithm in [88]) or software, the next realizations of the

DC decomposition (2.2) can be done:

(a) Q1 := ρE, Q2 := ρE−Q, where ρ is a positive real value satisfying the

condition ρ ≥ λn(Q);

(b) Q1 := Q+ ρE, Q2 := ρE, where ρ is a positive real value satisfying the

condition ρ > −λ1(Q).

The number ρ is called the decomposition parameter. The following algo-

rithms appear on the basis of (a) and (b), respectively.

Algorithm A. (Projection DC decomposition algorithm) Fix a positive

number ρ ≥ λn(Q) and choose an initial point x0 ∈ Rn. For every k ≥ 0,

compute the point

xk+1 := PC
(
xk − 1

ρ
(Qxk + q)

)
which is the unique solution of (2.3), where Q1 = ρE and Q2 := ρE−Q. The

latter can be rewritten in the form

min
{∥∥∥x− 1

ρ
(yk − q)

∥∥∥2

| Ax ≥ b
}

(2.7)

with

yk := (ρE −Q)xk. (2.8)

The scheme of the algorithm with a stopping criterion is as follows. (To have

an infinite DCA sequence, one has to choose ε = 0.)

Input: Q ∈ Rn×n, A ∈ Rm×n, q ∈ Rn, b ∈ Rm, ρ > 0 and ρ ≥ λn(Q), and a

tolerance ε > 0.

Output: {xk} and {yk}.
Step 1. Choose x0 ∈ Rn, and set k := 0.

Step 2. Calculate yk by using (2.8).

Step 3. Calculate xk+1 by solving the convex program (2.7).

Step 4. If ‖xk+1 − xk‖ ≤ ε then stop, else go to Step 5.

Step 5. Set k = k + 1 and go to Step 2.
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Algorithm B. (Proximal DC decomposition algorithm) Fix a positive

number ρ > −λ1(Q) and choose an initial point x0 ∈ Rn. For any k ≥ 0, com-

pute the unique solution, denoted by the point xk+1, of the strongly convex

quadratic minimization problem

min
{
ψ(x) :=

1

2
xTQx+ qTx+

ρ

2
‖x− xk‖2 | Ax ≥ b

}
. (2.9)

(Note that, up to adding a real constant, the objective function of (2.9) can

be written as 1
2
xTQ1x + qTx − xTQ2x

k, where Q1 = Q + ρE and Q2 = ρE.)

The scheme of the algorithm with a stopping criterion is as follows. (To have

an infinite DCA sequence, one has to choose ε = 0.)

Input: Q ∈ Rn×n, A ∈ Rm×n, q ∈ Rn, b ∈ Rm, ρ > 0 and ρ > −λ1(Q), and a

tolerance ε > 0.

Output: {xk}.
Step 1. Choose x0 ∈ Rn and put k := 0.

Step 2. Calculate xk+1 by solving the convex program (2.9).

Step 3. If ‖xk+1 − xk‖ ≤ ε then stop, else go to Step 4.

Step 4. Set k = k + 1 and go to Step 2.

Let {xk} be a DCA sequence generated by one of the last two algorithms

and an initial point x0. If {xk} is bounded, then it has a convergent subse-

quence xkj → x̄. According to Theorem 2.1, x̄ is a KKT point of IQP. Since

one wants to find a global solution, one has to restart the algorithm if x̄ /∈ S.

To do so, we must find some u ∈ C such that f(u) < f(x̄), put x0 = u and

construct a new DCA sequence. If the latter is again bounded, one finds a

new KKT point ū ∈ C∗ with f(ū) ≤ f(u) < f(x̄) (see Theorem 2.1). The

process is continued until finding a point x̄ ∈ S. Since the distinct values of

f on C∗ does not exceed 2m (see [17, Lemma 4]), the upper bound for the

number of restarts of any DC algorithm is 2m.

Before proving the convergence and the R−linear convergence rate of Al-

gorithm B, let us consider one example, which is designed to show how Al-

gorithms A and B are performed in practice.

Example 2.1 (see [50, Example 11.5, p. 209]) Consider problem (2.1) with
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n = 2, m = 3, Q =

[
1 0

0 −1

]
, A =

1 −2

1 2

1 0

, q =

(
−1

0

)
, b =

0

0

2

. Here, we

have f(x) = 1
2
(x2

1 − x2
2)− x1 on the set

C =
{
x ∈ R2 | x1 − 2x2 ≥ 0, x1 + 2x2 ≥ 0, x1 ≥ 2

}
.

The eigenvalues of Q are λ1 = −1 and λ2 = 1. Denote by C∗ the KKT point

set of (P). A direct computation using (2.4) gives

C∗ =
{

(2, 0), (2, 1), (2,−1)
}
, S = loc(P) =

{
(2, 1), (2,−1)

}
.

To implement the algorithms A and B, we choose ε = 10−6.

For Algorithm A, one can choose ρ = 1. The objective function of the

problem (P) can be decomposed as follows f(x) = g(x)− h(x), where

g(x) =
1

2
xT (ρE)x+ qTx =

1

2
(x2

1 + x2
2)− x1,

and h(x) = 1
2
xT (ρE −Q)x = x2

2. The implementation of Algorithm A begins

with selecting an initial point, say, x0 = (2, 2), and setting k = 0. Using

(2.8), one obtains y0 = (0, 4). By solving the convex program (2.7), one gets

x1 =
(

12
5
, 6

5

)
. Since ‖x1 − x0‖ > ε, one increases k by 1 and computes y1. By

(2.8), one has y1 = (0, 12
5

). Using (2.7), one obtains x2 = (2, 1). The stopping

criterion in Step 4 is not satisfied, so one sets k = 2 and goes to Step 2. By the

rule (2.8), one has y2 = (0, 2). Using (2.7) again, one gets x3 = (2, 1). Thus,

the condition ‖x3 − x2‖ ≤ ε is satisfied. So, the computation stops after 3

steps and one has x̄ = (2, 1), which belongs to S (see Table 2.1 a)). Similarly,

selecting the initial point x0 = (2,−2), one gets the point x̄ = (2,−1), which

also belongs to S (see Table 2.1 b)).

For Algorithm B, one can select ρ = 2. Then, the objective function of (P)

can be represented as f(x) = g(x)− h(x), where

g(x) =
1

2
xT (Q+ ρE)x+ qTx =

1

2
(3x2

1 + x2
2)− x1

and h(x) = 1
2
xT (ρE)x = x2

1 + x2
2. To implement Algorithm B, put x0 = (2, 2)

and set k = 0. One solves the convex program (2.9) and gets x1 =
(

28
13
, 14

13

)
.

Since ‖x1 − x0‖ > ε, one increase k by 1 and computes x2. By solving the

problem (2.9), one obtains x2 = (2, 1). The stopping criterion in Step 3 is

not satisfied. Therefore, one sets k = 2 and goes to Step 2. Using (2.9),

one has x3 = (2, 1). Hence, the condition ‖x3 − x2‖ ≤ ε is satisfied. So,
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Table 2.1: The performance of Algorithm A

k xk yk f(xk)

0 (2.000000, 2.000000) (0.000000, 4.000000) -2.000000

1 (2.400000, 1.200000) (0.000000, 2.400000) -0.240000

2 (2.000000, 1.000000) (0.000000, 2.000000) -0.500000

3 (2.000000, 1.000000) (0.000000, 2.000000) -0.500000

a) x0 = (2, 2)

k xk yk f(xk)

0 (2.000000, -2.000000) (0.000000, -4.000000) -2.000000

1 (2.400000, -1.200000) (0.000000, -2.400000) -0.240000

2 (2.000000, -1.000000) (0.000000, -2.000000) -0.500000

3 (2.000000, -1.000000) (0.000000, -2.000000) -0.500000

b) x0 = (2,−2)

Table 2.2: The performance of Algorithm B

k xk f(xk)

0 (2.000000, 2.000000) -2.000000

1 (2.023530, 1.011765) -0.488028

2 (2.000000, 1.000000) -0.500000

3 (2.000000, 1.000000) -0.500000

a) x0 = (2, 2)

k xk f(xk)

0 (2.000000, -2.000000) -2.000000

1 (2.023530, -1.011765) -0.488028

2 (2.000000, -1.000000) -0.500000

3 (2.000000, -1.000000) -0.500000

b) x0 = (2,−2)

23



the computation stops after 3 steps and one gets the point x̄ = (2, 1), which

belongs to S (see Table 2.2 a)). Similarly, with the initial point x0 = (2,−2),

one gets the point x̄ = (2,−1), which also belongs to S (see Table 2.2 b)).

2.2 Convergence and Convergence Rate of the Algo-

rithm

As noted in Section 2.1, the KKT point set C∗ of (2.1) is the solution set

of the affine variational inequality (2.6), so C∗ is the union of finitely many

polyhedral convex sets (see, e.g., [65, Lemma 3.1] and [50, Sections 3.1 and

5.3]). In particular, C∗ has finitely many connected components. Since the

solution set S of (2.1) is a subset of C∗, if S is nonempty then C∗ 6= ∅. For

any given subset M ⊂ Rn, by d(x,M) := inf{‖x − y‖ | y ∈ M} we denote

the distance from x ∈ Rn.

We will need two auxiliary results. The next lemma gives a local error

bound for the distance d(x,C∗) form a feasible point x ∈ C to C∗.

Lemma 2.1 ( [92, Lemma 2.1]; cf. [65, Lemma 3.1]) For any ρ > 0, if

C∗ 6= ∅, then there exist scalars ε > 0 and ` > 0 such that

d(x,C∗) ≤ `
∥∥∥x− PC(x− 1

ρ
(Qx+ q)

)∥∥∥ (2.10)

for all x ∈ C with ∥∥∥x− PC(x− 1

ρ
(Qx+ q)

)∥∥∥ ≤ ε. (2.11)

Lemma 2.2 ( [65, Lemma 3.1]; see also [92, Lemma 2.2]) Let C1, C2, · · · , Cr

denote the connected components of C∗. Then we have

C∗ =
r⋃
i=1

Ci,

and the following properties are valid:

(a) each Ci is the union of finitely many polyhedral convex sets;

(b) the sets Ci, i = 1, . . . r, are properly separated each from others, that

is, there exists δ > 0 such that if i 6= j then

d(x,Cj) ≥ δ ∀x ∈ Ci;
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(c) f is constant on each Ci.

The necessary and sufficient condition for xk+1 to be the unique solution

of (2.9) is the following

〈∇ψ(xk+1), x− xk+1〉 ≥ 0 ∀x ∈ C,

where ∇ψ(xk+1) = Qxk+1 + q + ρxk+1 − ρxk. Equivalently, xk+1 is the unique

solution of the strongly monotone affine variational inequality given by the

affine operator x 7→ (Q + ρE)x + q − ρxk and the polyhedral convex set

C. Therefore, applying Theorem 2.3 from [45, p. 9] we see that xk+1 is the

unique fixed point of the map Gk(x) := PC(x − µ(Mx + qk)), where µ > 0

is arbitrarily chosen, M := Q + ρE, and qk := q − ρxk. In what follows, we

choose µ = ρ−1. Then

xk+1 = PC
(
xk+1 − 1

ρ
(Mxk+1 + qk)

)
. (2.12)

The convergence and the rate of convergence of Algorithm B, the Proximal

DC decomposition algorithm, can be formulated as follows.

Theorem 2.2 If (2.1) has a solution, then for each x0 ∈ Rn, the DCA se-

quence {xk} constructed by Algorithm B converges R-linearly to a KKT point

of (2.1), that is, there exists x̄ ∈ C∗ such that limsup
k→∞

‖xk − x̄‖1/k < 1.

Proof. Since (2.1) has a solution, C∗ 6= ∅. Hence, by Lemma 2.1 there exist

` > 0 and ε > 0 such that (2.10) is fulfilled for any x satisfying (2.11). As

inf
x∈C

f(x) > −∞, assertion (iv) of Theorem 2.1 gives

lim
k→∞
‖xk+1 − xk‖ = 0. (2.13)

Choose k0 ∈ N as large as ‖xk+1 − xk‖ < ε for all k ≥ k0.

If it holds that

‖xk+1 − PC(xk+1 − 1

ρ
(Qxk+1 + q))‖ ≤ ε ∀k ≥ k0, (2.14)

then by (2.10) one has

d(xk+1, C∗) ≤ `‖xk+1 − PC
(
xk+1 − 1

ρ
(Qxk+1 + q)

)
‖ ∀k ≥ k0. (2.15)

To obtain (2.14), for any k ≥ k0, we recall that

xk+1 = Gk(x
k+1) = PC

(
xk+1 − 1

ρ
(Mxk+1 + qk)

)
, (2.16)
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Combining this with the nonexpansiveness of PC(.) [45, Corollary 2.4, p. 10]

yields

‖xk+1 − PC(xk+1 − 1
ρ
(Qxk+1 + q))‖

≤ ‖PC
(
xk+1 − 1

ρ
(Mxk+1 + qk)

)
− PC

(
xk+1 − 1

ρ
(Qxk+1 + q)

)
‖

≤ ‖[xk+1 − 1

ρ
(Mxk+1 + qk)]− [xk+1 − 1

ρ
(Qxk+1 + q)]‖

= ‖[xk+1 − 1

ρ
(Qxk+1 + ρxk+1 + q − ρxk)]− [xk+1 − 1

ρ
(Qxk+1 + q)]‖

= ‖xk+1 − xk‖ < ε.

Hence (2.14) is valid and, in addition, we have

‖xk+1 − PC
(
xk+1 − 1

ρ
(Qxk+1 + q)

)
‖ ≤ ‖xk+1 − xk‖.

From this and (2.15) it follows that

d(xk+1, C∗) ≤ `‖xk+1 − xk‖ ∀k ≥ k0. (2.17)

Since C∗ is closed and nonempty, for each k ∈ {0, 1, 2, . . . } we can find

yk ∈ C∗ such that d(xk, C∗) = ‖xk − yk‖. Then (2.17) implies that

‖xk+1 − yk+1‖ ≤ `‖xk+1 − xk‖ ∀k ≥ k0. (2.18)

So, as consequence of (2.13),

lim
k→∞
‖yk+1 − xk+1‖ = 0. (2.19)

Since

‖yk+1 − yk‖ ≤ ‖yk+1 − xk+1‖+ ‖xk+1 − xk‖+ ‖xk − yk‖,

it follows that

lim
k→∞
‖yk+1 − yk‖ = 0. (2.20)

Let C1, C2, · · · , Cr be the connected components of C∗. By Lemma 2.2

and (2.20), there exist i0 ∈ {1, . . . , r} and k1 ≥ k0 such that yk ∈ Ci0 for

every k ≥ k1. Hence, according to the third assertion of Lemma 2.2,

f(yk) = c ∀k ≥ k1 (2.21)

for some c ∈ R.

Since (2.1) has a solution, by Theorem 2.1 we can find a real value f∗ such

that lim
k→∞

f(xk) = f∗.
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By the classical Mean Value Theorem and by the formula ∇f(x) = Qx+q,

for every k there is zk ∈ (xk, yk) := {(1− t)xk + tyk | 0 < t < 1} such that

f(yk)− f(xk) = 〈Qzk + q, yk − xk〉.

Since yk is a KKT point, it holds that 0 ≤ 〈Qyk + q, xk − yk〉. Adding this

inequality and the preceding equality, we get

f(yk)− f(xk) ≤ 〈Q(zk − yk), yk − xk〉
≤ ‖Q‖‖zk − yk‖‖yk − xk‖
≤ ‖Q‖‖yk − xk‖2.

(2.22)

On one hand, from (2.21) and (2.22) it follows that

c = f(yk) ≤ f(xk) + ‖Q‖ ‖yk − xk‖2.

As lim
k→∞

[
f(xk) + ‖Q‖ ‖yk − xk‖2

]
= f∗ due to (2.19), this forces

c ≤ f∗. (2.23)

On the other hand, since xk+1 = PC
(
xk+1− 1

ρ
(Mxk+1 + qk)

)
by (2.16), the

characterization of the metric projection on a closed convex set [45, Theo-

rem 2.3, p. 9] gives us〈[
xk+1 − 1

ρ
(Mxk+1 + qk)

]
− xk+1, y − xk+1

〉
≤ 0 ∀y ∈ C.

Therefore, 〈
Mxk+1 + qk, yk+1 − xk+1

〉
≥ 0 ∀k ∈ N.

From this and (2.18) we get

〈Myk+1 + qk, xk+1 − yk+1〉
≤ 〈Myk+1 + qk, xk+1 − yk+1〉+ 〈Mxk+1 + qk, yk+1 − xk+1〉
= 〈M(yk+1 − xk+1), xk+1 − yk+1〉
≤ ‖M‖‖yk+1 − xk+1‖2

≤ `2‖M‖‖xk+1 − xk‖2

for all k ≥ k0. So, setting α = `2‖M‖, we have

〈Myk+1 + qk, xk+1 − yk+1〉 ≤ α‖xk+1 − xk‖2. (2.24)

For each k ≥ k1, since M = Q + ρE and qk = q − ρxk, invoking (2.24) and
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using (2.18) once more, we have

f(xk+1)− c = f(xk+1)− f(yk+1)

≤ 1
2
〈Qxk+1, xk+1〉+ 〈q, xk+1〉 − 1

2
〈Qyk+1, yk+1〉 − 〈q, yk+1〉

= 〈Myk+1 + qk, xk+1 − yk+1〉+ 1
2
〈Q(xk+1 − yk+1), xk+1 − yk+1〉

+ρ〈xk − yk+1, xk+1 − yk+1〉
= 〈Myk+1 + qk, xk+1 − yk+1〉+ 1

2
〈Q(xk+1 − yk+1), xk+1 − yk+1〉

+ρ〈xk − xk+1, xk+1 − yk+1〉+ ρ〈xk+1 − yk+1, xk+1 − yk+1〉
≤ α‖xk+1 − xk‖2 + 1

2
‖Q‖‖xk+1 − yk+1‖2

+ρ‖xk+1 − xk‖‖xk+1 − yk+1‖+ ρ‖xk+1 − yk+1‖2

≤
[
α + 1

2
‖Q‖`2 + ρ`(1 + `)

]
‖xk+1 − xk‖2.

Therefore, with β := α + 1
2
‖Q‖`2 + ρ`(1 + `), we get

f(xk+1) ≤ c+ β‖xk+1 − xk‖2. (2.25)

Letting k →∞, from (2.25) we can deduce that

f∗ = lim
k→∞

f(xk+1) ≤ c.

Combining the last expression with (2.23) yields f∗ = c. Therefore, by (2.25)

and the first assertion of Theorem 2.1 we obtain

f(xk+1)− f∗ ≤ β‖xk+1 − xk‖2 ≤ 2β

λ1(Q1) + λ1(Q2)
(f(xk)− f(xk+1)),

where Q1 = Q + ρE and Q2 = ρE. Putting γ = λ1(Q1) + λ1(Q2), from the

condition ρ > −λ1(Q) we get γ = (λ1(Q) + ρ) + ρ > 0. Therefore,

f(xk+1)− f∗ ≤
2β

γ

[(
f(xk)− f∗

)
−
(
f(xk+1)− f∗

)]
.

Hence

f(xk+1)− f∗ ≤
2β

2β + γ
(f(xk)− f∗).

So we have

|f(xk+1)− f∗| ≤ µ0|f(xk)− f∗| ∀ k ≥ k1,

where µ0 := 2β
2β+γ
∈ (0, 1). Thus,

|f(xk)− f∗| ≤ µk−k10 |f(xk1)− f∗| ∀ k > k1,

or

|f(xk)− f∗| ≤ r0 µ
2k ∀ k > k1,
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where r0 := µ−k10 |f(xk1)− f∗| and µ := µ
1/2
0 . Hence,

|f(xk+1)− f(xk)| ≤ |f(xk+1)− f∗|+ |f(xk)− f∗|
≤ r0 µ

2k+2 + r0 µ
2k = r1µ

2k ∀k > k1,

where r1 := r0(µ
2 +1). Consequently, using the first assertion of Theorem 2.1

once more, we see that

‖xk+1 − xk‖2 ≤ 2

γ
(f(xk)− f(xk+1)) ≤ 2r1

γ
µ2k ∀k > k1.

Thus

‖xk+1 − xk‖ ≤ r µk ∀k > k1,

where r :=
(

2r1
γ

) 1
2 and µ ∈ (0, 1). Let ε > 0 be given arbitrarily. For each

positive integer p, we have

‖xk+p − xk‖ ≤ ‖xk+p − xk+p−1‖+ · · ·+ ‖xk+1 − xk‖
≤ r µk+p−1 + · · ·+ rµk

= r
1− µp

1− µ
µk ≤ r

1− µ
µk < ε,

provided that k is large enough. Hence {xk} is a Cauchy sequence, and we

may assume that it converges to a point x̄ ∈ C. By the third assertion of

Theorem 2.1, x̄ ∈ C∗. Moreover, passing the inequality

‖xk+p − xk‖ ≤ r

1− µ
µk

to the limit as p→∞, we get

‖xk − x̄‖ ≤ r

1− µ
µk

for all k large enough. So,

‖xk − x̄‖1/k ≤
(

r

1− µ

)1/k

µ

for all k large enough. Therefore,

limsup
k→∞

‖xk − x̄‖1/k ≤ µ < 1.

This proves that {xk} converges R-linearly to a KKT point of (2.1). 2

Remark 2.2 According to Theorem 2.2, one can find a constant C such that

limsup
k→∞

‖xk − x̄‖1/k < C < 1. So, if the computation is terminated at step
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k, provided that k is sufficiently large, then one has ‖xk − x̄‖1/k < C. That

is, ‖xk − x̄‖ < Ck. Therefore, the computation error between the obtained

approximate solution xk and the exact limit point x̄ of the sequence {xk} is

smaller than the number Ck. Since C ∈ (0, 1), one sees that the computation

error bound Ck tends to 0 as k →∞.

2.3 Asymptotical Stability of the Algorithm

We will prove that DCA sequences generated by Algorithm B converge

to a locally unique solution of (2.1) if the initial points are taken from a

suitably-chosen neighborhood of it.

First, we have to recall a stability concept that works for discrete dynamical

system. Consider an iteration algorithm which generates a unique point xk+1,

provided that the preceding iteration point xk, k ∈ {0, 1, 2, . . . }, has been

defined. Following Leong and Goh [59, Definition 2], we can present the

concept of asymptotic stability of a KKT point as follows.

Definition 2.2 The KKT point x̄ of (2.1) is:

(i) stable w.r.t. the iteration algorithm if for any given ε > 0 there exists

δ > 0 such that whenever x0 ∈ B(x̄, δ), the DCA sequence generated by

the iteration algorithm and the initial point x0 has the property xk ∈
B(x̄, ε) for all k ≥ 0;

(ii) attractive if there exists δ > 0 such that whenever x0 ∈ B(x̄, δ), the DCA

sequence generated by the iteration algorithm and the initial point x0

has the property lim
k→∞

xk = x̄;

(iii) asymptotically stable w.r.t. the iteration algorithm if it is stable and

attractive w.r.t. to that algorithm.

As usual, for an optimization problem min{g(x) | x ∈ Ω} with g : Rn → R
and Ω ⊂ Rn being respectively a real function and an arbitrary subset, one

says that x̄ ∈ Ω is a locally unique solution of if there exists ε > 0 such that

g(x) > g(x̄) ∀x ∈ (Ω ∩B(x̄, ε)) \ {x̄}.

The next two lemmas express some well-known facts.
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Lemma 2.3 (See, e.g., [50, Theorem 3.8]) If x̄ ∈ C is a locally unique solu-

tion of (2.1), then there exist µ > 0 and η > 0 such that

f(x)− f(x̄) ≥ η‖x− x̄‖2 for every x ∈ C ∩B(x̄, µ). (2.26)

Lemma 2.4 (See, e.g., [17, Proof of Lemma 4] and [57, Lemma 1]) If the

KKT point set C∗ contains a segment [u, x], then the restriction of f on that

segment is a constant function.

The main result of this section can be formulated as follows.

Theorem 2.3 Consider Algorithm B and require additionally that ρ > ‖Q‖.
Suppose x̄ is a locally unique solution of problem (2.1). In that case, for any

γ > 0 there exists δ > 0 such that if x0 ∈ C ∩B(x̄, δ) and if {xk} is the DCA

sequence generated by Algorithm B and the initial point x0, then

(a) xk ∈ C ∩B(x̄, γ) for any k ≥ 0;

(b) xk → x̄ as k →∞.

In other words, x̄ is asymptotically stable w.r.t. Algorithm B.

Proof. Suppose that ρ > ‖Q‖ and x̄ is a locally unique solution of (2.1). By

Lemma 2.3 we can select constants µ > 0 and η > 0 such that (2.26) holds.

For any given γ > 0, by replacing γ with a smaller one (if necessary), we may

assume that γ ∈ (0, µ) and γ < µ(1− ρ−1‖Q‖). Since

f(x)− f(x̄) > 0 ∀x ∈
(
C ∩B(x̄, γ)

)
\ {x̄}

by (2.26), the continuity of f implies the existence of δ ∈ (0, µ) satisfying

1

η1/2

(
f(x)− f(x̄)

)1/2
< γ ∀x ∈ C ∩B(x̄, δ). (2.27)

First, let us show that the assertion about stability of DCA sequences

generated by Algorithm B is valid for the chosen number δ > 0. Fix any

x0 ∈ C ∩B(x̄, δ). As δ < γ, for k = 0 we have xk ∈ C ∩B(x̄, γ). To proceed

by induction, suppose that the last inclusion holds for some k ≥ 0. Since x̄

is a locally unique solution of (2.1), it is a KKT point of that problem, i.e.,(
Qx̄+ q

)T
(x− x̄) ≥ 0 ∀x ∈ C. (2.28)

It follows that

x̄ = PC
(
x̄− 1

ρ
(Qx̄+ q)

)
. (2.29)
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Indeed, by the characterization of the metric projection [45, Theorem 2.3,

p. 9], (2.29) is valid if and only if([
x̄− 1

ρ
(Qx̄+ q)

]
− x̄

)T
(x− x̄) ≤ 0 ∀x ∈ C.

The latter is equivalent to (2.28). Using (2.12), (2.29), and the nonexpan-

siveness of the metric projection [45, Corollary 2.4, p. 10], we have

‖xk+1 − x̄‖ =
∥∥PC(xk+1 − 1

ρ
(Mxk+1 + qk)

)
− PC

(
x̄− 1

ρ
(Qx̄+ q)

)∥∥
≤
∥∥[xk+1 − 1

ρ
(Mxk+1 + qk)

]
−
[
x̄− 1

ρ
(Qx̄+ q)

]∥∥
=
∥∥[xk+1 − 1

ρ

(
(ρE +Q)xk+1 + q − ρxk

)]
−
[
x̄− 1

ρ
(Qx̄+ q)

]∥∥
=
∥∥(xk − x̄) +

1

ρ
Q(x̄− xk+1)

∥∥
≤ ‖xk − x̄‖+

1

ρ
‖Q‖‖x̄− xk+1‖.

Then we obtain

‖xk+1 − x̄‖ ≤ (1− 1

ρ
‖Q‖)−1‖xk − x̄‖ ≤ (1− 1

ρ
‖Q‖)−1γ < µ,

where the strict inequality follows from the property γ < µ(1−ρ−1‖Q‖). Thus,

xk+1 ∈ C∩B(x̄, µ). Applying (2.26) and the inequality f(xk) ≥ f(xk+1) which

holds for any k ≥ 0 (see Remark 2.1), we get

‖xk+1 − x̄‖2 ≤ 1

η

(
f(xk+1)− f(x̄)

)
≤ 1

η

(
f(xk)− f(x̄)

)
...

≤ 1

η

(
f(x0)− f(x̄)

)
.

Hence,

‖xk+1 − x̄‖ ≤ 1

η1/2

(
f(x0)− f(x̄)

)1/2
.

Since x0 ∈ C ∩B(x̄, δ), combining this with (2.27) we obtain ‖xk+1 − x̄‖ < γ

which means that xk+1 ∈ C ∩B(x̄, γ). Thus, we have proved that

xk ∈ C ∩B(x̄, γ)

for every k ≥ 0.
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Next, to obtain the assertion about the attractiveness of DCA sequences

generated by Algorithm B, we observe by the just obtained stability result

that for any γ > 0 there exists δ = δ(γ) > 0 such that if x0 ∈ C ∩ B(x̄, δ)

and if {xk} is the DCA sequence generated by Algorithm B and the initial

point x0, then the property in (a) is valid. Without loss of generality, we may

assume that γ ∈ (0, µ) and δ ∈ (0, γ). By taking a smaller positive γ > 0 and

choosing the corresponding δ = δ(γ) such that the property in (a) is valid, we

can have the following: If x0 ∈ C ∩ B(x̄, δ) and if {xk} is the DCA sequence

generated by Algorithm B and the initial point x0, then the property in (b)

holds. Indeed, if this claim was false, we would find sequences γj → 0+ and

δj → 0+ such that for each j ∈ N we have γj ∈ (0, µ), δj ∈ (0, γj), and the

stability assertion is valid for the pair (δ, γ) := (δj, γj). Moreover, for each

j, there exists some x0,j ∈ C ∩ B(x̄, δj) such that the DCA sequence {xk,j}
generated by Algorithm B and the initial point x0,j does not converge to x̄.

Then we can select a subsequence of {xk,j} which converges to a point

x̃j ∈ C ∩ B̄(x̄, γj) ⊂ C ∩B(x̄, µ), (2.30)

where x̃j 6= x̄. By Theorem 2.1 we have x̃j ∈ C∗ for j = 1, 2, . . . . Observe

that

lim
j→∞

x̃j = x̄. (2.31)

For each j, one can find an integer k(j) ≥ 1 such that γj+k(j) < ‖x̃j − x̄‖.
Then, by (2.30) one has

‖x̃j+k(j) − x̄‖ < ‖x̃j − x̄‖.

Choose z1 = x̃1 and set zp+1 := x̃p+k(p) for p = 1, 2, . . . . It is clear that {zp} is

a subsequence of {x̃j} and zp 6= zp
′

whenever p′ 6= p. Hence, by considering

a subsequence (if necessary), we can assume that x̃j 6= x̃` whenever j 6= `.

Since the number of pseudo-faces of C is finite, by (2.31) there must exists

an index set α ⊂ {1, . . . ,m} such that the pseudo-face

Fα := {x ∈ Rn | Aαx = bα, Aᾱx > bᾱ}

of C contains infinite number of the members of the sequence {x̃j}. Without

loss of generality, we may assume that the whole sequence {x̃j} is contained

in Fα. By [50, Lemma 4.1], the intersection C∗ ∩ Fα is a convex set. Hence,

according to Lemma 2.4, the restriction of f on C∗∩Fα is a constant function.

Using (2.31), from this we can deduce that the equality f(x̃j) = f(x̄) holds
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for all j. As x̃j 6= x̄ for every j, the last equality contradicts (2.26). Our

claim has been proved. �

To illustrate asymptotical stability of Algorithmthe B, let us consider the

following example.

Example 2.2 (see [50, Example 11.3, p. 207]) Consider problem (2.1) with

n = 2, m = 2, Q =

[
1 0

0 −1

]
, A =

[
1 −2

1 2

]
, q =

(
−1

0

)
, b =

(
0

0

)
. Here, one

has the objective function f(x) = 1
2
(x2

1 − x2
2)− x1 over the set

C =
{
x ∈ R2 | x1 − 2x2 ≥ 0, x1 + 2x2 ≥ 0

}
.

Since λ1 = −1 and λ2 = 1 are eigenvalues of Q, one can choose ρ = 2.

Using (2.4), one obtains the KKT point set C∗ =
{

(1, 0), (4
3
, 2

3
), (4

3
,−2

3
)
}
.

For this problem, one has S=loc(P)=
{

(4
3
, 2

3
), (4

3
,−2

3
)
}

. One selects initial

point, say, x0 = (3
2
, 1

2
), and chooses x̄ = (4

3
, 2

3
) ∈ S. Let the tolerance ε > 0

be small enough and put δ = ‖x0 − x̄‖ =
√

2
6

. Hence, x0 ∈ C ∩ B(x̄, δ). Let

{xk} be the DCA sequence generated by Algorithm B and the initial point

x0. For each k ∈ {0, . . . , 27}, one has ‖xk − x̄‖ ≤ ε; so xk ∈ C ∩ B(x̄, γ),

where γ = ε (see Table 2.3 a) and Figure 2.1). Similar results are valid if one

choses x0 = (3
2
,−1

5
) and x̄ = (4

3
,−2

3
) (see Table 2.3 b)).

Figure 2.1: The DCA sequence generated by Algorithm B and x0 = (1.5, 0.5)
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Table 2.3: Asymptotical stability of Algorithm B

k xk f(xk) δ(γ) xk f(xk) δ(γ)

0 (1.500000, 0.500000) -0.500000 0.235702 (1.500000, -0.500000) -0.500000 0.235702

1 (1.376471, 0.688235) -0.665969 0.048228 (1.376471, -0.688235) -0.665969 0.048228

2 (1.361246, 0.680623) -0.666375 0.031206 (1.361246, -0.680623) -0.666375 0.031206

3 (1.351394, 0.675697) -0.666544 0.020192 (1.351394, -0.675697) -0.666544 0.020192

4 (1.345020, 0.672510) -0.666615 0.013065 (1.345020, -0.672510) -0.666615 0.013065

5 (1.340895, 0.670448) -0.666645 0.008454 (1.340895, -0.670448) -0.666645 0.008454

6 (1.338226, 0.669113) -0.666658 0.005470 (1.338226, -0.669113) -0.666658 0.005470

7 (1.336499, 0.668250) -0.666663 0.003539 (1.336499, -0.668250) -0.666663 0.003539

8 (1.335382, 0.667691) -0.666665 0.002290 (1.335382, -0.667691) -0.666665 0.002290

9 (1.334659, 0.667329) -0.666666 0.001481 (1.334659, -0.667329) -0.666666 0.001481

10 (1.334191, 0.667096) -0.666666 0.000958 (1.334191, -0.667096) -0.666666 0.000958

11 (1.333888, 0.666944) -0.666667 0.000620 (1.333888, -0.666944) -0.666667 0.000620

12 (1.333692, 0.666846) -0.666667 0.000401 (1.333692, -0.666846) -0.666667 0.000401

13 (1.333566, 0.666783) -0.666667 0.000259 (1.333566, -0.666783) -0.666667 0.000259

14 (1.333484, 0.666742) -0.666667 0.000167 (1.333484, -0.666742) -0.666667 0.000167

15 (1.333431, 0.666715) -0.666667 0.000108 (1.333431, -0.666715) -0.666667 0.000108

16 (1.333396, 0.666698) -0.666667 0.000070 (1.333396, -0.666698) -0.666667 0.000070

17 (1.333374, 0.666687) -0.666667 0.000045 (1.333374, -0.666687) -0.666667 0.000045

18 (1.333360, 0.666680) -0.666667 0.000029 (1.333360, -0.666680) -0.666667 0.000029

19 (1.333351, 0.666675) -0.666667 0.000019 (1.333351, -0.666675) -0.666667 0.000019

20 (1.333345, 0.666672) -0.666667 0.000012 (1.333345, -0.666672) -0.666667 0.000012

21 (1.333341, 0.666670) -0.666667 0.000007 (1.333341, -0.666670) -0.666667 0.000007

22 (1.333338, 0.666669) -0.666667 0.000005 (1.333338, -0.666669) -0.666667 0.000005

23 (1.333336, 0.666668) -0.666667 0.000003 (1.333336, -0.666668) -0.666667 0.000003

24 (1.333335, 0.666668) -0.666667 0.000001 (1.333335, -0.666668) -0.666667 0.000001

25 (1.333335, 0.666667) -0.666667 0.000001 (1.333335, -0.666667) -0.666667 0.000001

26 (1.333334, 0.666667) -0.666667 0.000000 (1.333334, -0.666667) -0.666667 0.000000

27 (1.333334, 0.666667) -0.666667 0.000000 (1.333334, -0.666667) -0.666667 0.000000

a) x0 = (1.5, 0.5) b) x0 = (1.5,−0.5)
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2.4 Influence of the Decomposition Parameter

In this section, we will analyze the influence of the decomposition parame-

ter ρ for the rates of convergence of the algorithms A and B. We also compare

the effectiveness of Algorithm B with that of Algorithm A. These algorithms

were implemented in the Visual C++ 2010 environment, and performed on

a PC Intel CoreTM i7 (4 × 2.0 GHz) processor, 4GB RAM. The CPLEX 11.2

solver is used to solve linear and convex quadratic problems.

Recall that, for Algorithm A, the parameter ρ > 0 has to satisfy the in-

equality ρ ≥ λn(Q). For Algorithm B, ρ > 0 must satisfy the strict inequality

ρ > −λ1(Q).

We have used the algorithms A and B to solve some test problems of the

form (2.1) for the dimensions n = 10, n = 20, n = 40, n = 60, n = 80. With

βi ∈ [0, 10] for i = 1, . . . , n being generated randomly, the following two types

of constraint sets have been considered:

C =
{
x ∈ Rn : x ≥ 0, ixi ≥ βi, i = 1, . . . , n,

n∑
i=1

ixi ≤ 5000
}

and

C =
{
x ∈ Rn : x ≥ 0, ixi ≥ βi, i = 1, . . . , n, 10 ≤ x1 +

n∑
i=2

0.1ixi ≤ 100
}
.

Each of these sets can be represented as the solution set of the linear inequal-

ity system Ax ≥ b with a suitably chosen matrix A ∈ Rm×n and a vector

b ∈ Rm. Fixing a dimension n ∈ {10, 20, 40, 60, 80}, we generate randomly a

symmetric matrix Q ∈ Rn×n and a vector q ∈ Rn with the requirement that

all their components belong to the segment [0, 10]. The initial point x0 ∈ Rn

is generated randomly with the requirement that all its components belong

to the segment [0, 5]. Then, we start testing Algorithm A with ρ = λn(Q) if

λn(Q) > 0 and ρ = 0.1 otherwise. For our convenience, this ρ is called the

smallest decomposition parameter for Algorithm A. Similarly, we start testing

Algorithm B with ρ = −λ1(Q)+0.1 if λ1(Q) < 0 and ρ = 0.1 otherwise. This

ρ is said to be the smallest decomposition parameter for Algorithm B. The

stopping criterion is ‖xk+1 − xk‖ ≤ 10−6 and the largest allowed number of

steps is 1000. After testing Algorithm A (resp., Algorithm B) for a decom-

position parameter ρ, we increase ρ by 1.5 times and let the algorithm to run

again.
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Due to the space limitation, we only present the test results for n =

10, 40, 80.

In Table 2.4, the second rows of the sub-tables a) and b) correspond to

the smallest decomposition parameters for Algorithm A and Algorithm B,

respectively. The decomposition parameters of the test reported in the third

rows are 1.5 times of the smallest decomposition parameters. The decompo-

sition parameters of the test reported in the fourth rows are 1.5 times of the

just mentioned decomposition parameters; and so on... In the sub-tables a)

and b), the first column presents the ordinal number of the tests. The second

one indicates the numbers of iterations. The third one reports the running

times, while the fourth column contains the decomposition parameters. Ta-

ble 2.4 reports the computation results when Algorithm A and Algorithm B

are applied to the same problem with the same initial point. Only 11 records

are shown, because the 12th record would tell us that Algorithm A requires

more than 1000 steps to complete the computation.

The contents of Tables 2.5–2.9 are similar to those of Table 2.4.

With any n belonging to the set {10, 20, 40, 60, 80}, a careful analysis of

these Tables allows us to observe that:

• For both algorithms, if ρ increases, then the running time, as well as the

number of computation steps, increases;

• For any row of the sub-tables a) and b) with the same ordinal number, the

number of steps required by Algorithm B is much smaller than that required

by Algorithm A.

• For any row of the sub-tables a) and b) with the same ordinal number,

the running time of Algorithm B is much smaller than that of Algorithm A.

Thus, in terms of the number of computation steps and the execution time,

Algorithm B is much more efficient than Algorithm A when the algorithms

are applied to the same problem.
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Table 2.4: The test results for n = 10 with the 1st type constraint

No. Step Time ρ No. Step Time ρ

1 5 0.239 48.802 1 4 0.127 9.380

2 12 0.222 73.203 2 4 0.125 14.070

3 22 0.274 109.805 3 5 0.114 21.105

4 37 0.416 164.707 4 6 0.135 31.658

5 59 0.718 247.060 5 8 0.210 47.487

6 91 0.947 370.590 6 10 0.227 71.231

7 139 1.364 555.886 7 13 0.296 106.846

8 210 2.050 833.829 8 17 0.419 160.269

9 316 3.019 1250.743 9 24 0.576 240.404

10 474 4.593 1876.114 10 34 0.787 360.606

11 710 7.006 2814.171 11 49 1.312 540.909

a) b)

Table 2.5: The test results for n = 10 with the 2nd type constraint

No. Step Time ρ No. Step Time ρ

1 3 0.189 47.763 1 3 0.131 15.645

2 7 0.210 71.644 2 4 0.175 23.468

3 13 0.285 107.467 3 4 0.167 35.201

4 21 0.233 161.200 4 6 0.252 52.802

5 33 0.335 241.800 5 7 0.206 79.203

6 51 0.527 362.700 6 9 0.329 118.805

7 77 0.729 544.049 7 12 0.298 178.207

8 115 1.029 816.074 8 16 0.506 267.310

9 171 1.802 1224.111 9 22 0.830 400.966

10 255 2.363 1836.167 10 31 1.073 601.449

11 380 3.637 2754.250 11 44 1.043 902.173

12 567 5.133 4131.375 12 65 1.543 1353.259

13 847 7.546 6197.063 13 95 2.628 2029.889

a) b)
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Table 2.6: The test results for n = 40 with the 1st type constraint

No. Step Time ρ No. Step Time ρ

1 8 0.621 194.883 1 5 0.320 32.917

2 20 0.664 292.324 2 6 0.386 49.375

3 65 1.498 657.729 3 7 0.454 74.062

4 106 2.256 986.594 4 8 0.509 111.094

5 167 3.255 1479.891 5 11 0.670 166.641

6 259 4.925 2219.837 6 15 0.947 249.961

7 397 7.451 3329.755 7 20 1.238 374.941

8 604 11.236 4994.632 8 28 1.734 562.412

9 915 17.078 7491.948 9 40 2.477 843.618

a) b)

Table 2.7: The test results for n = 40 with the 2nd type constraint

No. Step Time ρ No. Step Time ρ

1 6 0.357 207.869 1 4 0.271 31.539

2 43 1.078 701.557 2 4 0.311 47.308

3 69 1.563 1052.336 3 5 0.350 70.962

4 107 2.408 1578.504 4 6 0.469 106.444

5 163 3.438 2367.756 5 7 0.477 159.665

6 373 7.227 5327.451 6 10 0.666 239.498

7 561 10.695 7991.177 7 12 0.795 359.247

8 843 15.936 11986.766 8 17 1.129 538.870

a) b)

Table 2.8: The test results for n = 80 with the 1st type constraint

No. Step Time ρ No. Step Time ρ

1 17 2.257 398.858 1 6 1.329 46.645

2 42 3.590 598.287 2 6 1.309 69.967

3 80 5.654 897.430 3 8 1.904 104.951

4 137 8.608 1346.145 4 11 2.415 157.426

5 223 12.446 2019.218 5 14 3.210 236.139

6 351 18.653 3028.826 6 19 4.730 354.208

7 543 29.408 4543.240 7 27 6.244 531.312

8 831 43.965 6814.859 8 38 7.713 796.969

a) b)
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Table 2.9: The test results for n = 80 with the 2nd type constraint

No. Step Time ρ No. Step Time ρ

1 17 2.424 396.403 1 7 1.787 109.550

2 43 3.025 594.605 2 10 2.545 164.325

3 81 4.447 891.908 3 14 3.285 246.488

4 138 6.908 1337.862 4 19 4.677 369.732

5 222 9.914 2006.793 5 26 6.597 554.598

6 348 15.201 3010.189 6 38 8.805 831.898

7 536 22.813 4515.283 7 56 13.169 1247.846

8 818 33.261 6772.925 8 82 20.989 1871.770

a) b)

2.5 Conclusions

We have established two properties of Algorithm B for the IQP problem:

- Every DCA sequence generated by the Algorithm B must be bounded

and, moreover, it converges R-linearly to a KKT point of the problem in

question.

- Algorithm B that is asymptotically stable, provided that the initial point

is close enough to a locally unique solution of the given problem and the DCA

decomposition parameter satisfies a mild additional assumption.

We have carried many numerical experiments which demonstrate that:

- The decomposition parameter greatly influences the convergence rate of

DCA sequences. When decomposition parameter increases, the execution

time is also increased. Therefore, one should choose the smallest possible

decomposition parameter.

- Algorithm B is more efficient than Algorithm A upon randomly generated

data sets.
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Chapter 3

Qualitative Properties of the

Minimum Sum-of-Squares Clustering

Problem

A series of basic qualitative properties of the minimum sum-of-squares

clustering problem will be established in this chapter. Among other things,

we will clarify the solution existence, properties of the global solutions, char-

acteristic properties of the local solutions, locally Lipschitz property of the

optimal value function, locally upper Lipschitz property of the global solution

map, and the Aubin property of the local solution map.

This chapter is written on the basis of paper No. 2 in the List of author’s

related papers (see p. 112).

3.1 Clustering Problems

Clustering is an important task in data mining and it is a powerful tool for

automated analysis of data. Cluster is a subset of the data set. The elements

of a cluster are similar in some sense (see, e.g., [1, p. 32] and [43, p. 250]).

There are many kinds of clustering problems, where different criteria are

used such as Euclidean distance [95], L1-distance [8, 10], and square of the

Euclidean distance. Among these criteria, the Minimum Sum-of-Squares

Clustering (MSSC for short) criterion is one of the most used [15, 18, 22,

28, 48, 60, 75, 87]. Biding by this criterion, one tries to make the sum of the
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squared Euclidean distances from each data point to the centroid of its cluster

as small as possible. The MSSC problem requires to partition a finite data

set into a given number of clusters in order to minimize the just mentioned

sum.

The importance of the MSSC problem was noticed by researchers long

time ago and they have developed many algorithms to solve it (see, e.g.,

[6, 7, 9, 12, 13, 61, 71, 98], and the references therein). Since this is a NP-hard

problem [3,67], the effective existing algorithms reach at most local solutions.

These algorithms may include certain techniques for improving the current

data partition to seek better solutions. For example, in [71], the authors

proposed a method to find good starting points that is based on the DCA

(Difference-of Convex-functions Algorithms). The latter has been applied to

the MSSC problem in [7, 52,60].

The first aim of the present chapter is to prove some basic properties of

the above problem. We begin with clarifying the equivalence between the

mixed integer programming formulation and the unconstrained nonsmooth

nonconvex optimization formulation of the problem, that were given in [71].

Then we prove that the MSSC problem always has a global solution and,

under a mild condition, the global solution set is finite and the components

of each global solution can be computed by an explicit formula.

The second aim of this chapter is to characterize the local solutions of

the MSSC problem. Based on the necessary optimality condition in DC

programming [26], some arguments of [71], and a newly introduced concept of

nontrivial local solution, we get necessary conditions for a system of centroids

to be a nontrivial local solution. Interestingly, we are able to prove that these

necessary conditions are also sufficient ones. Since the known algorithms for

solving the MSSC problem focus on the local solutions, our characterizations

may lead to a better understanding and further refinements of the existing

algorithms. Here, by constructing a suitable example, we investigate the

performance of the k-means algorithm, which can be considered as a basic

solution method for the MSSC problem.

The third aim of this chapter is to analyze the changes of the optimal value,

the global solution set, and the local solution set of the MSSC problem with

respect to small changes in the data set. Three principal stability properties

will be established. Namely, we will prove that the optimal value function is
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locally Lipschitz, the global solution map is locally upper Lipschitz, and the

local solution map has the Aubin property, provided that the original data

points are pairwise distinct.

Let A = {a1, ..., am} be a finite set of points (representing the data points

to be grouped) in the n-dimensional Euclidean space Rn. Given a positive in-

teger k with k ≤ m, one wants to partition A into disjoint subsets A1, . . . , Ak,

called clusters, such that a clustering criterion is optimized.

If one associates to each cluster Aj a center (or centroid), denoted by

xj ∈ Rn, then the following well-known variance or SSQ (Sum-of-Squares)

clustering criterion (see, e.g., [15, p. 266])

ψ(x, α) :=
1

m

m∑
i=1

( k∑
j=1

αij‖ai − xj‖2
)
−→ min,

where αij = 1 if ai ∈ Aj and αij = 0 otherwise, is used. Thus, the above par-

titioning problem can be formulated as the constrained optimization problem

min
{
ψ(x, α) | x ∈ Rnk, α = (αij) ∈ Rm×k, αij ∈ {0, 1},

k∑
j=1

αij = 1, i = 1, . . . ,m, j = 1, . . . , k
}
,

(3.1)

where the centroid system x = (x1, . . . , xk) and the incident matrix α = (αij)

are to be found.

Since (3.1) is a difficult mixed integer programming problem, instead of it

one usually considers (see, e.g., [71, p. 344]) the next unconstrained nonsmooth

nonconvex optimization problem

min
{
f(x) :=

1

m

m∑
i=1

(
min
j=1,...,k

‖ai − xj‖2

)
| x = (x1, . . . , xk) ∈ Rnk

}
. (3.2)

Both models (3.1) and (3.2) are referred to as the minimum sum-of-squares

clustering problem (the MSSC problem). As the decision variables of (3.1)

and (3.2) belong to different Euclidean spaces, the equivalence between these

minimization problems should be clarified. For our convenience, let us put

I = {1, . . . ,m} and J = {1, . . . , k}.
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3.2 Basic Properties of the MSSC Problem

Given a vector x̄ = (x̄1, . . . , x̄k) ∈ Rnk, we inductively construct k subsets

A1, . . . , Ak of A in the following way. Put A0 = ∅ and

Aj =
{
ai ∈ A \

( j−1⋃
p=0

Ap
)
| ‖ai − x̄j‖ = min

q∈J
‖ai − x̄q‖

}
(3.3)

for j ∈ J . This means that, for every i ∈ I, the data point ai belongs to

the cluster Aj if and only if the distance ‖ai− x̄j‖ is the minimal one among

the distances ‖ai− x̄q‖, q ∈ J , and ai does not belong to any cluster Ap with

1 ≤ p ≤ j − 1. We will call this family {A1, . . . , Ak} the natural clustering

associated with x̄.

Definition 3.1 Let x̄ = (x̄1, . . . , x̄k) ∈ Rnk. We say that the component x̄j

of x̄ is attractive with respect to the data set A if the set

A[x̄j] :=
{
ai ∈ A | ‖ai − x̄j‖ = min

q∈J
‖ai − x̄q‖

}
is nonempty. The latter is called the attraction set of x̄j.

Clearly, the cluster Aj in (3.3) can be represented as follows:

Aj = A[x̄j] \
( j−1⋃
p=1

Ap
)
.

Proposition 3.1 If (x̄, ᾱ) is a solution of (3.1), then x̄ is a solution of (3.2).

Conversely, if x̄ is a solution of (3.2), then the natural clustering defined by

(3.3) yields an incident matrix ᾱ such that (x̄, ᾱ) is a solution of (3.1).

Proof. First, suppose that (x̄, ᾱ) is a solution of the optimization prob-

lem (3.1). As ψ(x̄, ᾱ) ≤ ψ(x̄, α) for every α = (αij) ∈ Rm×k with αij ∈ {0, 1},∑k
j=1 αij = 1 for all i ∈ I and j ∈ J , one must have

k∑
j=1

ᾱij‖ai − x̄j‖2 = min
j∈J
‖ai − x̄j‖2 (∀i ∈ I).

Hence, ψ(x̄, ᾱ) = f(x̄). If x̄ is not a solution of (3.2), then one can find

some x̃ = (x̃1, . . . , x̃k) ∈ Rnk such that f(x̃) < f(x̄). Let {A1, . . . , Ak} be the

natural clustering associated with x̃. For any i ∈ I and j ∈ J , set α̃ij = 1 if

ai ∈ Aj and α̃ij = 0 if ai /∈ Aj. Let α̃ = (α̃ij) ∈ Rm×k. From the definition of
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natural clustering and the choice of α̃ it follows that ψ(x̃, α̃) = f(x̃). Then,

we have

ψ(x̄, ᾱ) = f(x̄) > f(x̃) = ψ(x̃, α̃),

contrary to the fact that (x̄, ᾱ) is a solution of (3.1).

Now, suppose that x̄ is a solution of (3.2). Let {A1, . . . , Ak} be the natural

clustering associated with x̄. Put ᾱ = (ᾱij), where ᾱij = 1 if ai ∈ Aj and

ᾱij = 0 if ai /∈ Aj. It is easy to see that ψ(x̄, ᾱ) = f(x̄). If there is a feasible

point (x, α) of (3.1) such that ψ(x, α) < ψ(x̄, ᾱ) then, by considering the

natural clustering {Ã1, . . . , Ãk} associated with x and letting α̃ = (α̃ij) with

α̃ij = 1 if ai ∈ Ãj and α̃ij = 0 if ai /∈ Ãj, we have f(x) = ψ(x, α̃) ≤ ψ(x, α).

Then we get

f(x) ≤ ψ(x, α) < ψ(x̄, ᾱ) = f(x̄),

contrary to the global optimality of x̄ for (3.2). One has thus proved that

(x̄, ᾱ) is a solution of (3.1). 2

Proposition 3.2 If a1, ..., am are pairwise distinct points and {A1, . . . , Ak}
is the natural clustering associated with a global solution x̄ of (3.2), then Aj

is nonempty for every j ∈ J .

Proof. Indeed, if there is some j0 ∈ J with Aj0 = ∅, then the assumption

k ≤ m implies the existence of an index j1 ∈ J such that Aj1 contains at

least two points. Since the elements of Aj1 are pairwise distinct, one could

find ai1 ∈ Aj1 with ai1 6= x̄j1. Setting x̃j = x̄j for j ∈ J \ {j0} and x̃j0 = ai1,

one can easily show that

f(x̃)− f(x̄) ≤ − 1

m
‖ai1 − x̄j1‖2 < 0.

This is impossible because x̄ is a global solution of (3.2). 2

Remark 3.1 In practical measures, some data points can coincide. Natu-

rally, if ai1 = ai2, i1 6= i2, then ai1 and ai2 must belong to the same cluster.

Procedure (3.3) guarantees the fulfillment of this natural requirement. By

grouping identical data points and choosing from each group a unique rep-

resentative, we obtain a new data set having pairwise distinct data points.

Thus, there is no loss of generality in assuming that a1, ..., am are pairwise

distinct points.

Theorem 3.1 Both problems (3.1), (3.2) have solutions. If a1, ..., am are

pairwise distinct points, then the solution sets are finite. Moreover, in that
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case, if x̄ = (x̄1, . . . , x̄k) ∈ Rnk is a global solution of (3.2), then the attraction

set A[x̄j] is nonempty for every j ∈ J and one has

x̄j =
1

|I(j)|
∑
i∈I(j)

ai, (3.4)

where I(j) := {i ∈ I | ai ∈ A[x̄j]} with |Ω| denoting the number of elements

of Ω.

Proof. a) Solution existence: By the second assertion of Proposition 3.1,

it suffices to show that (3.2) has a solution. Since the minimum of finitely

many continuous functions is a continuous function, the objective function of

(3.2) is continuous on Rnk. If k = 1, then the formula for f can be rewritten

as f(x1) =
1

m

m∑
i=1

‖ai − x1‖2. This smooth, strongly convex function attains

its unique global minimum on Rn at the point x̄1 = a0, where

a0 :=
1

m

∑
i∈I

ai (3.5)

is the barycenter of the data set A (see, e.g., [50, pp. 24–25] for more details).

To prove the solution existence of (3.2) for any k ≥ 2, put ρ = max
i∈I
‖ai−a0‖,

where a0 is defined by (3.5). Denote by B̄(a0, 2ρ) the closed ball in Rn centered

at a0 with radius 2ρ, and consider the optimization problem

min
{
f(x) | x = (x1, . . . , xk) ∈ Rnk, xj ∈ B̄(a0, 2ρ), ∀j ∈ J

}
. (3.6)

By the Weierstrass theorem, (3.6) has a solution x̄ = (x̄1, . . . , x̄k) with x̄j

satisfying the inequality ‖x̄j − a0‖ ≤ 2ρ for all j ∈ J . Take an arbitrary

point x = (x1, . . . , xk) ∈ Rnk and notice by the choice of x̄ that f(x̄) ≤ f(x)

if ‖xj − a0‖ ≤ 2ρ for all j ∈ J . If there exists at least one index j ∈ J with

‖xj − a0‖ > 2ρ, then denote the set of such indexes by J1 and define a vector

x̃ = (x̃1, . . . , x̃k) ∈ Rnk by putting x̃j = xj for every j ∈ J \J1, and x̃j = a0 for

all j ∈ J1. For any i ∈ I, it is clear that ‖ai− x̃j‖ = ‖ai−a0‖ ≤ ρ < ‖ai−xj‖
for every j ∈ J1, and ‖ai − x̃j‖ = ‖ai − xj‖ for every j ∈ J \ J1. So, we have

f(x̃) ≤ f(x). As f(x̄) ≤ f(x̃), this yields f(x̄) ≤ f(x). We have thus proved

that x̄ is a solution of (3.2).

b) Finiteness of the solution sets and formulae for the solution components:

Suppose that a1, ..., am are pairwise distinct points, x̄ = (x̄1, . . . , x̄k) ∈ Rnk is a

global solution of (3.2), and {A1, . . . , Ak} is the natural clustering associated
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with x̄. By Proposition 3.2, Aj 6= ∅ for all j ∈ J . Since

Aj ⊂
{
ai ∈ A | ‖ai − x̄j‖ = min

q∈J
‖ai − x̄q‖

}
and Aj 6= ∅ for every j ∈ J , we see that |I(j)| ≥ 1 for every j ∈ J . This

implies that right-hand-side of (3.4) is well defined for each j ∈ J . To justify

that formula, we can argue as follows. Fix any j ∈ J . Since

‖ai − x̄j‖ > min
q∈J
‖ai − x̄q‖ ∀i /∈ I(j),

there exists ε > 0 such that

‖ai − xj‖ > min
q∈J
‖ai − x̄q‖ ∀i /∈ I(j) (3.7)

for any xj ∈ B̄(x̄j, ε). For each xj ∈ B̄(x̄j, ε), put x̃ = (x̃1, . . . , x̃k) with

x̃q := x̄q for every q ∈ J \ {j} and x̃j := xj. From the inequality f(x̄) ≤ f(x̃)

and the validity of (3.7) we can deduce that

f(x̄) =
1

m

m∑
i=1

(
min
q∈J
‖ai − x̄q‖2

)
=

1

m

[ ∑
i∈I(j)

‖ai − x̄j‖2 +
∑

i∈I\I(j)

(
min
q∈J
‖ai − x̄q‖2

)]
≤ f(x̃)

=
1

m

[ ∑
i∈I(j)

(
min
q∈J
‖ai − x̃q‖2

)
+

∑
i∈I\I(j)

(
min
q∈J
‖ai − x̃q‖2

)]
=

1

m

[ ∑
i∈I(j)

(
min
q∈J
‖ai − x̃q‖2

)
+

∑
i∈I\I(j)

(
min
q∈J
‖ai − x̄q‖2

)]
≤ 1

m

[ ∑
i∈I(j)

‖ai − xj‖2 +
∑

i∈I\I(j)

(
min
q∈J
‖ai − x̄q‖2

)]
.

(3.8)

Consider the function ϕ(xj) :=
1

m

∑
i∈I(j)

‖ai − xj‖2, xj ∈ Rn. Comparing

the expression on the second line of (3.8) with the one on the sixth line

yields ϕ(x̄j) ≤ ϕ(xj) for every xj ∈ B̄(x̄j, ε). Hence ϕ attains its local

minimum at x̄j. By the Fermat Rule we have ∇ϕ(x̄j) = 0, which gives∑
i∈I(j)

(ai − x̄j) = 0. This equality implies (3.4). Since there are only finitely

many nonempty subsets Ω ⊂ I, the set B of vectors bΩ defined by formula

bΩ =
1

|Ω|
∑
i∈Ω

ai is finite. (Note that bΩ is the barycenter of the subsystem

{ai ∈ A | i ∈ Ω} of A.) According to (3.4), each component of a global
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solution x̄ = (x̄1, . . . , x̄k) of (3.2) must belongs to B, we can assert that the

solution set of (3.2) is finite, provided that a1, ..., am are pairwise distinct

points. By Proposition 3.1, if (x̄, ᾱ) is a solution of (3.1), then x̄ is a solution

of (3.2). Since ᾱ = (ᾱij) ∈ Rm×k must satisfy the conditions ᾱij ∈ {0, 1} and
k∑
j=1

ᾱij = 1 for all i ∈ I, j ∈ J , it follows that the solution set of (3.1) is also

finite. 2

Proposition 3.3 If x̄ = (x̄1, . . . , x̄k) ∈ Rnk is a global solution of (3.2), then

the components of x̄ are pairwise distinct, i.e., x̄j1 6= x̄j2 whenever j2 6= j1.

Proof. On the contrary, suppose that there are distinct indexes j1, j2 ∈ J

satisfying x̄j1 = x̄j2. As k ≤ m, one has k−1 < n. So, there must exist j0 ∈ J
such that |A[x̄j0]| ≥ 2. Therefore, one can find a data point ai0 ∈ A[x̄j0] with

ai0 6= x̄j0. Setting x̃ = (x̃1, . . . , x̃k) with x̃j = x̄j for every j ∈ J \ {j2} and

x̃j2 = ai0. The construction of x̃ yields

f(x̃)− f(x̄) ≤ − 1

m
‖ai0 − x̄j0‖2 < 0,

which is impossible because x̄ is a global solution of (3.2). 2

Remark 3.2 If the points a1, ..., am are not pairwise distinct, then the con-

clusions of Theorem 3.1 do not hold in general. Indeed, let A = {a1, a2} ⊂ R2

with a1 = a2. For k := 2, let x̄ = (x̄1, x̄2) with x̄1 = a1 and x̄2 ∈ R2 being

chosen arbitrarily. Since f(x̄) = 0, we can conclude that x̄ is a global solution

of (3.2). So, the problem has an unbounded solution set. Similarly, for a data

set A = {a1, . . . , a4} ⊂ R2 with a1 = a2, a3 = a4, and a2 6= a3. For k := 3, let

x̄ = (x̄1, x̄2, x̄3) with x̄1 = a1, x̄2 = a3, and x̄3 ∈ R2 being chosen arbitrarily.

By the equality f(x̄) = 0 we can assert that x̄ is a global solution of (3.2).

This shows that the solution set of (3.2) is unbounded. Notice also that, if

x̄3 /∈ {x̄1, x̄2}, then formula (3.4) cannot be applied to x̄3, because the index

set I(3) = {i ∈ I | ai ∈ A[x̄3]} =
{
i ∈ I | ‖ai− x̄3‖ = min

q∈J
‖ai− x̄q‖

}
is empty.

Formula (3.4) is effective for computing certain components of any given

local solution of (3.2). The precise statement of this result is as follows.

Theorem 3.2 If x̄ = (x̄1, . . . , x̄k) ∈ Rnk is a local solution of (3.2), then (3.4)

is valid for all j ∈ J whose index set I(j) is nonempty, i.e., the component

x̄j of x̄ is attractive w.r.t. the data set A.
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Proof. It suffices to re-apply the arguments described in the second part of

the proof of Theorem 3.1, noting that f(x̄) ≤ f(x̃) if xj (the j-th component

of x̃) is taken from B̄(x̄j, ε′) with ε′ ∈ (0, ε) being small enough. 2

As in the proof of Theorem 3.1, if Ω = {ai1, . . . , air} ⊂ A is a nonempty

subset, then we put bΩ =
1

r

r∑
l=1

ail. Recall that the set of such points bΩ has

been denoted by B.

Remark 3.3 Theorem 3.1 shows that if the points a1, ..., am are pairwise

distinct, then every component of a global solution must belong to B. It is

clear that B ⊂ coA, where coA abbreviates the convex hull of A. Looking

back to the proof of Theorem 3.1, we see that the set A lies in the ball

B̄(a0, ρ). Hence B ⊂ coA ⊂ B̄(a0, ρ). It follows that the global solutions of

(3.2) are contained in the set{
x = (x1, . . . , xk) ∈ Rnk | xj ∈ B̄(a0, ρ), ∀j ∈ J

}
,

provided the points a1, ..., am are pairwise distinct. Similarly, Theorem 3.2

assures that each attractive component of a local solution of (3.2) belongs to

B, where B ⊂ coA ⊂ B̄(a0, ρ).

Remark 3.4 If x̄ = (x̄1, . . . , x̄k) ∈ Rnk is a global solution (resp., a local

solution) of (3.2) then, for any permutation σ of J , the vector

x̄σ := (x̄σ(1), . . . , x̄σ(k))

is also a global solution (resp., a local solution) of (3.2). This observation

follows easily from the fact that f(x) = f(xσ), where x = (x1, . . . , xk) ∈ Rnk

and xσ := (xσ(1), . . . , xσ(k)).

To understand the importance of the above results and those to be estab-

lished in the next two sections, let us recall the k-means clustering algorithm

and consider an illustrative example.

3.3 The k-means Algorithm

Despite its ineffectiveness, the k-means clustering algorithm (see, e.g., [1,

pp. 89–90], [39], [43, pp. 263–266], and [66]) is one of the most popular solution

methods for (3.2). The convergence of this algorithms was proven in [86].
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One starts with selecting k points x1, . . . , xk in Rn as the initial centroids.

Then one inductively constructs k subsets A1, . . . , Ak of the data set A by

putting A0 = ∅ and using the rule (3.3), where xj plays the role of x̄j for

all j ∈ J . This means that {A1, . . . , Ak} is the natural clustering associated

with x = (x1, . . . , xk). Once the clusters are formed, for each j ∈ J , if Aj 6= ∅
then the centroid xj is updated by the rule

xj ← x̃j :=
1

|I(Aj)|
∑

i∈I(Aj)

ai (3.9)

with I(Aj) := {i ∈ I | ai ∈ Aj}; and xj does not change otherwise. The algo-

rithm iteratively repeats the procedure until the centroid system {x1, . . . , xk}
is stable, i.e., x̃j = xj for all j ∈ J with Aj 6= ∅. The computation procedure

is described as follows.

Input: The data set A = {a1, ..., am} and a constant ε ≥ 0 (tolerance).

Output: The set of k centroids {x1, ..., xk}.
Step 1. Select initial centroids xj ∈ Rn for all j ∈ J .

Step 2. Compute αi = min{‖ai − xj‖ | j ∈ J} for all i ∈ I.

Step 3. Form the clusters A1, . . . , Ak:

- Find the attraction sets

A[xj] =
{
ai ∈ A | ‖ai − xj‖ = αi

}
(j ∈ J);

- Set A1 = A[x1] and

Aj = A[xj] \
( j−1⋃
p=1

Ap
)

(j = 2, . . . , k). (3.10)

Step 4. Update the centroids xj satisfying Aj 6= ∅ by the rule (3.9), keeping

other centroids unchanged.

Step 5. Check the convergence condition: If ‖x̃j − xj‖ ≤ ε for all j ∈ J with

Aj 6= ∅ then stop, else go to Step 2.

The following example is designed to show how the algorithm is performed

in practice.

Example 3.1 Choose m = 3, n = 2, and k = 2. Let A = {a1, a2, a3}, where

a1 = (0, 0), a2 = (1, 0), a3 = (0, 1). Apply the k-means algorithm to solve the

problem (3.2) with the tolerance ε = 0.
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(a) With the starting centroids x1 = a1, x2 = a2, one obtains the clusters

A1 = A[x1] = {a1, a3} and A2 = A[x2] = {a2}. The updated centroids are

x1 = (0, 1
2
), x2 = a2. Then, the new clusters A1 and A2 coincide with the old

ones. Thus, ‖x̃j − xj‖ = 0 for all j ∈ J with Aj 6= ∅. So, the computation

terminates. For x1 = (0, 1
2
), x2 = a2, one has f(x) = 1

6
.

(b) Starting with the points x1 = (1
4
, 3

4
) and x2 = (2, 3), one gets the

clusters A1 = A[x1] = {a1, a2, a3} and A2 = A[x2] = ∅. The algorithm gives

the centroid system x1 = (1
3
, 1

3
), x2 = (2, 3), and f(x) = 1

3
.

(c) Starting with x1 = (0, 1) and x2 = (0, 0), by the algorithm we are led

to A1 = A[x1] = {a3}, A2 = A[x2] = {a1, a2}, x1 = (0, 1), and x2 = (1
2
, 0).

The corresponding value of objective function is f(x) = 1
6
.

(d) Starting with x1 = (0, 0) and x2 = (1
2
, 1

2
), by the algorithm one gets the

results A1 = A[x1] = {a1}, A2 = A[x2] = {a2, a3}, x1 = (0, 0), and x2 = (1
2
, 1

2
).

The corresponding value of objective function is f(x) = 4
9
.

(e) With x1 = (1
3
, 1

3
) and x2 = (1 +

√
5

3
, 0) as the initial centroids, one

obtains the results A1 = A[x1] = {a1, a2, a3}, A2 = A[x2] = ∅, x1 = (1
3
, 1

3
),

x2 = (1 +
√

5
3
, 0), and f(x) = 4

9
.

Based on the existing knowledge on the MSSC problem and the k-means

clustering algorithm, one cannot know whether the five centroid systems ob-

tained in the items (a)–(e) of Example 3.1 contain a global optimal solution

of the clustering problem, or not. Even if one knows that the centroid sys-

tems obtained in (a) and (c) are global optimal solutions, one still cannot say

definitely whether the centroid systems obtained in the items (b), (d), (e) are

local optimal solutions of (3.2), or not.

The theoretical results in Section 3.2 and the two forthcoming ones allow

us to clarify the following issues related to the MSSC problem in Example 3.1:

- The structure of the global solution set (see Example 3.2 below);

- The structure of the local solution set (see Example 3.3);

- The performance of the k-means algorithm (see Example 3.4).

In particular, it will be shown that the centroid systems in (a) and (c)

are global optimal solutions, the centroid systems in (b) and (d) are local-

nonglobal optimal solutions, while the centroid system in (e) is not a local

solution (despite the fact that the centroid systems generated by the k-means

algorithm converge to it, and the value of the objective function at it equals
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to the value given by the centroid system in (d)).

3.4 Characterizations of the Local Solutions

In order to study the local solution set of (3.2) in more details, we will

follow Ordin and Bagirov [71] to consider the problem in light of a well-known

optimality condition in DC programming. For every x = (x1, ..., xk) ∈ Rnk,

we have

f(x) =
1

m

∑
i∈I

(
min
j∈J
‖ai − xj‖2

)
=

1

m

∑
i∈I

[(∑
j∈J

‖ai − xj‖2
)
−
(

max
j∈J

∑
q∈J\{j}

‖ai − xq‖2
)]
.

(3.11)

Hence, the objective function f of (3.2) can be expressed [71, p. 345] as the

difference of two convex functions

f(x) = f 1(x)− f 2(x), (3.12)

where

f 1(x) :=
1

m

∑
i∈I

(∑
j∈J

‖ai − xj‖2
)

(3.13)

and

f 2(x) :=
1

m

∑
i∈I

(
max
j∈J

∑
q∈J\{j}

‖ai − xq‖2
)
. (3.14)

It is clear that f 1 is a convex linear-quadratic function. In particular, it is

differentiable. As the sum of finitely many nonsmooth convex functions, f 2 is

a nonsmooth convex function, which is defined on the whole space Rnk. The

subdifferentials of f 1(x) and f 2(x) can be computed as follows. First, one

has

∂f 1(x) = {∇f 1(x)} =
{ 2

m

∑
i∈I

(
x1 − ai, . . . , xk − ai

) }
= {2(x1 − a0, . . . , xk − a0)}

where, as before, a0 = bA is the barycenter of the system {a1, . . . , am}. Set

ϕi(x) = max
j∈J

hi,j(x) (3.15)

with hi,j(x) :=
∑

q∈J\{j}

‖ai − xq‖2 and

Ji(x) = {j ∈ J | hi,j(x) = ϕi(x)} . (3.16)
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Proposition 3.4 One has

Ji(x) =
{
j ∈ J | ai ∈ A[xj]

}
. (3.17)

Proof. From the formula of hi,j(x) it follows that

hi,j(x) =
(∑
q∈J

‖ai − xq‖2
)
− ‖ai − xj‖2.

Therefore, by (3.15) we have

ϕi(x) = max
j∈J

[(∑
q∈J

‖ai − xq‖2
)
− ‖ai − xj‖2

]
=
(∑
q∈J

‖ai − xq‖2
)

+ max
j∈J

(
− ‖ai − xj‖2

)
=
(∑
q∈J

‖ai − xq‖2
)
−min

j∈J
‖ai − xj‖2.

Thus, the maximum in (3.15) is attained when the minimum min
j∈J
‖ai − xj‖2

is achieved. So, by (3.16),

Ji(x) =
{
j ∈ J | ‖ai − xj‖ = min

q∈J
‖ai − xq‖

}
.

This implies (3.17). 2

Invoking the subdifferential formula for the maximum function (see [20,

Proposition 2.3.12] and note that the Clarke generalized gradient coincides

with the subdifferential of convex analysis if the functions in question are

convex), we have

∂ϕi(x) = co {∇hi,j(x) | j ∈ Ji(x)} = co
{

2
(
x̃j − ãi,j

)
| j ∈ Ji(x)

}
, (3.18)

where

x̃j =
(
x1, . . . , xj−1, 0Rn, xj+1, . . . , xk

)
(3.19)

and

ãi,j =
(
ai, . . . , ai, 0Rn︸︷︷︸

j−th position

, ai, . . . , ai
)
. (3.20)

By the Moreau-Rockafellar theorem [84, Theorem 23.8], one has

∂f 2(x) =
1

m

∑
i∈I

∂ϕi(x) (3.21)

with ∂ϕi(x) being computed by (4.50).
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Now, suppose x = (x1, ..., xk) ∈ Rnk is a local solution of (3.2). By the

necessary optimality condition in DC programming (see, e.g., [31] and [77]),

which can be considered as a consequence of the optimality condition obtained

by Dem’yanov et al. in quasidifferential calculus (see, e.g., [25, Theorem 3.1]

and [26, Theorem 5.1]), we have

∂f 2(x) ⊂ ∂f 1(x). (3.22)

Since ∂f 1(x) is a singleton, ∂f 2(x) must be a singleton too. This happens if

and only if ∂ϕi(x) is a singleton for every i ∈ I. By (4.50), if |Ji(x)| = 1, then

|∂ϕi(x)| = 1. In the case where |Ji(x)| > 1, we can select two elements j1

and j2 from Ji(x), j1 < j2. As ∂ϕi(x) is a singleton, by (4.50) one must have

x̃j1− ãi,j1 = x̃j2− ãi,j2. Using (3.19) and (3.20), one sees that the latter occurs

if and only if xj1 = xj2 = ai. To proceed furthermore, we need to introduce

the following condition on the local solution x.

(C1) The components of x are pairwise distinct, i.e., xj1 6= xj2 whenever

j2 6= j1.

Definition 3.2 A local solution x = (x1, ..., xk) of (3.2) that satisfies (C1)

is called a nontrivial local solution.

Remark 3.5 Proposition 3.3 shows that every global solution of (3.2) is a

nontrivial local solution.

The following fundamental facts have the origin in [71, pp. 346]. Here,

a more precise and complete formulation is presented. In accordance with

(3.17), the first assertion of the next theorem means that if x is a nontrivial

local solution, then for each data point ai ∈ A there is a unique component

xj of x such that ai ∈ A[xj].

Theorem 3.3 (Necessary conditions for nontrivial local optimality) Suppose

that x = (x1, ..., xk) is a nontrivial local solution of (3.2). Then, for any

i ∈ I, |Ji(x)| = 1. Moreover, for every j ∈ J such that the attraction set

A[xj] of xj is nonempty, one has

xj =
1

|I(j)|
∑
i∈I(j)

ai, (3.23)

where I(j) = {i ∈ I | ai ∈ A[xj]}. For any j ∈ J with A[xj] = ∅, one has

xj /∈ A[x], (3.24)
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where A[x] is the union of the balls B̄(ap, ‖ap − xq‖) with p ∈ I, q ∈ J

satisfying p ∈ I(q).

Proof. Suppose x = (x1, ..., xk) is a nontrivial local solution of (3.2). Given

any i ∈ I, we must have |Ji(x)| = 1. Indeed, if |Ji(x)| > 1 then, by the

analysis given before the formulation of the theorem, there exist indexes j1

and j2 from Ji(x) such that xj1 = xj2 = ai. This contradicts the nontriviality

of the local solution x. Let Ji(x) = {j(i)} for i ∈ I, i.e., j(i) ∈ J is the

unique element of Ji(x).

For each i ∈ I, observe by (3.15) that

hi,j(x) < hi,j(i)(x) = ϕi(x) ∀j ∈ J \ {j(i)}.

Hence, by the continuity of the functions hi,j(x), there exists an open neigh-

borhood Ui of x such that

hi,j(y) < hi,j(i)(y) ∀j ∈ J \ {j(i)}, ∀y ∈ Ui.

It follows that

ϕi(y) = hi,j(i)(y) ∀y ∈ Ui. (3.25)

So, ϕi(.) is continuously differentiable on Ui. Put U =
⋂
i∈I

Ui. From (3.14)

and (3.25) one can deduce that

f 2(y) =
1

m

∑
i∈I

ϕi(y) =
1

m

∑
i∈I

hi,j(i)(y) ∀y ∈ U.

Therefore, f 2(y) is continuously differentiable function on U . Moreover, the

formulas (4.50)–(3.20) yield

∇f 2(y) =
2

m

∑
i∈I

(ỹj(i) − ãi,j(i)) ∀y ∈ U, (3.26)

where

ỹj(i) =
(
y1, ..., yj(i)−1, 0Rn, yj(i)+1, ..., yk

)
and

ãi,j(i) =
(
ai, . . . , ai, 0Rn︸︷︷︸

j(i)−th position

, ai, . . . , ai
)
.

Substituting y = x into (3.26) and combining the result with (3.22), we obtain∑
i∈I

(x̃j(i) − ãi,j(i)) = m(x1 − a0, ..., xk − a0). (3.27)
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Now, fix an index j ∈ J with A[xj] 6= ∅ and transform the left-hand side of

(3.27) as follows:∑
i∈I

(x̃j(i) − ãi,j(i)) =
∑

i∈I, j(i)=j

(x̃j(i) − ãi,j(i)) +
∑

i∈I, j(i) 6=j

(x̃j(i) − ãi,j(i))

=
∑

i∈I, j(i)=j

(x̃j(i) − ãi,j(i)) +
∑
i/∈I(j)

(x̃j(i) − ãi,j(i)).

Clearly, if j(i) = j, then the j-th component of the vector x̃j(i) − ãi,j(i), that

belongs to Rnk, is 0Rn. If j(i) 6= j, then the j-th component of the vector

x̃j(i) − ãi,j(i) is xj − ai. Consequently, (3.27) gives us∑
i/∈I(j)

(xj − ai) = m(xj − a0).

Since ma0 = a1 + · · ·+ am, this yields
∑
i∈I(j)

ai = |I(j)|xj. Thus, formula (3.23)

is valid for any j ∈ J satisfying A[xj] 6= ∅.
For any j ∈ J with A[xj] = ∅, one has (3.24). Indeed, suppose to the

contrary that there exits j0 ∈ J with A[xj0] = ∅ such that for some p ∈ I,

q ∈ J , one has p ∈ I(q) and xj0 ∈ B̄(ap, ‖ap− xq‖). If ‖ap− xj0‖ = ‖ap− xq‖,
then Jp(x) ⊃ {q, j0}. This is impossible due to the first claim of the theorem.

Now, if ‖ap − xj0‖ < ‖ap − xq‖, then p /∈ I(q). We have thus arrived at a

contradiction.

The proof is complete. 2

Roughly speaking, the necessary optimality condition given in the above

theorem is a sufficient one. Therefore, in combination with Theorem 3.3, the

next statement gives a complete description of the nontrivial local solutions

of (3.2).

Theorem 3.4 (Sufficient conditions for nontrivial local optimality) Suppose

that a vector x = (x1, ..., xk) ∈ Rnk satisfies condition (C1) and |Ji(x)| = 1

for every i ∈ I. If (3.23) is valid for any j ∈ J with A[xj] 6= ∅ and (3.24)

is fulfilled for any j ∈ J with A[xj] = ∅, then x is a nontrivial local solution

of (3.2).

Proof. Let x = (x1, ..., xk) ∈ Rnk be such that (C1) holds, Ji(x) = {j(i)}
for every i ∈ I, (3.23) is valid for any j ∈ J with A[xj] 6= ∅, and (3.24) is

satisfied for any j ∈ J with A[xj] = ∅. Then, for all i ∈ I and j ′ ∈ J \ {j(i)},
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one has

‖ai − xj(i)‖ < ‖ai − xj′‖.

So, there exist ε > 0, q ∈ J , such that

‖ai − x̃j(i)‖ < ‖ai − x̃j′‖ ∀i ∈ I, ∀j ′ ∈ J \ {j(i)}, (3.28)

whenever vector x̃ = (x̃1, ..., x̃k) ∈ Rnk satisfies the condition ‖x̃q−xq‖ < ε for

all q ∈ J . By (3.24) and by the compactness of A[x], reducing the positive

number ε (if necessary) we have

x̃j /∈ A[x̃] (3.29)

whenever vector x̃ = (x̃1, ..., x̃k) ∈ Rnk satisfies the condition ‖x̃q − xq‖ < ε

for all q ∈ J , where A[x̃] is the union of the balls B̄(ap, ‖ap− x̃q‖) with p ∈ I,

q ∈ J satisfying p ∈ I(q) = {i ∈ I | ai ∈ A[xq]}.
Fix any vector x̃ = (x̃1, ..., x̃k) ∈ Rnk with the property that ‖x̃q − xq‖ < ε

for all q ∈ J . Then, by (3.28) and (3.29), Ji(x̃) = {j(i)}. So,

min
j∈J
‖ai − x̃j‖2 = ‖ai − x̃j(i)‖2.

Therefore, one has

f(x̃) =
1

m

∑
i∈I

(
min
j∈J
‖ai − x̃j‖2

)
=

1

m

∑
i∈I

‖ai − x̃j(i)‖2

=
1

m

∑
j∈J

( ∑
i∈I(j)

‖ai − x̃j(i)‖2
)

=
1

m

∑
j∈J

( ∑
i∈I(j)

‖ai − x̃j‖2
)

≥ 1

m

∑
j∈J

( ∑
i∈I(j)

‖ai − xj‖2
)

= f(x),

where the inequality is valid because (3.23) obviously yields∑
i∈I(j)

‖ai − xj‖2 ≤
∑
i∈I(j)

‖ai − x̃j‖2

for every j ∈ J such that the attraction set A[xj] of xj is nonempty. (Note

that xj is the barycenter of A[xj].)

The local optimality of x = (x1, ..., xk) has been proved. Hence, x is a

nontrivial local solution of (3.2). 2

57



Example 3.2 (A local solution need not be a global solution) Consider the

clustering problem described in Example 3.1. Here, we have I = {1, 2, 3} and

J = {1, 2}. By Theorem 3.1, problem (3.2) has a global solution. Moreover,

if x = (x1, x2) ∈ R2×2 is a global solution then, for every j ∈ J , the attraction

set A[xj] is nonempty. Thanks to Remark 3.5, we know that x is a nontrivial

local solution. So, by Theorem 3.3, the attraction sets A[x1] and A[x2] are

disjoint. Moreover, the barycenter of each one of these sets can be computed

by formula (3.23). Clearly, A = A[x1]∪A[x2]. Since A[xj] ⊂ A = {a1, a2, a3},
allowing permutations of the components of each vector x = (x1, x2) ∈ R2×2

(see Remark 3.4), we can assert that the global solution set of our problem

is contained in the set{
x̄ :=

(
(
1

2
,
1

2
), (0, 0)

)
, x̂ :=

(
(0,

1

2
), (1, 0)

)
, x̃ :=

(
(
1

2
, 0), (0, 1)

)}
. (3.30)

Since f(x̄) = 1
3

and f(x̂) = f(x̃) = 1
6
, we infer that x̂ and x̃ are global

solutions of our problem. Using Theorem 3.4, we can assert that x̄ is a local

solution. Thus, x̄ is a local solution which does not belong to the global

solution set, i.e., x̄ is a local-nonglobal solution of our problem.

Example 3.3 (Complete description of the set of nontrivial local solutions)

Again, consider the MSSC problem given in Example 3.1. Allowing permu-

tations of the components of each vector in R2×2, by Theorems 3.3 and 3.4

we find that the set of nontrivial local solutions consists of the three vectors

described in (3.30) and all the vectors of the form x = (x1, x2) ∈ R2×2, where

x1 = (1
3
, 1

3
) and

x2 /∈ B̄(a1, ‖a1 − x1‖) ∪ B̄(a2, ‖a2 − x1‖) ∪ B̄(a3, ‖a3 − x1‖).

This set of nontrivial local solutions is unbounded and non-closed.

Example 3.4 (Convergence analysis of the k-means algorithm) Consider

once again the problem described in Example 3.1. By the results given in Ex-

ample 3.3, the centroid systems in items (a), (b), (c) and (d) of Example 3.1

are local solutions. In addition, by Example 3.2, the centroid systems in the

just mentioned items (a) and (c) are global solutions. Concerning the centroid

system in item (e) of Example 3.1, remark that x :=
(
(1

3
, 1

3
), (1+

√
5

3
, 0)
)

is not

a local solution by Theorem 3.3, because a2 ∈ A[x1]∩A[x2], i.e., J2(x) = {1, 2}
(see Figure 3.1). In general, with x1 = (1

3
, 1

3
) and x2 ∈ R2×2 belonging to the

boundary of the set

B̄(a1, ‖a1 − x1‖) ∪ B̄(a2, ‖a2 − x1‖) ∪ B̄(a3, ‖a3 − x1‖),
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x := (x1, x2) is not a local solution of the MSSC problem under consideration.

The above analysis shows that the k-means algorithm is very sensitive to the

choice of starting centroids. The algorithm may give a global solution, a

local-nonglobal solution, as well as a centroid system which is not a local

solution. In other words, the quality of the obtained result greatly depends

on the initial centroid system.

Figure 3.1: The centroids in item (e) of Example 3.1

3.5 Stability Properties

This section is devoted to establishing the local Lipschitz property of the

optimal value function, the local upper Lipschitz property of the global so-

lution map, and the local Lipschitz-like property of the local solution map

of (3.2).

Now, let the data set A = {a1, ..., am} of the problem (3.2) be subject to

change. Put a = (a1, ..., am) and observe that a ∈ Rnm. Denoting by v(a) the

optimal value of (3.2), one has

v(a) = min{f(x) | x = (x1, . . . , xk) ∈ Rnk}. (3.31)

The global solution set of (3.2), denoted by F (a), is given by

F (a) =
{
x = (x1, . . . , xk) ∈ Rnk | f(x) = v(a)

}
.
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Let us abbreviate the local solution set of (3.2) to F1(a). Note that the

inclusion F (a) ⊂ F1(a) is valid, and it may be strict.

Definition 3.3 A family {I(j) | j ∈ J} of pairwise distinct, nonempty sub-

sets of I is said to be a partition of I if
⋃
j∈J

I(j) = I.

From now on, let ā = (ā1, ..., ām) ∈ Rnm be a fixed vector with the property

that ā1, ..., ām are pairwise distinct.

Theorem 3.5 (Local Lipschitz property of the optimal value function) The

optimal value function v : Rnm → R is locally Lipschitz at ā, i.e., there exist

L0 > 0 and δ0 > 0 such that

|v(a)− v(a′)| ≤ L0‖a− a′‖

for all a and a′ satisfying ‖a− ā‖ < δ0 and ‖a′ − ā‖ < δ0.

Proof. Denote by Ω the set of all the partitions of I. Every element ω of Ω

is a family {Iω(j) | j ∈ J} of pairwise distinct, nonempty subsets of I with⋃
j∈J

Iω(j) = I. We associate to each pair (ω, a), where a = (a1, ..., am) ∈ Rnm

and ω ∈ Ω, a vector xω(a) = (x1
ω(a), . . . , xkω(a)) ∈ Rnk with

xjω(a) =
1

|Iω(j)|
∑
i∈Iω(j)

ai (3.32)

for every j ∈ J . By Theorem 3.1, problem (3.2) has solutions and the number

of the global solutions is finite, i.e., F (ā) is nonempty and finite. Moreover, for

each x̄ = (x̄1, ..., x̄k) ∈ F (ā), one can find some ω ∈ Ω satisfying x̄j = xjω(ā) for

all j ∈ J . Let Ω1 = {ω1, . . . , ωr} be the set of the elements of Ω corresponding

the global solutions. Then,

f(xω1(ā), ā) < f(xω(ā), ā) (∀ω ∈ Ω \ Ω1), (3.33)

where

f(x, a) =
1

m

∑
i∈I

(
min
j∈J
‖ai − xj‖2

)
. (3.34)

For each pair (i, j) ∈ I×J , the rule (x, a) 7→ ‖ai−xj‖2 defines a polynomial

function on Rnk × Rnm. In particular, this function is locally Lipschitz on its

domain. So, by [20, Prop. 2.3.6 and 2.3.12] we can assert that the function

f(x, a) in (3.34) is locally Lipschitz on Rnk × Rnm.

60



Now, observe that for any ω ∈ Ω and j ∈ J , the vector function xjω(.) in

(3.32), which maps Rnm to Rn, is continuously differentiable. In particular, it

is locally Lipschitz on Rnm.

For every ω ∈ Ω, from the above observations we can deduce that the

function gω(a) := f(xω(a), a) is locally Lipschitz on Rnm. Rewriting (3.33) as

gω1(ā) < gω(ā) (∀ω ∈ Ω \ Ω1)

and using the continuity of the functions gω(.), we can find a number δ0 > 0

such that

gω1(a) < gω(a) (∀ω ∈ Ω \ Ω1) (3.35)

for all a satisfying ‖a− ā‖ < δ0. Since ā1, ..., ām are pairwise distinct, without

loss of generality, we may assume that a1, ..., am are pairwise distinct for any

a = (a1, ..., am) with ‖a− ā‖ < δ0.

Now, consider a vector a = (a1, ..., am) satisfying ‖a− ā‖ < δ0. By (3.35),

f(xω1(a), a) < f(xω(a), a) for all ω ∈ Ω \ Ω1. Since f(., a) is the objective

function of (3.2), this implies that the set {xω(a) | ω ∈ Ω \ Ω1} does not

contain any global solution of the problem. Thanks to Theorem 3.1, we

know that the global solution set F (a) of (3.2) is contained in the set

{xω(a) | ω ∈ Ω1}.

Hence,

F (a) ⊂ {xω(a) | ω ∈ Ω1} = {xω1(a), . . . , xωr(a)}. (3.36)

Since F (a) 6= ∅, by (3.36) one has

v(a) = min {f(x, a) | x ∈ F (a)} = min {f(xω`(a), a) | ` = 1, . . . , r}.

Thus, we have proved that

v(a) = min {gω`(a) | ` = 1, . . . , r} (3.37)

for all a satisfying ‖a−ā‖ < δ0. As it has been noted, the functions gω, ω ∈ Ω,

are locally Lipschitz on Rnm. Hence, applying [20, Prop. 2.3.6 and 2.3.12] to

the minimum function in (3.37), we can assert that v is locally Lipschitz at

ā.

The proof is complete. 2

Theorem 3.6 (Local upper Lipschitz property of the global solution map)

The global solution map F : Rnm ⇒ Rnk is locally upper Lipschitz at ā, i.e.,
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there exist L > 0 and δ > 0 such that

F (a) ⊂ F (ā) + L‖a− ā‖B̄Rnk (3.38)

for all a satisfying ‖a− ā‖ < δ. Here

B̄Rnk :=
{
x = (x1, . . . , xk) ∈ Rnk |

∑
j∈J

‖xj‖ ≤ 1
}

denotes the closed unit ball of the product space Rnk, which is equipped with

the sum norm ‖x‖ =
∑
j∈J

‖xj‖.

Proof. Let Ω, Ω1 = {ω1, . . . , ωr}, xω(a) = (x1
ω(a), . . . , xkω(a)) ∈ Rnk, and δ0

be constructed as in the proof of the above theorem. For any ω ∈ Ω, the

vector function xω(.), which maps Rnm to Rnk, is continuously differentiable.

Hence, there exist Lω > 0 and δω > 0 such that

‖xω(a)− xω(ã)‖ ≤ Lω‖a− ã‖ (3.39)

for any a, ã satisfying ‖a− ā‖ < δω and ‖ã− ā‖ < δω. Set

L = max{Lω1, . . . , Lωr} and δ = min{δ0, δω1 . . . , δωr}.

Then, for every a satisfying ‖a− ā‖ < δ, by (3.36) and (3.39) one has

F (a) ⊂ {xω1(a), . . . , xωr(a)} ⊂ {xω1(ā), . . . , xωr(ā)}+ L‖a− ā‖B̄Rnk

= F (ā) + L‖a− ā‖B̄Rnk.

Hence, inclusion (3.38) is valid for every a satisfying ‖a− ā‖ < δ. 2

Theorem 3.7 (Aubin property of the local solution map) Let x̄ = (x̄1, ..., x̄k)

be an element of F1(ā) satisfying condition (C1), that is, x̄j1 6= x̄j2 whenever

j2 6= j1. Then, the local solution map F1 : Rnm ⇒ Rnk has the Aubin property

at (ā, x̄), i.e., there exist L1 > 0, ε > 0, and δ1 > 0 such that

F1(a) ∩B(x̄, ε) ⊂ F1(ã) + L1‖a− ã‖B̄Rnk (3.40)

for all a and ã satisfying ‖a− ā‖ < δ1 and ‖ã− ā‖ < δ1.

Proof. Suppose that x̄ = (x̄1, ..., x̄k) ∈ F1(ā) and x̄j1 6= x̄j2 for all j1, j2 ∈ J
with j2 6= j1. Denote by J1 the set of the indexes j ∈ J such that x̄j is

attractive w.r.t. the data set {ā1, . . . , ām}. Put J2 = J \J1. For every j ∈ J1,

by Theorem 3.3 one has

‖āi − x̄j‖ < ‖āi − x̄q‖ (∀i ∈ I(j), ∀q ∈ J \ {j}). (3.41)
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In addition, the following holds:

x̄j =
1

|I(j)|
∑
i∈I(j)

āi, (3.42)

where I(j) = {i ∈ I | āi ∈ A[x̄j]}. For every j ∈ J2, by Theorem 3.3 one has

‖x̄q − āp‖ < ‖x̄j − āp‖ (∀q ∈ J1, ∀p ∈ I(q)). (3.43)

Let ε0 > 0 be such that ‖x̄j1 − x̄j2‖ > ε0 for all j1, j2 ∈ J with j2 6= j1.

By (3.41) and (3.43), there exist δ0 > 0 and ε ∈
(

0,
ε0

4

)
such that

‖ai − xj‖ < ‖ai − xq‖ (∀j ∈ J1, ∀i ∈ I(j), ∀q ∈ J \ {j}) (3.44)

and

‖xq − ap‖ < ‖xj − ap‖ (∀j ∈ J2, ∀q ∈ J1, ∀p ∈ I(q)) (3.45)

for all a = (a1, ..., am) ∈ Rnm and x = (x1, . . . , xk) ∈ Rnk with ‖a−ā‖ < δ0 and

‖x− x̄‖ < 2kε. As x̄j1 6= x̄j2 for all j1, j2 ∈ J with j2 6= j1, by taking a smaller

ε > 0 (if necessary), for any x = (x1, . . . , xk) ∈ Rnk satisfying ‖x− x̄‖ < 2kε

we have xj1 6= xj2 for all j1, j2 ∈ J with j2 6= j1.

For every j ∈ J1 and a = (a1, ..., am) ∈ Rnm, define

xj(a) =
1

|I(j)|
∑
i∈I(j)

ai. (3.46)

Comparing (3.46) with (3.42) yields xj(ā) = x̄j for all j ∈ J1. Then, by

the continuity of the vector functions xj(.), where j ∈ J1, we may assume

that ‖xj(ã) − x̄j‖ < ε for all j ∈ J1 and ã = (ã1, ..., ãm) ∈ Rnm satisfying

‖ã− ā‖ < δ0 (one can take a smaller δ0 > 0, if necessary).

Since the vector functions xj(.), j ∈ J1, are continuously differentiable,

there exist L1 > 0 such that

‖xj(a)− xj(ã)‖ ≤ 1

k
L1‖a− ã‖ (3.47)

for any a, ã satisfying ‖a− ā‖ < δ0 and ‖ã− ā‖ < δ0 (one can take a smaller

δ0 > 0, if necessary). Choose δ1 ∈ (0, δ0) as small as 2
k
L1δ1 < ε.

With the chosen constants L1 > 0, ε > 0, and δ1 > 0, let us show that

the inclusion (3.40) is fulfilled for all a and ã satisfying ‖a − ā‖ < δ1 and

‖ã− ā‖ < δ1.

Let a and ã be such that ‖a− ā‖ < δ1 and ‖ã− ā‖ < δ1. Select an arbitrary

element x = (x1, . . . , xk) of the set F1(a) ∩ B(x̄, ε). Put x̃j = xj(ã) for all

j ∈ J1, where xj(a) is given by (3.46). For any j ∈ J2, set x̃j = xj.
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Claim 1. The vector x̃ = (x̃1, . . . , x̃k) belongs to F1(ã).

Indeed, the inequalities ‖a − ā‖ < δ1 and ‖x − x̄‖ < ε imply that both

properties (3.44) and (3.45) are available. From (3.44) it follows that, for

every j ∈ J1, the attraction set A[xj] is {ai | i ∈ I(j)}. Since I(j) 6= ∅ for

each j ∈ J1 and x ∈ F1(a), by Theorem 3.3 we have

xj =
1

|I(j)|
∑
i∈I(j)

ai. (3.48)

Comparing (3.48) with (3.46) yields xj = xj(a) for all j ∈ J1. By (3.45) we

see that, for every j ∈ J2, the attraction set A[xj] is empty. Moreover, one

has

xj /∈ A[x] (∀j ∈ J2) (3.49)

where A[x] is the union of the balls B̄(ap, ‖ap − xq‖) with p ∈ I, q ∈ J

satisfying p ∈ I(q).

For each j ∈ J1, using (3.47) we have

‖xj(ã)− x̄j‖ ≤ ‖xj(ã)− xj(a)‖+ ‖xj(a)− x̄j‖
≤ 1

k
L1‖ã− a‖+ ε

≤ 1
k
L1 (‖ã− ā‖+ ‖ā− a‖) + ε

≤ 2
k
L1δ1 + ε < 2ε.

Besides, for each j ∈ J2, we have ‖xj(ã)− x̄j‖ = ‖xj − x̄j‖ < ε. Therefore,

‖x̃− x̄‖ =
∑
j∈J1

‖xj(ã)− x̄j‖+
∑
j∈J2

‖xj − x̄j‖ < 2kε.

In combination with the inequality ‖ã− ā‖ < δ1, this assures that the prop-

erties (3.44) and (3.45), where ã and x(ã) respectively play the roles of a and

x, hold. In other words, one has

‖ãi − x̃j‖ < ‖ãi − x̃q‖ (∀j ∈ J1, ∀i ∈ I(j), ∀q ∈ J \ {j}) (3.50)

and

‖x̃q − ãp‖ < ‖x̃j − ãp‖ (∀j ∈ J2, ∀q ∈ J1, ∀p ∈ I(q)). (3.51)

So, similar to the above case of x, for every j ∈ J1, the attraction set A[x̃j]

is {ãi | i ∈ I(j)}. Recall that I(j) 6= ∅ for each j ∈ J1 and x̃j was given by

x̃j = xj(ã) =
1

|I(j)|
∑
i∈I(j)

ãi. (3.52)
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In addition, for every j ∈ J2, the attraction set A[x̃j] is empty and one has

x̃j /∈ A[x̃] (∀j ∈ J2), (3.53)

where A[x̃] is the union of the balls B̄(ãp, ‖ãp − x̃q‖) with p ∈ I, q ∈ J

satisfying p ∈ I(q). Besides, from (3.50) and (3.51) it follows that |Ji(x̃)| = 1

for every i ∈ I. Since ‖x̃− x̄‖ < 2kε, we have x̃j1 6= x̃j2 for all j1, j2 ∈ J with

j2 6= j1. Due to the last two properties and (3.52), (3.53), by Theorem 3.4 we

conclude that x̃ ∈ F1(ã).

Claim 2. One has x ∈ x̃+ L1‖a− ã‖B̄Rnk.

Indeed, since xj = xj(a) for all j ∈ J1, x̃
j = xj for any j ∈ J2, by (3.52)

and (3.47) we have

‖x− x̃‖ =
∑
j∈J1

‖xj − x̃j‖+
∑
j∈J2

‖xj − x̃j‖

=
∑
j∈J1

‖xj(a)− xj(ã)‖

≤ k.
1

k
L1‖a− ã‖ = L1‖a− ã‖.

It follows that x ∈ x̃+ L1‖a− ã‖B̄Rnk.

Combining Claim 2 with Claim 1, we have x ∈ F1(ã) + L1‖a − ã‖B̄Rnk.

Thus, property (3.40) is valid for all a and ã satisfying ‖a − ā‖ < δ1 and

‖ã− ā‖ < δ1. 2

3.6 Conclusions

We have proved that the minimum sum-of-squares clustering problem al-

ways has a global solution and, under a mild condition, the global solution

set is finite and the components of each global solution can be computed by

an explicit formula. Based on a new concept of nontrivial local solution, we

have got necessary and sufficient conditions for a system of centroids to be a

nontrivial local solution.

We also have established the local Lipschitz property of the optimal value

function, the local upper Lipschitz property of the global solution map, and

the local Lipschitz-like property of the local solution map of the MSSC prob-

lem. Thanks to the obtained complete characterizations of the nontrivial

local solutions, one can understand better the performance of the k-means

algorithm.
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Chapter 4

Some Incremental Algorithms for the

Clustering Problem

Solution methods for the minimum sum-of-squares clustering (MSSC) prob-

lem will be analyzed and developed in this chapter.

Based on the Difference-of-Convex functions Algorithms (DCAs) in DC

programming and the qualitative properties of the MSSC problem established

in Chapter 3, we suggest several improvements of the incremental algorithms

of Ordin and Bagirov [71] and of Bagirov [7]. Properties of the new algo-

rithms, including finite convergence, convergence, and rate of convergence,

are presented herein. The results of our numerical tests of these algorithms

on several real-world databases are shown.

The present chapter is written on the basis of paper No. 3 and paper No. 4

in the List of author’s related papers (see p. 112).

4.1 Incremental Clustering Algorithms

There are many algorithms to solve the MSSC problem (see, e.g., [6,7,9,12,

13, 71, 98], and the references therein). Since it is a NP-hard problem [3, 67]

when either the number of the data features or the number of the clusters

is a part of the input, the fact that the existing algorithms can give at most

some local solutions is understandable.

The k-means clustering algorithm (see Section 3.3 and see also, e.g., [1],

[39], [43], and [66]) is the best known solution method for the MSSC problem.
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To improve its effectiveness, the global k-means, modified global k-means, and

fast global k-means clustering algorithms have been proposed in [6,12,33,49,

61,98].

Since the quality of the computation results greatly depends on the starting

points, it is reasonable to look for good starting points. The DCA (Difference-

of Convex-functions Algorithms), which has been applied to the MSSC prob-

lem in [7, 60], can be used for the purpose.

One calls a clustering algorithm incremental if the number of the clusters

increases step by step. As noted in [71, p. 345], the available numerical results

demonstrate that incremental clustering algorithms (see, e.g., [6, 33, 49, 71])

are efficient for dealing with large data sets.

Recently, Ordin and Bagirov [71] have proposed an incremental cluster-

ing algorithm based on control parameters to find good starting points for

k-means algorithm. Note that, in his earlier paper [7], Bargirov suggested an-

other incremental clustering algorithm based on DC programming and DCA.

We will propose several improvements of the just mentioned incremental al-

gorithms to solve the MSSC problem in (3.2).

The incremental clustering algorithms in [7, 44, 71] start with the compu-

tation of the centroid of the whole data set and attempt to optimally add one

new centroid at each stage. The process is continued until finding k centroids

for problem (3.2).

We are interested in analyzing and developing the incremental heuristic

clustering algorithm of Ordin and Bagirov [71] and the incremental DC clus-

tering algorithm of Bagirov [7]. By constructing some concrete MSSC prob-

lems with small data sets, we will show how these algorithms work. It turns

out that, due to the exact stopping criterion, the computation by the second

algorithm may not stop. We will propose one modified version for the incre-

mental heuristic clustering algorithm of [71] and three modified versions for

the incremental DC clustering algorithm of [7].

4.2 Ordin-Bagirov’s Clustering Algorithm

This section is devoted to the incremental heuristic algorithm of Ordin and

Bagirov [71, pp. 349–353] and some properties of the algorithm.
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4.2.1 Basic constructions

Let ` be an index with 1 ≤ ` ≤ k − 1 and let x̄ = (x̄1, ..., x̄`) be an

approximate solution of (3.2), where k is replaced by `. So, x̄ = (x̄1, ..., x̄`)

solves approximately the problem

min
{
f`(x) :=

1

m

m∑
i=1

(
min
j=1,...,`

‖ai − xj‖2
)
| x = (x1, . . . , x`) ∈ Rn`

}
. (4.1)

Applying the natural clustering procedure described in (3.3) to the centroid

system
{
x̄1, ..., x̄`

}
, one divides A into ` clusters with the centers x̄1, ..., x̄`.

For every i ∈ I, put

d`(a
i) = min

{
‖x̄1 − ai‖2, ..., ‖x̄` − ai‖2

}
. (4.2)

The formula g(y) = f`+1(x̄
1, ..., x̄`, y) where, in accordance with (4.1),

f`+1(x) =
1

m

m∑
i=1

(
min

j=1,...,`+1
‖ai − xj‖2

)
∀x = (x1, . . . , x`, x`+1) ∈ Rn(`+1),

defines our auxiliary cluster function g : Rn → R. From (4.2) it follows that

g(y) =
1

m

m∑
i=1

min
{
d`(a

i), ‖y − ai‖2
}
. (4.3)

The problem

min
{
g(y) | y ∈ Rn

}
(4.4)

is called the auxiliary clustering problem. For each i ∈ I, one has

min
{
d`(a

i), ‖y − ai‖2
}

=
[
d`(a

i) + ‖y − ai‖2
]
−max

{
d`(a

i), ‖y − ai‖2
}
.

So, the objective function of (4.4) can be represented as g(y) = g1(y)−g2(y),

where

g1(y) =
1

m

m∑
i=1

d`(a
i) +

1

m

m∑
i=1

‖y − ai‖2 (4.5)

is a smooth convex function and

g2(y) =
1

m

m∑
i=1

max
{
d`(a

i), ‖y − ai‖2
}
. (4.6)

is a nonsmooth convex function. Consider the open set

Y1 :=
⋃
i∈I

B
(
ai, d`(a

i)
)

=
{
y ∈ Rn | ∃i ∈ I with ‖y − ai‖2 < d`(a

i)
}
, (4.7)
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which is the finite union of certain open balls with the centers ai (i ∈ I), and

put

Y2 := Rn \ Y1 =
{
y ∈ Rn | ‖y − ai‖2 ≥ d`(a

i), ∀i ∈ I
}
.

One sees that all the points x̄1, ..., x̄` are contained in Y2. Since ` < k ≤ m and

the data points a1, . . . , am are pairwise distinct, there must exist at least one

i ∈ I with d`(a
i) > 0 (otherwise, every data point coincides with a point from

the set
{
x̄1, ..., x̄`

}
, which is impossible). Hence Y1 6= ∅. By (4.5) and (4.6),

we have

g(y) <
1

m

m∑
i=1

d`(a
i) ∀y ∈ Y1

and

g(y) =
1

m

m∑
i=1

d`(a
i) ∀y ∈ Y2.

Therefore, any iteration process for solving (4.4) should start with a point

y0 ∈ Y1.

To find an approximate solution of (3.2) where k is replaced by `+ 1, i.e.,

the problem

min
{
f`+1(x) :=

1

m

m∑
i=1

(
min

j=1,...,`+1
‖ai − xj‖2

)
| x = (x1, . . . , x`+1) ∈ Rn(`+1)

}
,

(4.8)

we can use the following procedure [71, pp. 349–351]. Fixing any y ∈ Y1, one

divides the data set A into two disjoint subsets

A1(y) := {ai ∈ A | ‖y − ai‖2 < d`(a
i)} (4.9)

and

A2(y) := {ai ∈ A | ‖y − ai‖2 ≥ d`(a
i)}.

Clearly, A1(y) consists of all the data points standing closer to y than to their

cluster centers. Since y ∈ Y1, the set A1(y) is nonempty. Note that

g(y) =
1

m

( ∑
ai∈A1(y)

‖y − ai‖2 +
∑

ai∈A2(y)

d`(a
i)
)
. (4.10)

Put z`+1(y) = f`(x̄)− g(y). Since f`(x̄) = f`(x̄
1, ..., x̄`) and

g(y) = f`+1(x̄
1, ..., x̄`, y),

the quantity z`+1(y) > 0 expresses the decrease of the minimum sum-of-

squares clustering criterion when one replaces the current centroid system
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{
x̄1, ..., x̄`

}
with ` centers by the new one

{
x̄1, ..., x̄`, y

}
with ` + 1 centers.

Thanks to the formula

f`(x̄) =
1

m

∑
ai∈A

d`(a
i)

and (4.10), one has the representation

z`+1(y) =
1

m

∑
ai∈A1(y)

(
d`(a

i)− ‖y − ai‖2
)
,

which can be rewritten as

z`+1(y) =
1

m

∑
i∈I

max
{

0, d`(a
i)− ‖y − ai‖2

}
. (4.11)

Further operations depend greatly on the data points belonging to Y1. It

is easy to show that a ∈ A ∩ Y1 if and only if a ∈ A and a /∈ {x̄1, ..., x̄`}. For

every point y = a ∈ A ∩ Y1, one computes z`+1(a) by (4.11). Then, one finds

the value

z1
max := max

{
z`+1(a) | a ∈ A ∩ Y1

}
. (4.12)

The selection of ‘good’ starting points to solve (4.8) is controlled by two

parameters: γ1 ∈ [0, 1] and γ2 ∈ [0, 1]. The role of each of them will be

explained later. Since the choice of these parameters can be made from the

computational experience of applying the algorithm in question, the authors

of [71] call their algorithm heuristic.

Using γ1, one can find the set

Ā1 := {a ∈ A ∩ Y1 | z`+1(a) ≥ γ1z
1
max}. (4.13)

For γ1 = 0, one has Ā1 = A ∩ Y1, i.e., Ā1 consists of all the data points

belonging to Y1. In contrast, for γ1 = 1, the set Ā1 just consists of the data

points yielding the largest decrease z1
max. (As noted by Ordin and Bagirov [71],

the global k-means algorithm in [61] uses one of such data points for finding a

(`+ 1)-th centroid.) Thus, γ1 represents the tolerance in choosing appropriate

points from A∩Y1. For each a ∈ Ā1, one finds the set A1(a) and computes its

barycenter, which is denoted by c(a). Then, one replaces a by c(a), because

c(a) represents the set A1(a) better than a. Since g(c(a)) ≤ g(a) < f`(x̄), one

must have c(a) ∈ Y1. Put

Ā2 = {c(a) | a ∈ Ā1}. (4.14)
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For each c ∈ Ā2, one computes the value z`+1(c) by using (4.11). Then, we

find

z2
max := max

{
z`+1(c) | c ∈ Ā2

}
. (4.15)

Clearly, z2
max is the largest decrease among the values f`+1(x̄

1, ..., x̄`, c), where

c ∈ Ā2, in comparison with the value f`(x̄).

Using γ2, one computes

Ā3 =
{
c ∈ Ā2 | z`+1(c) ≥ γ2z

2
max

}
. (4.16)

For γ2 = 0, one has Ā3 = Ā2. For γ2 = 1, one sees that Ā3 just contains

the barycenters c ∈ Ā2 with the largest decrease of the objective function

g(y) = f`+1(x̄
1, ..., x̄`, y) of (4.4). (As noted in [71, p. 315], for γ1 = 0 and

γ2 = 1, one recovers the selection of a ‘good’ starting point in the modified

global k-means algorithm suggested by Bargirov in [6].) Thus, γ2 represents

the tolerance in selecting appropriate points from Ā2. The set

Ω :=
{

(x̄1, ..., x̄`, c) | c ∈ Ā3

}
(4.17)

contains the ‘good’ starting points to solve (4.8).

4.2.2 Version 1 of Ordin-Bagirov’s algorithm

On the basis of the set Ω in (4.17), the computation of a set of starting

points to solve problem (4.8) is controlled by a parameter γ3 ∈ [1,∞). One

applies the k-means algorithm to problem (4.8) for each initial centroid sys-

tem (x̄1, ..., x̄`, c) ∈ Ω. In result, one obtains a set of vectors x = (x1, . . . , x`+1)

from Rn(`+1). Denote by Ā4 the set of the components x`+1 of these vectors.

Then, one computes the number

fmin
`+1 := min

{
g(y) | y ∈ Ā4

}
. (4.18)

Using γ3, one finds the set

Ā5 =
{
y ∈ Ā4 | g(y) ≤ γ3f

min
`+1

}
. (4.19)

For γ3 = 1, one sees that Ā5 contains all the points x ∈ Ā4 at which the

function f`+1(x) attains its minimum value. In contrast, if γ3 is large enough,

then Ā5 = Ā4. Thus, γ3 represents the tolerance in choosing appropriate

points from Ā4. To solve problem (4.8), one will use the points from Ā5.
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The process of finding starting points is summarized as follows.

Procedure 4.1 (for finding starting points)

Input: An approximate solution x̄ = (x̄1, ..., x̄`) of problem (4.1), ` ≥ 1.

Output: A set Ā5 of starting points to solve problem (4.8).

Step 1. Select three control parameters: γ1 ∈ [0, 1], γ2 ∈ [0, 1], γ3 ∈ [1,∞).

Step 2. Compute z1
max by (4.12) and the set Ā1 by (4.13).

Step 3. Compute the set Ā2 by (4.14), z2
max by (4.15), and the set Ā3 by (4.16).

Step 4. Using (4.17), form the set Ω.

Step 5. Apply the k-means algorithm to problem (4.8) for each initial centroid

system (x̄1, ..., x̄`, c) ∈ Ω to get the set Ā4.

Step 6. Compute the value fmin
`+1 by (4.18).

Step 7. Form the set Ā5 by (4.19).

Now we are able to present the original version of Ordin-Bagirov’s algo-

rithm [71, Algorithm 2, p. 352] for solving problem (3.2).

Algorithm 4.1 (Ordin-Bagirov’s Algorithm, Version 1)

Input: The data set A = {a1, . . . , am}.
Output: A centroid system {x̄1, . . . , x̄k}.

Step 1. Compute the barycenter a0 =
1

m

m∑
i=1

ai of the data set A, put x̄1 = a0,

and set ` = 1.

Step 2. If ` = k, then stop. Problem (3.2) has been solved.

Step 3. Apply Procedure 4.1 to compute the set Ā5 of starting points.

Step 4. For each ȳ ∈ Ā5, apply the k-means algorithm to (4.8) with the

starting point (x̄1, ..., x̄`, ȳ) to find an approximate solution x = (x1, . . . , x`+1).

Denote by Ā6 the set of these solutions.

Step 5. Select a point x̂ = (x̂1, . . . , x̂`+1) from Ā6 satisfying

f`+1(x̂) = min
{
f`+1(x) | x ∈ Ā6

}
. (4.20)

Define x̄j = x̂j, j = 1, . . . , `+ 1. Set ` = `+ 1 and go to Step 2.
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Depending on the sizes of the data sets, the following rule to choose the

control parameters triple γ = (γ1, γ2, γ3) can be used [71, p. 352]:

• For small data sets (with the number of data points m ≤ 200), choose

γ = (0.3, 0.3, 3);

• For medium size data sets (200 < m ≤ 6000), choose γ = (0.5, 0.8, 1.5),

or γ = (0.5, 0.9, 1.5);

• For large data sets (with m > 6000), choose γ = (0.85, 0.99, 1.1), or

γ = (0.9, 0.99, 1.1).

Going back to Procedure 4.1 and Algorithm 4.1, we have the following re-

marks. When one applies the k-means algorithm to problem (4.8) for an

initial centroid system (x̄1, ..., x̄`, c) ∈ Ω to get the new centroid system

x = (x1, . . . , x`+1) and put ȳ = x`+1, then ȳ is good just in the combina-

tion with the centroids x1, . . . , x`. If one combines ȳ with the given centroids

x̄1, ..., x̄`, as it is done in Step 4 of the above algorithm, then it may happen

that f`+1(x
1, . . . , x`, ȳ) < f`+1(x̄

1, ..., x̄`, ȳ). If so, one wastes the available cen-

troid system (x1, . . . , x`, ȳ) with ȳ ∈ Ā5. And the application of the k-means

algorithm to problem (4.8) with the starting point (x̄1, ..., x̄`, ȳ) to find an

approximate solution x = (x1, . . . , x`+1), as suggested in Step 4 of the above

algorithm, is not very suitable. These remarks lead us to proposing Version 2

of Ordin-Bagirov’s algorithm, which is simpler than the original version.

4.2.3 Version 2 of Ordin-Bagirov’s algorithm

The computation of an approximate solution of problem (4.8) on the basis

of the set Ω in (4.17) is controlled by a parameter γ3 ∈ [1,∞). One ap-

plies the k-means algorithm to problem (4.8) for each initial centroid system

(x̄1, ..., x̄`, c) ∈ Ω. In result, one obtains a set of points x = (x1, . . . , x`+1)

from Rn(`+1), which is denoted by Ã4. Then, one computes the number

f̃min
`+1 := min

{
f`+1(x) | x ∈ Ã4

}
. (4.21)

Using γ3, one finds the set

Ã5 =
{
x ∈ Ã4 | f`+1(x) ≤ γ3f̃

min
`+1

}
. (4.22)

For γ3 = 1, one sees that Ã5 contains all the points x ∈ Ã4 at which the

function f`+1(x) attains its minimum value. In contrast, if γ3 is large enough,

then Ã5 = Ã4. Thus, γ3 represents the tolerance in choosing appropriate
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points from Ã4. Selecting an arbitrary point x̂ = (x̂1, . . . , x̂`+1) from Ã5, one

has an approximate solution of problem (4.8).

The above procedure for finding a new centroid system x̂ = (x̂1, . . . , x̂`+1)

with `+ 1 centers, starting from a given centroid system x̄ = (x̄1, ..., x̄`) with

` centers, can be described as follows.

Procedure 4.2 (for finding a new centroid system)

Input: An approximate solution x̄ = (x̄1, ..., x̄`) of problem (4.1), ` ≥ 1.

Output: An approximate solution x̂ = (x̂1, . . . , x̂`+1) of problem (4.8).

Step 1. Select three control parameters: γ1 ∈ [0, 1], γ2 ∈ [0, 1], γ3 ∈ [1,∞).

Step 2. Compute z1
max by (4.12) and the set Ā1 by (4.13).

Step 3. Compute the set Ā2 by (4.14), z2
max by (4.15), and the set Ā3 by (4.16).

Step 4. Using (4.17), form the set Ω.

Step 5. Apply the k-means algorithm to problem (4.8) for each initial centroid

system (x̄1, ..., x̄`, c) ∈ Ω to get the set Ã4 of candidates for approximate

solutions of (4.8).

Step 6. Compute the value f̃min
`+1 by (4.21) and the set Ã5 by (4.22).

Step 7. Pick a point x̂ = (x̂1, . . . , x̂`+1) from Ã5.

Now we are able to present Version 2 of Ordin-Bagirov’s algorithm [71,

Algorithm 2, p. 352] for solving problem (3.2).

Algorithm 4.2 (Ordin-Bagirov’s Algorithm, Version 2)

Input: The parameters n,m, k, and the data set A = {a1, . . . , am}.
Output: A centroid system x̄ = (x̄1, . . . , x̄k) and the corresponding clusters

A1, ..., Ak.

Step 1. Compute the barycenter a0 =
1

m

m∑
i=1

ai of the data set A, put x̄1 = a0,

and set ` = 1.

Step 2. If ` = k, then go to Step 5.

Step 3. Use Procedure 4.2 to find an approximate solution x̂ = (x̂1, . . . , x̂`+1)

of problem (4.8).

Step 4. Put x̄j := x̂j, j = 1, . . . , `+ 1. Set ` = `+ 1 and go to Step 2.
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Step 5. Select an element x̄ = (x̄1, . . . , x̄k) from the set

Ã6 :=
{
x ∈ Ã5 | f`+1(x) = f̃min

`+1

}
. (4.23)

Using the centroid system x̄, apply the natural clustering procedure to parti-

tion A into k clusters A1, ..., Ak. Print x̄ and A1, ..., Ak. Stop.

To understand the performances of Algorithms 4.1 and 4.2, let us analyze

two useful numerical examples of the MSSC problem in the form (3.2). For

the sake of clarity and simplicity, data sets with only few data points, each

has just two features, are considered.

Example 4.1 Choose n = 2, m = 3, k = 2, A = {a1, a2, a3}, where

a1 = (0, 0), a2 = (1, 0), a3 = (0, 1).

Let γ1 = γ2 = 0.3, γ3 = 3. The barycenter of A is a0 = (1
3
, 1

3
).

The implementation of Algorithm 4.1 begins with computing x̄1 = a0 and

setting ` = 1. Since ` < k, we apply Procedure 4.1 to compute the set Ā5.

By (4.2), one has d1(a
1) = 2

9
, d1(a

2) = 5
9
, d1(a

3) = 5
9
. Using (4.11), we get

z`+1(a
1) = 2

27
, z`+1(a

2) = 5
27

, and z`+1(a
3) = 5

27
. So, by (4.12) and (4.13), one

has z1
max = max{ 2

27
, 5

27
, 5

27
} = 5

27
and Ā1 = A. Since A1(a

i) = {ai} for i ∈ I,

one obtains c(ai) = ai for all i ∈ I. Therefore, by (4.14) and (4.15), Ā2 = A

and

z2
max = max

{ 2

27
,

5

27
,

5

27

}
=

5

27
.

It follows that Ā3 = {a1, a2, a3}. Next, one applies the k-means algorithm

to problem (4.8) with initial points from the Ω defined by (4.17) to compute

Ā4. Starting from (x̄1, a1) ∈ Ω, one obtains the centroid system {(1
2
, 1

2
), (0, 0)}.

Starting from (x̄1, a2) and (x̄1, a3), one gets, respectively, the centroid systems

{(1
2
, 1

2
), (0, 0)}, {(0, 1

2
), (1, 0)}, and {(1

2
, 0), (0, 1)}. Therefore,

Ā4 = {(0, 0), (1, 0), (0, 1)}.

By (4.3), we have g(a1) = 10
27

, g(a2) = 7
27

, and g(a3) = 7
27

. So, by (4.18) one

obtains fmin
`+1 = 7

27
. So, from (4.19) it follows that Ā5 = {(0, 0), (1, 0), (0, 1)}.

Applying again the k-means algorithm to problem (4.8) with the initial points

(x̄1, ȳ), ȳ ∈ Ā5, one gets

Ā6 =
{(

(
1

2
,
1

2
), (0, 0)

)
,
(

(0,
1

2
), (1, 0)

)
,
(

(
1

2
, 0), (0, 1)

)}
.
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The set of the values f`+1(x), x ∈ Ā6, is
{

1
3
, 1

6
, 1

6

}
. Then, there are two centroid

systems in Ā6 satisfying the condition (4.20):

x̂ =
(

(0,
1

2
), (1, 0)

)
and x̂ =

(
(
1

2
, 0), (0, 1)

)
. (4.24)

Select any one from these centroid systems and increase ` by 1. Since ` = 2,

i.e., ` = k, the computation ends. In result, one of the two centroid systems

described by (4.24) is found.

The implementation of Algorithm 4.2 begins with putting x̄1 = a0 and

setting ` = 1. Since ` < k, we apply Procedure 4.2 to compute an approxi-

mate solution x̂ = (x̂1, . . . , x̂`+1) of problem (4.8). The sets Ā1, Ā2 and Ā3 are

defined as in Algorithm 4.1. Hence, Ā3 = Ā2 = Ā1 = A = {a1, a2, a3}. Next,

we apply the k-means algorithm to problem (4.8) with initial points from the

set Ω defined by (4.17) to find Ã4. Since Ω = {(x̄1, a1), (x̄1, a2), (x̄1, a3)}, one

gets

Ã4 =
{(

(
1

2
,
1

2
), (0, 0)

)
,
(
(0,

1

2
), (1, 0)

)
,
(
(
1

2
, 0), (0, 1)

)}
.

By (4.21), the set of the values f̃`+1(x), x ∈ Ã4, is
{

1
3
, 1

6
, 1

6

}
. Using (4.21),

one gets f̃min
`+1 = 1

6
. Since γ3 = 3, by (4.22) we have Ã5 = Ã4. Pick a point

x̂ = (x̂1, x̂2) from Ã5. Put x̄j := x̂j, j = 1, 2. Set ` := ` + 1. Since ` = k, we

use (4.23) to form the set

Ã6 =
{(

(0,
1

2
), (1, 0)

)
,
(
(
1

2
, 0), (0, 1)

)}
.

Select any element x̄ = (x̄1, x̄2) from Ã6 and stop. In result, we get one of

the two centroid systems in (4.24).

In the above example, centroid systems resulted from both Algorithm 4.1

and Algorithm 4.2 belong to the global solution set of (3.2), which consists

of the two centroid systems in (4.24).

We now present a modified version of Example 4.1 to show that by Algo-

rithm 4.1 (resp., Algorithm 4.2) one may not find a global solution of prob-

lem (3.2). In other words, even for a very small data set, Algorithm 4.1

(resp., Algorithm 4.2) may yield a local, non-global solution of (3.2).

Example 4.2 Choose n = 2, m = 4, k = 2, A = {a1, a2, a3, a4}, where

a1 = (0, 0), a2 = (1, 0), a3 = (0, 1), a4 = (1, 1). Let γ1 ∈ [0, 1], γ2 ∈ [0, 1],

γ3 ∈ [1,∞) be chosen arbitrarily. The barycenter of A is a0 = (1
2
, 1

2
).
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To implement Algorithm 4.1, we put x̄1 = a0 and set ` = 1. By (4.2),

one has d1(a
i) = 1

2
for i ∈ I. Using (4.11), we find that z`+1(a

i) = 1
8

for

i ∈ I. So, by (4.12) and (4.13), one gets z1
max = 1

8
and Ā1 = A. Since

A1(a
i) = {ai} for i ∈ I, one has c(ai) = ai for i ∈ I. Therefore, by (4.14)

and (4.15), Ā2 = {a1, a2, a3, a4} and z2
max = 1

8
. So, Ā3 =

{
a1, a2, a3, a4

}
.

Applying the k-means algorithm with the starting points (x̄1, c) ∈ Ω, c ∈ Ā3,

one obtains the centroid systems
(
(2

3
, 2

3
), (0, 0)

)
,
(
(1

3
, 2

3
), (1, 0)

)
,
(
(2

3
, 1

3
), (0, 1)

)
,

and
(
(1

3
, 1

3
), (1, 1)

)
. Therefore, we have

Ā4 = {(0, 0), (1, 0), (0, 1), (1, 1)}.

Due to (4.3), one has g((0, 0)) = g((0, 1)) = g((1, 0)) = g((1, 1)) = 3
8
. So,

by (4.2) one obtains fmin
`+1 = 3

8
. Thus, by (4.19), Ā5 = Ā4. For each ȳ ∈ Ā5,

we apply the k-means algorithm with the starting point (x̄1, ȳ) to solve (4.8).

In result, we get

Ā6 =
{(

(
2

3
,
2

3
), (0, 0)

)
,
(
(
1

3
,
2

3
), (1, 0)

)
,
(
(
2

3
,
1

3
), (0, 1)

)
,
(
(
1

3
,
1

3
), (1, 1)

)}
. (4.25)

Since f`+1(x) = 1
3

for every x ∈ Ā6, to satisfy condition (4.20), one can select

any point x̂ = (x̂1, x̂2) from Ā6. Define x̄j := x̂j, j = 1, 2. Set ` := ` + 1.

Since ` = k, the computation is completed. Thus, Algorithm 4.1 yields one

of the four centroid systems in (4.25), which is a local, non-global solution of

our clustering problem (see Remark 4.1 for detailed explanations).

The implementation of Algorithm 4.2 begins with putting x̄1 = a0 and set-

ting ` = 1. Since ` < k, we apply Procedure 4.2 to compute an approximate

solution x̂ = (x̂1, . . . , x̂`+1) of problem (4.8). The sets Ā1, Ā2 and Ā3 are de-

fined as in Algorithm 4.1. Hence, Ā3 = Ā2 = Ā1 = A = {a1, a2, a3, a4}. Next,

we apply the k-means algorithm to problem (4.8) with initial points from the

set Ω defined by (4.17) to find Ã4. Since Ω = {(x̄1, a1), (x̄1, a2), (x̄1, a3), (x̄1, a4)},
one gets

Ã4 =
{(

(
2

3
,
2

3
), (0, 0)

)
,
(
(
1

3
,
2

3
), (1, 0)

)
,
(
(
2

3
,
1

3
), (0, 1)

)
,
(
(
1

3
,
1

3
), (1, 1)

)}
.

By (4.21), the set of the values f̃`+1(x), x ∈ Ã4, is
{

1
3
, 1

3
, 1

3
, 1

3

}
. Using (4.21),

one gets f̃min
`+1 = 1

3
. By (4.22), we obtain Ã5 = Ã4. Set x̄ = x̂, x̂ ∈ Ã4 and

` = 2. Since ` = k, Ã6 = Ã5. Select any centroid system from Ã6, e.g.,

x̄ =
(
(2

3
, 2

3
), (0, 0)

)
. Applying the natural clustering procedure, one gets the

clusters A1 = {a2, a3, a4}, A2 = {a1}, then stop.
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Remark 4.1 Concerning the analysis given in Example 4.2, observe that

every centroid system in Ā6 is a nontrivial local solution of problem (3.2).

This assertion can be verified by Theorem 3.4. The value of the objective

function at these centroid systems is 1
3
. Consider a partition A = A1 ∪

A2, where A1 and A2 are disjoint nonempty subsets of A, then compute

the barycenter xj of Aj for j = 1, 2, and put x = (x1, x2). According to

Theorem 3.1 and Proposition 3.2, global solutions of (3.2) do exist and belong

to the set of those points x. Hence, by symmetry, it is easy to see that the

clustering problem in question has two global solutions: x̄ =
(
(1

2
, 0), (1

2
, 1)
)

and x̂ =
(
(0, 1

2
), (1, 1

2
)
)
. As f(x̄) = f(x̂) = 1

4
, the four centroid systems in

Ā6 is a global solution of (3.2) are all local, non-global solutions of (3.2).

Similarly, the four centroid systems in Ã6 = Ã5 = Ã4 are all local, non-global

solutions of (3.2).

Remark 4.2 In both Algorithm 4.1 and Algorithm 4.2, one starts with

x̄1 = a0, where a0 =
1

m

m∑
i=1

ai is the barycenter of the data set A. As it has

been shown in Remark 4.1, for the clustering problem in Example 4.2 and for

arbitrarily chosen control parameters γ1 ∈ [0, 1], γ2 ∈ [0, 1], γ3 ∈ [1,∞), Al-

gorithm 4.1 (resp., Algorithm 4.2) yields a local, non-global solution of (3.2).

Anyway, if one starts with a data point ai, i ∈ I, then by Algorithm 4.1

(resp., Algorithm 4.2) one can find a global solution of (3.2).

To proceed furthermore, we need the next lemma.

Lemma 4.1 Let x = (x1, . . . , xk) ∈ Rr×k be a centroid system, where the

centroids x1, . . . , xk are pairwise distinct. Then, after one step of applying

the k-means Algorithm, one gets a new centroid system x̃ = (x̃1, . . . , x̃k) with

pairwise distinct centroids, i.e., x̃j1 6= x̃j2 for any j1, j2 ∈ J with j1 6= j2.

Proof. Let us denote by {A1, . . . , Ak} the natural clustering associated with

x = (x1, . . . , xk). For each j ∈ J , if Aj 6= ∅ then the centroid xj is updated

by the rule (3.9), and xj does not change otherwise. This means that

x̃j =
1

|I(Aj)|
∑

i∈I(Aj)

ai (4.26)

if Aj 6= ∅, where I(Aj) = {i ∈ I | ai ∈ Aj}, and x̃j = xj if Aj = ∅. Now,

suppose that j1, j2 ∈ J are such that j1 6= j2. We may assume that j1 < j2.

78



Let y0 := 1
2
(xj2 +xj1) and L := {y ∈ Rn | 〈y−y0, xj2−xj1〉 = 0}. Then, any

point y ∈ Rn having equal distances to xj1 and xj2 lies in L. Denote by P1

(resp., P2) the open half-space with the boundary L that contains xj1 (resp.,

xj2).

If the clusters Aj1 and Aj2 are both nonempty, then x̃j1 and x̃j2 are defined

by formula (4.26). Since {A1, . . . , Ak} is the natural clustering associated with

the centroid system x = (x1, . . . , xk) and j1 < j2, one must have Aj1 ⊂ P̄1,

where P̄1 := P1 ∪ L is the closure of P1, while Aj2 ⊂ P2. The formulas

x̃j1 =
1

|I(Aj1)|
∑

i∈I(Aj1)

ai, x̃j2 =
1

|I(Aj2)|
∑

i∈I(Aj2)

ai

show that x̃j1 (resp., x̃j2) is a convex combination of the points from Aj1

(resp., Aj2). Hence, by the convexity of P̄1 (resp., P2), we have x̃j1 ∈ P̄1

(resp., x̃j2 ∈ P2). Then, the property x̃j1 6= x̃j2 follows from the fact that

P̄1 ∩ P2 = ∅.
If the clusters Aj1 and Aj2 are both empty, then x̃j1 = xj1 and x̃j2 = xj2.

Since x1, . . . , xk are pairwise distinct, we have x̃j1 6= x̃j2.

If Aj1 6= ∅ and Aj2 = ∅, then x̃j1 ∈ P̄1 and x̃j2 = xj2 ∈ P2. Since P̄1∩P2 = ∅,
one must have x̃j1 6= x̃j2. The situation Aj1 = ∅ and Aj2 6= ∅ is treated

similarly.

The proof is complete. 2

Remarkable properties of Algorithm 4.2 are described in forthcoming the-

orems, where the following assumption is used:

(C2) The data points a1, ..., am in the given data set A are pairwise distinct.

Note that, given any data set, one can apply the trick suggested in Re-

mark 3.1 to obtain a data set satisfying (C2).

Theorem 4.1 Let ` be an index with 1 ≤ ` ≤ k− 1 and let x̄ = (x̄1, ..., x̄`) be

an approximate solution of problem (3.2) where k is replaced by `. If (C2)

is fulfilled and the centroids x̄1, ..., x̄` are pairwise distinct, then the centroids

x̂1, . . . , x̂`+1 of the approximate solution x̂ = (x̂1, . . . , x̂`+1) of (4.8), which is

obtained by Procedure 4.2, are also pairwise distinct.

Proof. Since 1 ≤ ` ≤ k−1, k ≤ m, and data points a1, ..., am in the given data

set A are pairwise distinct, one can find a data point ai0 ∈ A, which is not
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contained in the set {x̄1, ..., x̄`}. Then the set Y1 defined by (4.7) is nonempty,

because d`(a
i0) > 0 (hence the open ball B

(
ai0, d`(a

i0)
)

is nonempty). More-

over, A ∩ Y1 6= ∅. So, from (4.12) and (4.13) it follows that Ā1 6= ∅. Then,

one easily deduces from (4.14)–(4.16) that the sets Ā2 and Ā3 are nonempty.

By the construction (4.7) of Y1, one has Y1 ∩ {x̄1, ..., x̄`} = ∅. It follows

that Ā1 ∩ {x̄1, ..., x̄`} = ∅. (Actually, this property has been noted before.)

Since

z`+1(c(a)) ≥ z`+1(a) > 0 ∀a ∈ Ā1,

and z`+1(x̄
j) = 0 for every j ∈ {1, . . . , `}, we have Ā2 ∩ {x̄1, ..., x̄`} = ∅.

As Ā3 ⊂ Ā2, one sees that Ā3 ∩ {x̄1, ..., x̄`} = ∅. Consequently, by (4.17),

the centroids in any centroid system (x̄1, ..., x̄`, c) ∈ Ω are pairwise distinct.

Since the approximate solution x̂ = (x̂1, . . . , x̂`+1) of (4.8) is obtained from

one centroid system (x̄1, ..., x̄`, c) ∈ Ω after applying finitely many steps of

KM, thanks to Lemma 4.1 we can assert that the centroids x̂1, . . . , x̂`+1 are

pairwise distinct. 2

Theorem 4.2 If (C2) is fulfilled, then the centroids x̄1, . . . , x̄k of the centroid

system x̄ = (x̄1, . . . , x̄k), which is obtained by Algorithm 4.2, are pairwise

distinct.

Proof. Algorithm 4.2 starts with computing the barycenter a0 =
1

m

m∑
i=1

ai of

the data set A, put x̄1 = a0, and set ` = 1. Then, one applies Procedure 4.2 to

find an approximate solution x̂ = (x̂1, . . . , x̂`+1) of (4.8). By Theorem 4.1, the

centroids x̂1, ..., x̂`+1 are pairwise distinct. Since Procedure 4.2 ends at Step 7

by picking any point x̂ = (x̂1, . . . , x̂`+1) from the set Ã5, which is defined

by (4.22), Theorem 4.1 assures that every centroid system x̂ = (x̂1, . . . , x̂`+1)

in Ã5 consists of pairwise distinct centroids.

In Step 4 of Algorithm 4.2, after putting x̄j = x̂j for j = 1, . . . , ` + 1,

one sets ` = ` + 1 and goes to Step 2. If ` < k, then the computation

continues, and one gets a approximate solution x̂ = (x̂1, . . . , x̂`+1) of (4.8)

with x̂1, . . . , x̂`+1 being pairwise distinct by Theorem 4.1. If ` = k, then the

computation terminates by selecting an element x̄ = (x̄1, . . . , x̄k) from the set

Ã6, which is defined by (4.23). Since Ã6 ⊂ Ã5 and we have shown that every

centroid system in Ã5 consists of pairwise distinct centroids, the obtained

centroids x̄1, . . . , x̄k are pairwise distinct. 2

On one hand, if x̄ = (x̄1, . . . , x̄k) is global solution of (3.2), then by Propo-
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sition 3.3 we know that the centroids x̄1, . . . , x̄k are pairwise distinct. More

general, by Definition 3.2, the components of any nontrivial local solution

are pairwise distinct. On the other hand, according to Theorem 4.2, Al-

gorithm 4.2 yields a centroid system having pairwise distinct components.

Thus, the centroid system resulted from Algorithm 4.2 is a very good candi-

date for being a nontrivial local solution of (3.2). As the global solutions are

among the nontrivial local solutions, Theorem 4.2 reveals a nice feature of

Algorithm 4.2.

4.2.4 The ε-neighborhoods technique

The ε-neighborhoods technique [12, pp. 869–870] (see also [71, pp. 352–

353]) allows one to reduce the computation volume of Algorithm 4.1 (as well

as that of Algorithm 4.2, or another incremental clustering algorithm based

on the sets Ā1), when it is applied to large data sets. The procedure of

removing data points from A to get a smaller set Ā1 is as follows. Choose a

sufficiently small number δ ∈ (0, `−1) (for example, δ = min
{

10−3, `−1
}

). In

the notations of Subsection 4.2.1, let {A1, . . . , A`} be the natural clustering

associated with the centroid system x̄ = (x̄1, ..., x̄`). For every j ∈ {1, . . . , `},
if Aj 6= ∅, then one defines

αj =
1

|Aj|
∑
a∈Aj

‖x̄j − a‖2

and βj = max
{
‖x̄j − a‖2 | a ∈ Aj

}
. Set µj =

βj
αj

and observe that µj ≥ 1.

Let

Aj
δ :=

{
a ∈ Aj | ‖x̄j − a‖2 ≥ ηjαj

}
,

where ηj = 1 + `δ(µj − 1). One has Aj
δ 6= ∅. Indeed, if ā ∈ Aj is such a

data point that ‖x̄j − ā‖2 = βj, then ‖x̄j − a‖2 = βj ≥ ηjαj; hence ā ∈ Aj
δ.

To proceed furthermore, denote by Aδ the union of all the sets Aj
δ, where

j ∈ {1, . . . , `} is such that Aj 6= ∅. Now, instead of Ā1 given by (4.13), we

use the set

Ā1,δ := {a ∈ Aδ ∩ Y1 | z`+1(a) ≥ η1z
1
max}, (4.27)

which is a subset of Ā1. In the construction Ā1,δ by (4.27), we have removed

from A all the data points a with ‖x̄j − a‖2 < ηjαj, where j ∈ {1, . . . , `} is

such that Aj 6= ∅.
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4.3 Incremental DC Clustering Algorithms

Some incremental clustering algorithms based on Ordin-Bagirov’s cluster-

ing algorithm and the DCA [77] are discussed and compared in this section.

4.3.1 Bagirov’s DC Clustering Algorithm and Its Modification

In Step 5 of Procedure 4.1 and Step 4 of Algorithm 4.1, one applies KM.

Bagirov [7] suggested an improvement of Algorithm 4.1 by using DCA (see

[51, 60, 77]) twice at each clustering level ` ∈ {1, . . . , k}. First, let us recall

the specific DCA scheme presented in [7, p. 6]. Consider a DC program of

the form

min
{
ϕ(x) := g(x)− h(x) | x ∈ Rn

}
, (4.28)

where g, h are continuous convex functions on Rn. It is assumed that g is

differentiable. Then, one has ∂g(x) = {∇g(x)} for every x ∈ Rn. If x̄ ∈ Rn

is a local solution of (4.28), then by the necessary optimality condition in

DC programming (see, e.g., [77] and [31]) one has ∂h(x̄) ⊂ ∂g(x̄). The latter

is equivalent to saying that ∂h(x̄) is a singleton and the unique element of

∂h(x̄), denoted by ȳ, satisfies the condition ȳ = ∇g(x̄). If x̄ ∈ Rn is such

that ∂h(x̄) is a singleton and the unique element ȳ of ∂h(x̄) satisfies the last

equality, then x̄ is said to be a stationary point of (4.28). If x̄ ∈ Rn is such

that ∇g(x̄) ∈ ∂h(x̄), then x̄ is said to be a critical point of (4.28). Obviously,

a stationary point is a critical point. Note that (4.28) may possess some

critical points which are not stationary points. The just mentioned necessary

condition for local minimizers of (4.28) is the motivation for the stopping

criterion in the second step of the next procedure.

Procedure 4.3 (A specific DCA scheme [7, p. 6])

Input: A starting point x1 ∈ Rn.

Output: An approximate solution xp of (4.28).

Step 1. Select any starting point x1 ∈ Rn and set p = 1.

Step 2. Compute yp ∈ ∂h(xp).

Step 3. If yp = ∇g(xp), then stop.
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Step 4. Find a solution xp+1 of the convex optimization problem

min
{
g(x)− 〈yp, x〉 | x ∈ Rn

}
. (4.29)

Step 5. Set p = p+ 1 and go to Step 2.

If ∂h(xp) is a singleton, then the condition yp = ∇g(xp) is an exact require-

ment for xp to be a stationary point. From our experience of implementing

Procedure 4.3, we know that the stopping criterion yp = ∇g(xp) greatly delays

the computation. So, it is reasonable to employ another stopping criterion.

Procedure 4.4 (A modified version of Procedure 4.3)

Input: A starting point x1 ∈ Rn.

Output: An approximate solution xp+1 of (4.28).

Step 1. Select any starting point x1 ∈ Rn, a tolerance ε > 0, and set p := 1.

Step 2. Compute yp ∈ ∂h(xp).

Step 3. Find a solution xp+1 of the convex optimization problem (4.29).

Step 4. If ‖xp+1 − xp‖ ≤ ε, then stop.

Step 5. Set p = p+ 1 and go to Step 2.

Now we turn our attention back to problem (4.4) whose objective function

has the DC decomposition g(y) = g1(y) − g2(y), where g1(y) and g2(y) are

given respectively by (4.5) and (4.6). Clearly,

∂g1(y) =
{
∇g1(y)

}
=
{ 2

m

∑
i∈I

(y − ai)
}
. (4.30)

To compute the subdifferential of g2(.) at y ∈ Rn, consider the sets A1(y) and

A2(y) defined in (4.9) and (4.2.1). Let

A3(y) := {ai ∈ A | ‖y − ai‖2 > d`(a
i)}. (4.31)

Set A4(y) = A2(y) \ A3(y) and observe that

A4(y) = {ai ∈ A | ‖y − ai‖2 = d`(a
i)}. (4.32)
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Taking account of (4.6), (4.9), (4.31), and (4.32), one has

g2(y) =
1

m

( ∑
ai∈A1(y)

d`(a
i) +

∑
ai∈A3(y)

‖y − ai‖2 +
∑

ai∈A4(y)

max
{
d`(a

i), ‖y − ai‖2
})
.

Thus,

∂g2(y) =
2

m

( ∑
ai∈A3(y)

(y − ai) +
∑

ai∈A4(y)

co{0, y − ai}
)
. (4.33)

(If A4(y) = ∅, then the second sum in (4.33) is absent.) If y is a local solution

of (4.4), then we have ∂g2(y) ⊂ ∂g1(y). Since ∂g1(y) is a singleton by (4.30),

the last inclusion is fulfilled only if ∂g2(y) is singleton. Hence, from (4.33) it

follows that ai = y whenever ai ∈ A4(y). This means that either A4(y) = ∅,
or y ∈ A and A4(y) = {y}. So,

∂g2(y) =
{ 2

m

∑
ai∈A3(y)

(y − ai)
}
.

Therefore, the inclusion ∂g2(y) ⊂ ∂g1(y) is fulfilled if and only if either
A4(y) = ∅
y = |A1(y)|−1

∑
ai∈A1(y)

ai,

or 
y ∈ A, A4(y) = {y}
y = (|A1(y)|+ 1)−1

( ∑
ai∈A1(y)

ai + y
)
,

where |Ω| denotes the number of elements of a set Ω. For ϕ := g, g := g1,

and h := g2, our problem (4.4) has the form (4.28). Thus, both Procedures

3a and 3b can be used to solve (4.4). Thanks to (4.33), one has

2

m

∑
ai∈A3(y)

(y − ai) ∈ ∂g2(y) (∀y ∈ Rn).

In particular, for any given vector xp ∈ Rn,
2

m

∑
ai∈A3(xp)

(xp− ai) ∈ ∂g2(xp). So,

vector yp in Step 2 of Procedures 4.3 and 4.4 can be chosen as

yp =
2

m

∑
ai∈A3(xp)

(xp − ai). (4.34)
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In Step 4 of Procedure 4.3 (resp., Step 3 of Procedure 4.4), one has to solve

the differentiable convex program

min
{
ψ(x) := g1(x)− 〈yp, x〉 | x ∈ Rn

}
. (4.35)

From (4.5) and (4.34) it follows that

ψ(x) =
1

m

∑
ai∈A

d`(a
i) +

1

m

∑
ai∈A

‖x− ai‖2 − 2

m

〈 ∑
ai∈A3(xp)

(xp − ai), x
〉

By the Fermat Rule, x ∈ Rn solves (4.35) if and only if ∇ψ(x) = 0. This

condition can be rewritten equivalently as

2

m

∑
ai∈A

(x− ai)− 2

m

∑
ai∈A3(xp)

(xp − ai) = 0

⇐⇒ mx−
∑

ai∈A1(xp)∪A4(xp)

ai − |A3(x
p)|xp = 0

⇐⇒ x =
1

m

(
|A3(x

p)|xp +
∑

ai∈A1(xp)∪A4(xp)

ai
)
.

Consequently, (4.35) has the unique solution

xp+1 =
1

m

(
|A3(x

p)|xp +
∑

ai∈A1(xp)∪A4(xp)

ai
)
. (4.36)

To solve (4.4) by a DCA, Bagirov [7, p. 7] suggests to use the stopping crite-

rion yp = ∇g1(xp), where yp is given by (4.34). Since∇g1(xp) =
2

m

∑
i∈I

(xp−ai)

by (4.30) and A = A1(x
p)∪A3(x

p)∪A4(x
p), one has yp = ∇g1(xp) if and only

if
∑
ai∈Ωp

(xp − ai) = 0, where Ωp := A1(x
p) ∪ A4(x

p). It follows that

xp =
1

|Ωp|
∑
ai∈Ωp

ai.

Thus, xp is the barycenter of Ωp. By the necessary optimality condition in

DC programming [77], one obtains ∂h(xp) ⊂ ∂g(xp), where g = g1 and h = g2

are respectively given by (4.5) and (4.6). Since ∂g1(xp) is a singleton, ∂g2(xp)

is also a singleton. As yp ∈ ∂g1(xp), one can compute yp by formula (4.34).

The iteration formula (4.36) shows that, applied to problem (4.4) with the

DC decomposition g(y) = g1(y)− g2(y), Procedures 3a and 3b have the next

simplified formulations.
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Procedure 4.5 (A DCA scheme for solving (4.4); see [7, p. 7])

Input: A starting point x1 ∈ Rn.

Output: An approximate solution xp of (4.4).

Step 1. Select any starting point x1 ∈ Rn and set p = 1.

Step 2. Compute the numbers d`(a
i), i ∈ I, by formula (4.2).

Step 3. Compute the sets A1(x
p), A3(x

p), and A4(x
p) by using (4.9), (4.31),

and (4.32), respectively.

Step 4. Compute yp by (4.34).

Step 5. If yp = ∇g1(xp), i.e., xp is the barycenter of Ωp := A1(x
p) ∪ A4(x

p),

then stop.

Step 6. Compute xp+1 by formula (4.36).

Step 7. Set p = p+ 1 and go to Step 2.

Procedure 4.6 (A modified version of Procedure 4.5)

Input: A starting point x1 ∈ Rn.

Output: An approximate solution xp+1 of (4.4).

Step 1. Select any starting point x1 ∈ Rn, a tolerance ε ≥ 0, and set p = 1.

Step 2. Compute d`(a
i), i ∈ I, by formula (4.2).

Step 3. Compute A1(x
p), A3(x

p), and A4(x
p) by using (4.9), (4.31), and (4.32),

respectively.

Step 4. Compute xp+1 by formula (4.36).

Step 5. If ‖xp+1 − xp‖ ≤ ε, then stop.

Step 6. Set p = p+ 1 and go to Step 2.

The following natural questions arise:

(Q1) Whether the computation in Procedure 4.5 (resp., in Procedure 4.6)

terminates after finitely many steps?

(Q2) If the computation in Procedure 4.5 (resp., in Procedure 4.6 with

a tolerance ε = 0) does not terminate after finitely many steps, then the

iteration sequence {xp} converges to a stationary point of (4.35)?

Partial answers to (Q1) and (Q2) are given in the forthcoming theorem.
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Theorem 4.3 The following assertions hold true:

(i) The computation by Procedure 4.5 may not terminate after finitely many

steps.

(ii) The computation by Procedure 4.6 with ε = 0 may not terminate after

finitely many steps.

(iii) The computation by Procedure 4.6 with ε > 0 always terminates after

finitely many steps.

(iv) If the sequence {xp} generated by Procedure 4.6 with ε = 0 is finite, then

one has xp+1 ∈ B, where B = {bΩ | ∅ 6= Ω ⊂ A} and bΩ is the barycenter

of a nonempty subset Ω ⊂ A, i.e., bΩ = 1
|Ω|

∑
ai∈Ω

ai.

(v) If the sequence {xp} generated by Procedure 4.6 with ε = 0 is infinite,

then it converges to a point x̄ ∈ B

Proof. (i) To prove this assertion, it suffices to construct a suitable example,

where the computation by Procedure 4.5 does not terminate after finitely

many steps. Choose n = 2, m = 3, k = 2, A = {a1, a2, a3}, where a1 = (0, 0),

a2 = (1, 0), a3 = (0, 1). The barycenter of A is a0 = (1
3
, 1

3
). Let ` = 1 and

x̄1 = a0. To solve (4.4) by Procedure 4.5, we select x1 = (0, 5
4
) and set p = 1.

From (4.9), (4.31) and (4.32) it follows that A1(x
1) = {a3}, A3(x

1) = {a1, a2},
and A4(x

1) = ∅. By induction, from (4.36) one deduces that A1(x
p) = {a3},

A3(x
p) = {a1, a2}, A4(x

p) = ∅ for every p ≥ 1, andx
p+1
1 = 2

3
xp1 ∀p ≥ 1

xp+1
2 = 2

3
xp2 + 1

3
∀p ≥ 1,

(4.37)

where xp+1 = (xp+1
1 , xp+1

2 ). In accordance with (4.37), if xp1 = 0, then xp+1
1 = 0;

and if xp2 > 1, then xp+1
2 > 1. Hence, the DCA sequence {xp} generated by

Procedure 4.5 converges to x̄ = (0, 1). However, the computation does not

terminate at any step p, because the stopping criterion in Step 5 (which

requires that xp is the barycenter of Ωp = A1(x
p) ∪ A4(x

p) = {a3}) is not

satisfied.

(ii) To show that the computation by Procedure 4.6 with ε = 0 may not

terminate after finitely many steps, we consider the above two-dimensional

clustering problem. Choose ` = 1 and x̄1 = a0. To solve (4.4) by Proce-

dure 4.6, again we select x1 = (0, 5
4
) and set p = 1. Clearly, from (4.36)
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one obtains A1(x
p) = {a3}, A3(x

p) = {a1, a2}, A4(x
p) = ∅ for every p ≥ 1,

and the iteration formula (4.37). Thus, the DCA sequence {xp} generated

by Procedure 4.6 converges to x̄ = (0, 1). But, the computation does not

terminate at any step p as the stopping criterion in Step 5 (which requires

that ‖xp+1 − xp‖ ≤ ε = 0) is not satisfied.

(iii) Fix any ε > 0. Let {xk} be a sequence generated by Procedure 4.6. If

the sequence {xk} is finite, then we are done. Suppose that the sequence {xk}
is infinite. To obtain a contradiction, consider the auxiliary problem (4.4)

with g = g1−g2, where g1 and g2 are given respectively by (4.5) and (4.6). By

the Weierstrass theorem, the problem of minimizing g(y) on the topological

closure of Y1, where the latter is defined by (4.7), has a solution ȳ. Since

Y1 6= ∅, g(y) <
1

m

m∑
i=1

d`(a
i) for all y ∈ Y1, g(y) =

1

m

m∑
i=1

d`(a
i) for all y ∈ Y2,

ȳ ∈ Y1 and ȳ is a global solution of (4.4). Thus, α := min{g(y) | y ∈ Rn} is

well defined. By (4.3) one has α ≥ 0. Denote by ρ(gi) the modulus of strong

convexity [77, p. 8] of gi on Rn for i = 1, 2. By (4.5) one has ρ(g1) > 0, i.e.,

g1 is strongly convex on Rn. So, ρ(g1) + ρ(g2) > 0. Therefore, invoking the

assertion (iii) of Theorem 3 in [77] (see also [79, Theorem 3.7]), we obtain

lim
p→∞

(xp+1−xp) = 0. In particular, there exists p ∈ N such that ‖xp+1−xp‖ ≤ ε.

This means that the computation by Procedure 4.6 cannot continue after step

p. We have thus arrived at a contradiction.

(iv) We put Ωp = A1(x
p)∪A4(x

p). Suppose that the sequence {xk} is finite,

i.e., the computation terminates at a step p ∈ N. Since xp+1 is computed

via xp by (4.36) and xp+1 = xp, we have (m − |A3(x
p)|)xp+1 =

∑
ai∈Ωp

ai. As

m − |A3(x
p)| = |Ωp|, the last equality implies that xp+1 is the barycenter of

Ωp. This justifies our claim.

(v) Let Ωp be as above. Suppose that the sequence {xp} is infinite. It

follows from (4.36) that

xp+1 =
1

m

(
|A \ Ωp|xp +

∑
ai∈Ωp

ai
)
. (4.38)

Hence, xp+1 ∈ co
(
A∪{xp}

)
for all p ∈ N. Therefore, by induction one obtains

xp ∈ co
(
A ∪ {x1}

)
for all p ∈ N. In particular, the sequence {xp} is bounded.

So, there exists subsequence {xp′} of {xp}, which converges to a point x̄ ∈ Rn.

We have x̄ ∈ B. Indeed, by the Dirichlet principle we can extract a sub-

sequence {xp′′} of {xp′} such that the sets A1(x
p′′), A3(x

p′′), and A4(x
p′′) are
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stable in the sense that there exist disjoint subsets A1, A3, and A4 of A sat-

isfying A1(x
p′′) = A1, A3(x

p′′) = A3, and A4(x
p′′) = A4 for each index p′′. Let

Ω := A1 ∪ A4. By (4.38), one has

xp
′′+1 =

1

m

(
|A3|xp

′′
+
∑
ai∈Ω

ai
)
. (4.39)

Since lim
p′→∞

xp
′
= x̄, passing (4.39) to the limit as p′′ →∞ yields

x̄ =
1

m

(
|A3|x̄+

∑
ai∈Ω

ai
)
.

It follows that x̄ = bΩ. We have thus proved that x̄ ∈ B.

To complete the proof, it suffices to show that lim
p→∞

xp = x̄. Let ε0 > 0

be the minimum of the set consisting of the numbers ‖bΩ1
− bΩ2

‖, where Ω1

and Ω2 are nonempty subsets of A with bΩ1
6= bΩ2

. Then, for any nonempty

subsets Ω1 and Ω2 of A with bΩ1
6= bΩ2

, one has B(bΩ1
, 1

4
ε0) ∩B(bΩ2

, 1
4
ε0) = ∅.

Put V =
⋃
b∈B

B(b,
1

4
ε0) and observe that Rn \ V is closed. One must have

xp ∈ V for all p large enough. Indeed, if this is not the case then, by the

boundedness of {xp}, one can find a subsequence {xpj} of {xp} such that

{xpj} ⊂ Rn \V and xpj → b̄ as pj →∞. Repeating the arguments which have

been applied to the above subsequence {xp′} of {xp}, we can show that b̄ ∈ B.

Then, on one hand we have b̄ ∈ V . On the other hand, as {xpj} ⊂ Rn \ V ,

the inclusion b̄ ∈ Rn \ V is valid. We have arrived at a contradiction.

Let p̄ ∈ N be such that one has xp ∈ V for all p ≥ p̄. By the equality

lim
p→∞

(xp+1 − xp) = 0, which has been established in the proof of the asser-

tion (iii), there is p̂ ≥ p̄ such that

‖xp+1 − xp‖ ≤ 1

4
ε0 ∀p ≥ p̂. (4.40)

As lim
p′→∞

xp
′
= x̄, there exists p′ ≥ p̂ such that

xp
′ ∈ B(x̄,

1

4
ε0). (4.41)

By (4.40), one has ‖xp′+1 − xp
′‖ ≤ 1

4
ε0. Since xp

′+1 ∈ V , there exits b ∈ B
such that xp

′+1 ∈ B(b, 1
4
ε0). If b 6= x̄, then the definition of ε0 implies that

‖b− x̄‖ ≥ ε0. (4.42)
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Thanks to (4.40) and (4.41), we have

‖b− x̄‖ ≤ ‖b− xp′+1‖+ ‖xp′+1 − xp′‖+ ‖xp′ − x̄‖ ≤ 3

4
ε0.

This contradicts (4.42). Thus, b = x̄. It follows that xp
′+1 ∈ B(x̄, 1

4
ε0).

Letting xp
′+1 play the role of xp

′
in the inclusion (4.41), by the above

argument we obtain xp
′+2 ∈ B(x̄, 1

4
ε0), and so on. Therefore, {xp} ⊂ B(x̄, 1

4
ε0)

for all p ≥ p′. Hence, any cluster point of {xp} must belong to both sets

B̄(x̄, 1
4
ε0) and B. Since B ∩ B̄(x̄, 1

4
ε0) = x̄, we conclude that lim

p→∞
xp = x̄. 2

Concerning the property (iv) in Theorem 4.3, we want to know at which

convergence rate the DCA sequence, provided that it is infinite, converges to

the limit point. Recall that the definitions of two types of linear convergence

of vectors sequences were given in Definitions 1.9 and 1.10 in Section 1.4.

Theorem 4.4 If the sequence {xp} generated by Procedure 4.6 with ε = 0 is

infinite, then it converges Q−linearly to a point x̄ ∈ B. More precisely, one

has

‖xp+1 − x̄‖ ≤ m− 1

m
‖xp − x̄‖ (4.43)

for all p sufficiently large.

Proof. By our assumption and by assertion (iv) of Theorem 4.3, {xp} con-

verges to a point x̄ ∈ B. Suppose that {xp′} is any subsequence of {xp}
such that the sets A1(x

p′), A3(x
p′), and A4(x

p′) are stable, i.e., there exist

disjoint subsets Ã1, Ã3, and Ã4 of A satisfying A1(x
p′) = Ã1, A3(x

p′) = Ã3,

and A4(x
p′) = Ã4 for every index p′. Let Ω̃ := Ã1 ∪ Ã4. By (4.38), one has

xp
′+1 =

1

m

(
|Ã3|xp

′
+
∑
ai∈Ω̃

ai
)
. (4.44)

If |Ã3| = m, then Ω̃ = ∅. So, from (4.44) it follows that xp
′+1 = xp

′
; then

the computation by Procedure 4.6 stops at step p′. This contradicts our

assumption that the latter yields the infinite sequence {xp}. Thus, setting

m̄ = |Ã3|, one must have m̄ ≤ m− 1. From (4.44) one can deduce that

mxp
′+1 −mx̄ = m̄xp

′ − m̄x̄+
(∑
ai∈Ω̃

ai − |Ω̃|x̄
)
. (4.45)

Since lim
p→∞

xp = x̄ and lim
p→∞

(xp+1 − xp) = 0, passing (4.44) to the limit as

p′ →∞, we get

x̄ =
1

m

(
|Ã3|x̄+

∑
ai∈Ω̃

ai
)
,
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which implies that |Ω̃|x̄ =
∑
ai∈Ω̃

ai. Obviously, this equality and (4.45) yield

‖xp′+1 − x̄‖ =
m̄

m
‖xp′ − x̄‖.

So, the inequality

‖xp′+1 − x̄‖ ≤ m− 1

m
‖xp′ − x̄‖ (4.46)

holds for every p′.

If (4.43) does not hold for all p sufficiently large, then there exists a subse-

quence of {xp} such that the inequality in (4.43) is violated for every member

of that subsequence. Then, we can extract from the latter a subsequence,

which is denoted by {xp′}, such that the sets A1(x
p′), A3(x

p′), and A4(x
p′) are

stable. On one hand, the inequality (4.46) holds for every p′ by the result of

the first part of this proof. On the other hand, by the choice of this subse-

quence {xp′}, we have ‖xp′+1 − x̄‖ > m−1
m
‖xp′ − x̄‖. Thus, we have arrived at

a contradiction. 2

Remark 4.3 Select a constant C such that
m− 1

m
< C < 1. By Theo-

rem 4.4, if the computation is terminated at step p, provided that p is suffi-

ciently large, then one has ‖xp − x̄‖ ≤ C‖xp−1 − x̄‖. Hence, the computation

error between the obtained approximate solution xp and the exact limit point

x̄ of the sequence {xp} is smaller than the number C‖xp−1 − x̄‖. Since {xp}
converges to x̄, one sees that the computation error bound C‖xp−1− x̄‖ tends

to 0 as p→∞.

Now, we can describe a DCA to solve problem (3.2), whose objective func-

tion has the DC decomposition f(x) = f 1(x)− f 2(x), where f 1(x) and f 2(x)

are defined by

f 1(x) :=
1

m

∑
i∈I

(∑
j∈J

‖ai − xj‖2
)

(4.47)

and

f 2(x) :=
1

m

∑
i∈I

(
max
j∈J

∑
q∈J\{j}

‖ai − xq‖2
)
. (4.48)

By (4.47), one has ∂f 1(x) = {∇f 1(x)} = {2(x1 − a0, . . . , xk − a0)}, where

a0 = bA is the barycenter of the system {a1, . . . , am} (see [71] and Chapter 3).
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Set ϕi(x) = max
j∈J

hi,j(x) with hi,j(x) :=
∑

q∈J\{j}

‖ai − xq‖2 and Ji(x) is given by

(3.16). From (4.48) it follows that

∂f 2(x) =
1

m

∑
i∈I

∂ϕi(x) (4.49)

with ∂ϕi(x) being computed (see [71] and and Chapter 3) by the formula

∂ϕi(x) = co
{
∇hi,j(x) | j ∈ Ji(x)

}
= co

{
2
(
x̃j − ãi,j

)
| j ∈ Ji(x)

}
,

where x̃j = (x1, . . . , xj−1, 0Rn, xj+1, . . . , xk) and

ãi,j =
(
ai, . . . , ai, 0Rn︸︷︷︸

j−th position

, ai, . . . , ai
)
. (4.50)

For ϕ := f , g := f 1, and h := f 2, our clustering problem (3.2) has the

form (4.28). Thus, both Procedures 4.4 and 4.6 can be used to solve (3.2).

Let xp = (xp,1, ..., xp,k) ∈ Rnk be the centroid system at an iteration p ∈ N,

{A1, . . . , Ak} be the natural clustering associated with xp. Clearly, the vector

yp in Step 2 of Procedure 4.4 satisfies the inclusion yp ∈ ∂f 2(xp). By (4.49),

one has

∂f 2(xp) =
1

m

∑
i∈I

∂ϕi(x
p) (4.51)

with ∂ϕi(x
p) being computed by (4.50), i.e.,

∂ϕi(x
p) = co {∇hi,j(xp) | j ∈ Ji(xp)} = co

{
2
(
x̃p,j − ãi,j

)
| j ∈ Ji(xp)

}
(4.52)

with x̃p,j = (xp,1, . . . , xp,j−1, 0Rn, xp,j+1, . . . , xp,k) for all j ∈ J . Note that the

index sets Ji(x
p), i ∈ I, in (4.52) are computed by formula (3.16) and the

vectors ãi,j, with i ∈ I and j ∈ J , are given by (4.50). For every i ∈ I,

if we assign the data point ai to the centroid xp,j of the centroid system{
xp,1, ..., xp,k

}
with the smallest index j, denoted by j(i), such that one has

‖ai − xp,j(i)‖2 = min
q∈J
‖ai − xp,q‖2. Since

Ji(x) =
{
j ∈ J | ‖ai − xj‖2 = min

q∈J
‖ai − xq‖2

}
,

one has j(i) ∈ Ji(xp). So, 2
(
x̃p,j(i) − ãi,j(i)

)
∈ co {2 (x̃p,j − ãi,j) | j ∈ Ji(xp)} .

Hence, by (4.51) and (4.52),

2

m

∑
i∈I

(
x̃p,j(i) − ãi,j(i)

)
∈ ∂f 2(xp). (4.53)
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The above assignment of the data point ai, i ∈ I, to the centroid xp,j(i)

corresponds to the the natural clustering for A on the basis of the the centroid

system
{
xp,1, ..., xp,k

}
.

Let {Ap,1, . . . , Ap,k} be the natural clustering associated with the centroid

system xp = (xp,1, ..., xp,k) ∈ Rnk. Thanks to (4.53), to have a vector yp ∈
∂ϕi(x

p) one can choose yp =
2

m

∑
i∈I
(
x̃p,j(i) − ãi,j(i)

)
. As observed by Bagirov [7,

p. 7],

yp =
2

m

( ∑
a∈A\Ap,1

(xp,1 − a), ...,
∑

a∈A\Ap,k

(xp,k − a)

)
=

2

m

(
(m− βp,1)xp,1 − (ma0 − βp,1a0,p,1), ..., (m− βp,k)xp,k

−(ma0 − βp,ka0,p,k)

)
,

(4.54)

where a0 is the barycenter of A, a0,p,j is the barycenter of Ap,j, and βp,j is the

number of elements in Ap,j for every j ∈ J . In Step 4 of Procedure 4.3 (resp.,

Step 3 of Procedure 4.4), one solves the differentiable convex program

min
{
φ(x) := f 1(x)− 〈yp, x〉 | x ∈ Rnk

}
. (4.55)

From (4.47) and (4.54), one gets φ(x) =
1

m

∑
i∈I

(∑
j∈J

‖ai − xj‖2
)
−
〈
yp, x

〉
.

By the Fermat Rule, xp+1 ∈ Rnk solves (4.55) if and only if ∇φ(xp+1) = 0.

By (4.54), this is equivalent to saying that the following holds for every j ∈ J :

2

m

∑
i∈I

(xp+1,j − ai)− 2

m

(
(m− βp,j)xp,j − (ma0 − βp,ja0,p,j)

)
= 0

⇐⇒ mxp+1,j −ma0 − (m− βp,j)xp,j + (ma0 − βp,ja0,p,j) = 0.

Therefore, the unique solution xp+1 =
(
xp+1,1, . . . , xp+1,k

)
of (4.35) is defined

by

xp+1,j =
(

1− βp,j
m

)
xp,j +

βp,j
m
a0,p,j (4.56)

for all j ∈ J . If Ap,j = ∅, then βp,j = 0. So, from (4.56) it follows that

xp+1,j = xp,j for any j ∈ J with Ap,j = ∅.

Procedure 4.7 (A DCA scheme for solving (4.8); see [7, p. 7])

Input: An approximate solution x̄ = (x̄1, ..., x̄`) of (4.1), an integer ` ≥ 1,
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and a subset Ā4 = {c1, . . . , cr} of Rn.

Output: A set Â5 ⊂ Rn(`+1) consisting of some approximate solutions xp+1 =

(xp+1,1, . . . , xp+1,`+1) of (4.8).

Step 1. Set Â5 = ∅ and s = 1.

Step 2. If s > r, then stop.

Step 3. Put y = cs and set p := 1.

Step 4. Compute the clusters {Ap,1, . . . , Ap,`+1}, which form the natural clus-

tering associated with xp := (x̄1, . . . , x̄`, y) ∈ Rn×(`+1). Compute the values

βj = |Ap,j| for j ∈ {1, . . . , `+ 1}.
Step 5. Compute the vectors xp+1,j, j ∈ {1, . . . , `+ 1}, by formula (4.56).

Step 6. If xp+1,j = xp,j for j ∈ {1, . . . , `+ 1}, then go to Step 8.

Step 7. Set p = p+ 1 and go to Step 4.

Step 8. Put Â5 = Â5 ∪ {xp} and s = s+ 1. Go to Step 2.

Combining Procedures 4.5 and 4.7, we have the DC incremental clustering

algorithm of Bagirov [7] to solve (3.2).

Algorithm 4.3 (Bagirov’s Algorithm [7, p. 8])

Input: The parameters n,m, k, and the data set A = {a1, . . . , am}.
Output: A centroid system {x̄1, . . . , x̄k} and the corresponding clusters

{A1, . . . , Ak}.

Step 1. Compute a0 =
1

m

m∑
i=1

ai, put x̄1 = a0, and set ` = 1.

Step 2. If ` = k, then stop; the k-partition problem has been solved.

Step 3. Select two control parameters: γ1 ∈ [0, 1], γ2 ∈ [0, 1].

Step 4. Compute z1
max by (4.12) and the set Ā1 by (4.13).

Step 5. Compute the set Ā2 by (4.14), z2
max by (4.15), and the set Ā3 by (4.16).

Step 6. Apply Procedure 4.5 to problem (4.4) with a starting point c ∈ Ā3

to find the set Ā4.

Step 7. Apply Procedure 4.7 to (4.8) to obtain the set Â5.

Step 8. Compute the value fmin
`+1 = min

{
f`+1(ŷ

1, ..., ŷ`+1) | ∀(ŷ1, ..., ŷ`+1) ∈ Â5

}
and put Â6 =

{
(ȳ1, ..., ȳ`+1) | f`+1(ȳ

1, ..., ȳ`+1) = fmin
`+1

}
.

Step 9. Set x̄j = ȳj, j = 1, ..., `+ 1. Put ` = `+ 1, and go to Step 2.
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In Procedure 4.7, the condition xp+1,j = xp,j for j ∈ {1, . . . , ` + 1} at

Step 4 is an exact requirement which slows down the speed of computation by

Algorithm 4.3. So, we prefer to use the stopping criterion ‖xp+1,j − xp,j‖ ≤ ε,

where ε is a small positive constant.

Procedure 4.8 (A modified version of Procedure 4.7)

Input: An approximate solution x̄ = (x̄1, ..., x̄`) of (4.1), an integer ` ≥ 1,

and a subset Ā4 = {c1, . . . , cr} of Rn.

Output: A set Â5 ⊂ Rn(`+1) of r vectors of the form

xp+1 = (xp+1,1, . . . , xp+1,`+1),

which are approximate solutions of (4.8).

Step 1. Select a tolerance ε > 0. Set Â5 = ∅ and s = 1.

Step 2. If s > r, then stop.

Step 3. Put y = cs and set p = 1.

Step 4. Compute the clusters {Ap,1, . . . , Ap,`+1}, which form the natural clus-

tering associated with xp := (x̄1, . . . , x̄`, y) ∈ Rn×(`+1). Compute the values

βj = |Ap,j| for j ∈ {1, . . . , `+ 1}.
Step 5. Compute the vectors xp+1,j, j ∈ {1, . . . , `+ 1}, by formula (4.56).

Step 6. If ‖xp+1,j − xp,j‖ ≤ ε for j ∈ {1, . . . , `+ 1}, then go to Step 8.

Step 7. Set p = p+ 1 and go to Step 4.

Step 8. Put Â5 = Â5 ∪ {xp+1} and s = s+ 1. Go to Step 2.

Based on Procedures 4.6 and 4.8, we can propose the following improvement

for Algorithm 4.3.

Algorithm 4.4 (A modified version of Algorithm 4.3)

Input: The parameters n,m, k, and the data set A = {a1, . . . , am}.
Output: A centroid system {x̄1, . . . , x̄k} and the corresponding clusters

{A1, . . . , Ak}.

Step 1. Compute a0 =
1

m

m∑
i=1

ai, put x̄1 = a0, and set ` = 1.

Step 2. If ` = k, then stop; the k-partition problem has been solved.
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Step 3. Select two control parameters: γ1 ∈ [0, 1], γ2 ∈ [0, 1].

Step 4. Compute z1
max by (4.12) and the set Ā1 by (4.13).

Step 5. Compute the set Ā2 by (4.14), z2
max by (4.15), and the set Ā3 by (4.16).

Step 6. Apply Procedure 4.6 to problem (4.4) with a starting point c ∈ Ā3

to find the set Ā4.

Step 7. Apply Procedure 4.8 to (4.8) to obtain the set Â5.

Step 8. Compute the value

fmin
`+1 = min

{
f`+1(ŷ

1, ..., ŷ`+1) | ∀(ŷ1, ..., ŷ`+1) ∈ Â5

}
(4.57)

and put

Â6 =
{

(ȳ1, ..., ȳ`+1) | f`+1(ȳ
1, ..., ȳ`+1) = fmin

`+1

}
. (4.58)

Step 9. Select any element (ȳ1, ..., ȳ`+1) from Â6 and set x̄j = ȳj for all

j = 1, ..., `+ 1. Put ` = `+ 1, and go to Step 2.

We are interested to know how clustering problem in Example 4.1 can be

solved by Algorithm 4.4.

Example 4.3 Let n,m, k,A be as in Example 4.1, i.e., n = 2, m = 3, k = 2,

A = {a1, a2, a3}, where a1 = (0, 0), a2 = (1, 0), a3 = (0, 1). Let γ1 = γ2 = 0.3

and ε = 10−3. To implement Algorithm 4.4, observe that the barycenter of A

is a0 = (1
3
, 1

3
). We put x̄1 = a0, and set ` = 1. In Example 4.1 we have shown

that Ā3 = Ā2 = Ā1 = A. For xp = a1, by (4.9), (4.31) and (4.32), we have

A1(a
1) = {a1}, A3(a

1) = {a2, a3}, and A4(a
1) = ∅. By (4.36), xp+1 = xp = a1.

Hence, the stopping criterion in Step 5 of Procedure 4.6 is satisfied. For

xp = a2, by (4.9), (4.31) and (4.32), one has A1(a
2) = {a2}, A3(a

2) = {a1, a3},
and A4(a

2) = ∅. Using (4.36), one obtains xp+1 = xp = a2. For xp = a3, from

(4.9), (4.31) and (4.32) it follows that A1(a
3) = {a3}, A3(a

3) = {a1, a2}, and

A4(a
3) = ∅. By (4.36), one has xp+1 = xp = a3. Therefore, the realization of

Step 6 of Algorithm 4.4 gives the set Ā4 = {a1, a2, a3}. Now, to realize Step 7

of Algorithm 4.4, we apply Procedure 4.8 to solve (4.8).

For s = 1, we put y = c1 = a1 and set p = 1. Here, since one has

x1 = (x̄1, a1) = (a0, a1), the clusters {A1,1, A1,2} in Step 4 of Procedure 4.8 are

the following: A1,1 = {a2, a3}, A1,2 = {a1}. So, γ1 = 2 and γ2 = 1. By (4.56),

x2,1 =
(

4
9
, 4

9

)
and x2,2 = (0, 0). It is not difficult to show that

xp+1,1 =
1

3
(xp + (1, 1)) ∀p ≥ 1
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and xp+1,2 = (0, 0) for all p ≥ 1. Since x1,1 = (1
3
, 1

3
), from (4.3) we can deduce

that xp,1 = (γp, γp), where γp > 0 for all p ≥ 1. Also by (4.3), γp+1 = 1
3
γp + 1

3
,

where γ1 = 1
3
. Setting up = γp − 1

2
, one has u1 = −1

6
and up+1 = 1

3
up. So,

up = −1
6
(1

3
)p and γp = 1

2
− 1

6
(1

3
)p. Therefore, lim

p→∞
xp,1 = lim

p→∞
(γp, γp) =

(1
2
,
1

2

)
.

Thus, the vector

xp = (xp,1, xp,2) = ((γp, γp), (0, 0))

converges to ((1
2
, 1

2
), (0, 0)) as p → ∞. The condition ‖xp+1,j − xp,j‖ ≤ ε for

j ∈ {1, . . . , ` + 1} in Step 6 of Procedure 4.8 can be rewritten equivalently

as
√

2|γp+1 − γp| ≤ 10−3. As γp = 1
2
− 1

6
(1

3
)p, the smallest positive integer p

satisfying this condition is p = 5. Hence, for y = c1 = a1, we get

Â5 = ∅ ∪ {x6} =
{(1

2
− 1

6

(1
3

)6
,
1

2
− 1

6

(1
3

)6
)
, (0, 0)

}
.

Approximately, the first centroid in this system is (0.49977138, 0.49977138).

For s = 2, we put y = c2 = a2 and set p = 1. Since x1 = (x̄1, a2) = (a0, a2),

an analysis similar to the above shows that xp converges to
(
(0, 1

2
), (1, 0)

)
as

p→∞. In addition, the computation by Procedure 4.8, which stops after 7

steps, gives us

Â5 = Â5 ∪ {x7}

=
{{(1

2
− 1

6

(1
3

)6
,
1

2
− 1

6

(1
3

)6
)
, (0, 0)

}
,
{(

(
1

3

)8
,
1

2
− 1

6

(1
3

)8
)
, (1, 0)

}}
.

The first element in the second centroid system is(
(
1

3

)8
,
1

2
− 1

6

(1
3

)8
)
≈ (0.00015242, 0.49997460).

For s = 3, we put y = c3 = a3 and set p = 1. Since x1 = (x̄1, a3) = (a0, a3),

using the symmetry of the data set A, where the position of a3 is similar to

that of a2, by the above result for s = 2 we can assert that xp converges to(
(1

2
, 0), (0, 1)

)
as p → ∞. In addition, the computation stops after 7 steps

and one has

Â5 = Â5 ∪ {x7}

=
{{(1

2
− 1

6

(1
3

)6
,
1

2
− 1

6

(1
3

)6
)
, (0, 0)

}
,
{((1

3

)8
,
1

2
− 1

6

(1
3

)8
)
, (1, 0)

}
⋃{(1

2
− 1

6

(1
3

)8
,
(1
3

)8
)
, (0, 1)

}}
.

By (4.57), one obtains fmin
`+1 = fmin

2 ≈ 0.16666667. So, in accordance
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with (4.58),

Â6 =
{((1

3

)8
,
1

2
− 1

6

(1
3

)8)
, (1, 0)

)
,
((1

2
− 1

6

(1
3

)8
,
(1
3

)8)
, (0, 1)

)}
.

Select any element x̄ = (x̄1, x̄2) from Â6. Put ` = ` + 1 = 2. Since

` = k, the computation terminates. So, we obtain two centroid systems:(((1
3

)8
,
1

2
− 1

6

(1
3

)8)
, (1, 0)

)
and

((1
2
− 1

6

(1
3

)8
,
(1
3

)8)
, (0, 1)

)
. It is worthy to

stress that they are good approximations of the global solutions
((

0,
1

2

)
, (1, 0)

)
and

((1
2
, 0
)
, (0, 1)

)
of (3.2).

Unlike Algorithms 4.1 and 4.2, both Algorithms 4.3 and 4.4 do not depend

on the parameter γ3. The next example shows that Algorithms 4.4 can perform

better than the incremental clustering Algorithms 4.1 and 4.2.

Example 4.4 Consider the set A = {a1, a2, a3, a4}, where

a1 = (0, 0), a2 = (1, 0), a3 = (0, 5), a4 = (0, 10),

k = 2, γ1 = 0, γ2 = 0, and γ3 = 1.3. To implement Algorithm 4.1, one

computes the barycenter a0 = (1
4
, 15

4
) and puts x̄1 = a0, ` = 1. Applying

Procedure 4.1, one gets Ā5 = {(0, 10)}. Based on the set Ā5 and the k-

means algorithm, Ā6 =
{(

(1
3
, 5

3
), (0, 10)

)}
(see Step 4 in Algorithm 4.1).

Hence, the realization of Step 5 in Algorithm 4.1 gives the centroid system

x̄ =
(
(1

3
, 5

3
), (0, 10)

)
and the value f`+1(x̄) = 13

3
. Observe that Algorithm 4.2

gives us the same x̂ and the same value f`+1(x̄) = 13
3

. Thanks to Theorem 3.4,

we know that x̄ is a nontrivial local solution of (3.2). Observe that x̄ is

not a solution of the clustering problem in question. The natural clustering

associated with this centroid system x̄ has two clusters: A1 = {a1, a2, a3} and

A2 = {a4}.
Algorithm 4.4 gives better results than the previous two algorithms. In-

deed, by (4.16) one has

Ā3 =
{

(
1

2
, 0), (

1

2
, 0), (0,

15

2
), (0, 10)

}
. (4.59)

Next, choosing ε = 10−3, we apply Procedure 4.6 to problem (4.4) with

initial points from Ā3 to find Ā4. For xp = c1, where c1 = (1
2
, 0), using

(4.9), (4.31) and (4.32), we have A1(c
1) = {a1, a2}, A3(c

1) = {a3, a4}, and

A4(c
1) = ∅. By (4.36), xp+1 = xp = c1. Hence, the stopping criterion in
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Step 5 of Procedure 4.6 is satisfied. For xp = c2, where c2 = (1
2
, 0), we get

the same result. For xp = c3, where c3 = (0, 15
2

), by (4.9), (4.31) and (4.32),

one has A1(c
3) = {a3, a4}, A3(c

3) = {a1, a2}, and A4(a
2) = ∅. From (4.36)

it follows that xp+1 = xp = c3. For xp = c4, where c4 = (0, 10), from (4.9),

(4.31) and (4.32) it follows that A1(c
4) = {a1, a2, a3}, A3(c

4) = {a4}, and

A4(c
4) = ∅. Using (4.36), one gets xp+1 = xp = c4. Hence, Ā4 = Ā3, where Ā3

is shown by (4.59).

Now, to realize Step 7 of Algorithm 4.4, we apply Procedure 4.8 to solve (4.8).

For s = 1, we put y = c1, c1 = (1
2
, 0), and set p = 1. Since one has

x1 = (x̄1, c1) = (a0, c1), the clusters {A1,1, A1,2} in Step 4 of Procedure 4.8 are

the following: A1,1 = {a3, a4}, A1,2 = {a1, a2}. Hence, γ1 = γ2 = 2. By (4.56),

x2,1 =
(

1
8
, 45

8

)
and x2,2 = (1

2
, 0). It is not difficult to show thatx

p+1,1
1 = 1

2
xp,11 ∀p ≥ 1

xp+1,1
2 = 1

2
xp,12 + 15

4
∀p ≥ 1,

(4.60)

where xp+1,1 = (xp+1,1
1 , xp+1,1

2 ) and xp+1,2 = (1
2
, 0) for all p ≥ 1. Noting that

x1,1 = (1
4
, 15

4
), by (4.60) we have xp,1 = (γp, βp) with γp ≥ 0 and βp ≥ 0 for

all p ≥ 1. By (4.60), one has γp+1 = 1
2
γp for every p ≥ 1. Since γ1 = 1

4
, one

gets γp = (1
2
)p+2. Setting up = βp − 15

2
, by (4.60) one has up+1 = 1

2
up for every

p ≥ 1. Since u1 = −15
2

, one gets up = −15(1
2
)p and βp = −15(1

2
)p + 15

2
. It

follows that lim
p→∞

xp,1 = lim
p→∞

(γp, βp) =
(
0,

15

2

)
. Thus, the vector

xp = (xp,1, xp,2) = ((γp, βp), (
1

2
, 0))

converges to ((0, 15
2

), (1
2
, 0)) as p → ∞. The condition ‖xp+1,j − xp,j‖ ≤ ε

for every j ∈ {1, . . . , ` + 1} in Step 6 of Procedure 4.8 can be rewritten

equivalently as

(γp+1 − γp)2 + (βp+1 − βp)2 ≤ 10−6.

The smallest positive integer p satisfying this condition is p = 13. Hence, for

y = c1, we get

Â5 = ∅ ∪ {x14} =
{((1

2

)14
,−15(

1

2
)14 +

15

2

)
,
(1
2
, 0
)}
. (4.61)

Approximately, the first centroid in this system is (0.00006104, 7.49816895).

For s = 2, we put y = c2 and set p = 1. Since

x1 = (x̄1, c2) = (a0, c2) = (a0, c1),
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we get the same centroid system x14 shown in (4.61). Hence, the set Â5 is

updated as follows:

Â5 = Â5 ∪ {x14}

=

{{((1
2

)14
,−15(

1

2
)14 +

15

2

)
,
(

1
2
, 0
)}

⋃{((1
2

)14
,−15(

1

2
)14 +

15

2

)
,
(

1
2
, 0
)}}

.

For s = 3, we put y = c3, c3 = (0, 15
2

) and set p = 1. Since x1 = (x̄1, c3),

an analysis similar to the above shows that xp converges to
(
(0, 1

2
), (0, 15

2
)
)

as

p→∞. In addition, the computation by Procedure 4.8, which stops after 12

steps, gives us

Â5 = Â5 ∪ {x13}

=

{{((1
2

)14
,−15(

1

2
)14 +

15

2

)
,
(1
2
, 0
)}
,
{((1

2

)14
,−15(

1

2
)14 +

15

2

)
,
(1
2
, 0
)}

⋃ {(
− 3(

1

2
)13 +

1

2
, 15(

1

2

)13
)
, (0,

15

2
)
}}

.

The first element in the third centroid system is(
− 3(

1

2
)13 +

1

2
, 15(

1

2

)13
)
≈ (0.00183005, 0.499633789).

For s = 4, we put y = c4, c4 = (0, 10) and set p = 1. Since x1 = (x̄1, c4),

an analysis similar to the above shows that xp converges to
(
(1

3
, 5

3
), (0, 10)

)
as

p→∞. In addition, the computation by Procedure 4.8, which stops after 7

steps, gives us

Â5 = Â5 ∪ {x7}

=

{{((1
2

)14
,−15(

1

2
)14 +

15

2

)
,
(1
2
, 0
)}
,
{((1

2

)14
,−15(

1

2
)14 +

15

2

)
,
(1
2
, 0
)}

⋃{(
− 3(

1

2
)13 +

1

2
, 15(

1

2

)13
)
, (0,

15

2
)
}

⋃{(
− 1

12
(
1

4
)8 +

1

3
,
25

12
(
1

4

)8
+

5

3

)
, (0, 10)

}}
.

The first element in the fourth centroid system is(
− 1

12
(
1

4
)8 +

1

3
,
25

12
(
1

4

)8
+

5

3

)
≈ (0.33333206, 1.66669846).

By (4.57) and the current set Â5, one obtains fmin
`+1 ≈ 3.25. Using (4.58), one

gets

Â6 =
{((1

2

)14
,−15(

1

2
)14 +

15

2

)
,
(1
2
, 0
)
,
(((1

2

)14
,−15(

1

2
)14 +

15

2

)
,
(1
2
, 0
))}

.

100



Select any element (ȳ1, ȳ2) from the set Â6 and set x̄j = ȳj, j = 1, 2. Put

` = `+1 = 2. Since ` = k, the computation terminates. The centroid system

x̄ = (x̄1, x̄2) is a global solution of (3.2). The corresponding clusters {A1, A2}
are as follows: A1 = {a3, a4} and A2 = {a1, a2}.

Concerning Algorithms 4.3 and 4.4, one may ask the following questions:

(Q3) Whether the computation in Algorithm 4.3 (resp., in Algorithm 4.4)

terminates after finitely many steps?

(Q4) If the computation in Algorithm 4.3 (resp., in Algorithm 4.4 with ε =

0) does not terminate after finitely many steps, then the iteration sequence

{xp} converges to a stationary point of (3.2)?

Partial answers to (Q3) and (Q4) are given in the forthcoming statement,

which is an analogue of Theorem 4.3.

Theorem 4.5 The following assertions hold true:

(i) The computation by Algorithm 4.3 may not terminate after finitely many

steps.

(ii) The computation by Algorithm 4.4 with ε = 0 may not terminate after

finitely many steps.

(iii) The computation by Algorithm 4.4 with ε > 0 always terminates after

finitely many steps.

(iv) If the computation by Procedure 4.8 with ε = 0 terminates after finitely

many steps then, for every j ∈ {1, . . . , `+ 1}, one has xp+1,j ∈ B.

(v) If the computation by Procedure 4.8 with ε = 0 does not terminate after

finitely many steps then, for every j ∈ {1, . . . , `+ 1}, the sequence {xp,j}
converges to a point x̄j ∈ B.

Proof. (i) To show that the computation by Algorithm 4.3 may not terminate

after finitely many steps, it suffices to construct a suitable example. Let

n,m, k,A be as in Example 4.1 and let γ1 = γ2 = 0.3. The realization of

Steps 1–6 in Algorithm 4.3 gives us the set Ā4 = {a1, a2, a3}, the number

` = 1, and the point x̄1 = a0 = (1
3
, 1

3
). In Step 7 of the algorithm, one

applies Procedure 4.7 to (4.8) to obtain the set Â5. The analysis given in

Example 4.3 shows that, the computation starting with s = 1 in Step 1 of
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Procedure 4.7 does not terminate, because the stopping criterion xp+1,j = xp,j

for j ∈ {1, . . . , `+1} in Step 6 of that procedure is not satisfied for any p ∈ N.

(ii) For ε = 0, since Algorithm 4.4 (resp., Procedure 4.8) coincides with

Algorithm 4.3 (resp., Procedure 4.7), the just given example justifies our

claim.

(iii) To obtain the result, one can argue similarly as in the proof of assertion

(iii) in Theorem 4.3. This is possible because the iteration formula (4.56) can

be rewritten equivalently as

xp+1,j =
1

m

(
(m− |Ap,j|)xp,j +

∑
ai∈Ap,j

ai
)
,

and the latter has the same structure as that of (4.36).

(iv) The proof is similar to that of assertion (iv) in Theorem 4.3.

(v) The proof is similar to that of assertion (v) in Theorem 4.3.

2

In analogy with Theorem 4.5, we have the following result.

Theorem 4.6 If the computation by Procedure 4.8 with ε = 0 does not termi-

nate after finitely many steps then, for every j ∈ {1, . . . , `+ 1}, the sequence

{xp,j} converges Q−linearly to a point x̄j ∈ B. More precisely, one has

‖xp+1,j − x̄j‖ ≤ m− 1

m
‖xp,j − x̄j‖

for all p sufficiently large.

Proof. The proof is similar to that of Theorem 4.4. 2

4.3.2 The Third DC Clustering Algorithm

To accelerate the computation speed of Algorithm 4.4, one can apply the

DCA in the inner loop (Step 6) and apply the k-means algorithm in the outer

loop (Step 7). First, using the DCA scheme in Procedure 4.6 instead of the

k-means algorithm, we can modify Procedure 4.1 as follows.
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Procedure 4.9 (Inner Loop with DCA)

Input: An approximate solution x̄ = (x̄1, ..., x̄`) of problem (4.1), ` ≥ 1.

Output: A set Ā5 of starting points to solve problem (4.8).

Step 1. Select three control parameters: γ1 ∈ [0, 1], γ2 ∈ [0, 1], γ3 ∈ [1,∞).

Step 2. Compute z1
max by (4.12) and the set Ā1 by (4.13).

Step 3. Compute the set Ā2 by (4.14), z2
max by (4.15), and the set Ā3 by (4.16).

Step 4. For each c ∈ Ā3, apply Procedure 4.4 to problem (4.4) to find the

set Ā4.

Step 5. Compute the value fmin
`+1 by (4.18).

Step 6. Form the set Ā5 by (4.19).

Now we are in a position to present the third DCA algorithm and consider

an illustrative with a small-size data set.

Algorithm 4.5 (DCA in the Inner Loop and k-means Algorithm in

the Outer Loop)

Input: The parameters n,m, k, and the data set A = {a1, . . . , am}.
Output: A centroid system {x̄1, . . . , x̄k} and the corresponding clusters {A1, . . . , Ak}.

Step 1. Compute a0 =
1

m

m∑
i=1

ai, put x̄1 = a0, and set ` = 1.

Step 2. If ` = k, then stop. Problem (3.2) has been solved.

Step 3. Apply Procedure 4.9 to find the set Ā5 of starting points.

Step 4. For each point ȳ ∈ Ā5, apply the k-means algorithm to problem (4.8)

with the starting point (x̄1, ..., x̄`, ȳ) to find an approximate solution x =

(x1, . . . , x`+1). Denote by Ā6 the set of these solutions.

Step 5. Select a point x̂ = (x̂1, . . . , x̂`+1) from Ā6 satisfying condition (4.20).

Define x̄j = x̂j, j = 1, . . . , `+ 1. Set ` = `+ 1 and go to Step 2.

Example 4.5 Let n,m, k,A be as in Example 4.1, i.e., n = 2, m = 3, k = 2,

A = {a1, a2, a3}, where a1 = (0, 0), a2 = (1, 0), a3 = (0, 1). Let γ1 = γ2 = 0.3

and γ3 = 3. The barycenter of A is a0 = (1
3
, 1

3
). To implement Algorithm 4.5,

put x̄1 = a0 and set ` = 1. Since ` < k, we apply Procedure 4.9 to compute set

103



Ā5. The sets Ā1, Ā2 and Ā3 have been found in Example 4.1. Namely, we have

Ā3 = Ā2 = Ā1 = A = {a1, a2, a3}. Applying Procedure 4.6 to problem (4.4)

with initial points from Ā3, we find Ā4. Since this computation of Ā4 is the

same as that in Example 4.3, we have Ā4 = Ā3 = A. The calculations of

Ā5 and Ā6 are as in Example 4.1. Thus, we get one of the two centroid

systems, which is a global solution of (3.2). If x̄ = x̂ =
(

(0, 1
2
), (1, 0)

)
, then

A1 = {a1, a3} and A2 = {a2}. If x̄ = x̂ =
(

(1
2
, 0), (0, 1)

)
, then A1 = {a1, a2}

and A2 = {a3}.

4.3.3 The Fourth DC Clustering Algorithm

In Algorithm 4.2, which is Version 2 of Ordin-Bagirov’s Algorithm, one

applies the k-means algorithm to find an approximate solution of (4.8). If

one applies the DCA instead, then one obtains an DC algorithm, which is

based on the next procedure.

Procedure 4.10 (Solve (4.8) by DCA)

Input: An approximate solution x̄ = (x̄1, ..., x̄`) of problem (4.1), ` ≥ 1.

Output: An approximate solution x̂ = (x̂1, . . . , x̂`+1) of problem (4.8).

Step 1. Select three control parameters: γ1 ∈ [0, 1], γ2 ∈ [0, 1], γ3 ∈ [1,∞).

Step 2. Compute z1
max by (4.12) and the set Ā1 by (4.13).

Step 3. Compute the set Ā2 by (4.14), z2
max by (4.15), and the set Ā3 by (4.16).

Step 4. Using (4.17), form the set Ω.

Step 5. Apply Procedure 4.8 to problem (4.8) for each initial vector cen-

troid system (x̄1, ..., x̄`, c) ∈ Ω to get the set Ã4 of candidates for approximate

solutions of (4.8) for k = `+ 1.

Step 6. Compute the value f̃min
`+1 by (4.21) and the set Ã5 by (4.22).

Step 7. Pick a point x̂ = (x̂1, . . . , x̂`+1) from Ã5.

Algorithm 4.6 (Solve (3.2) by just one DCA procedure)

Input: The parameters n,m, k, and the data set A = {a1, . . . , am}.
Output: The set of k cluster centers {x̄1, . . . , x̄k} and the corresponding clus-
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ters A1, ..., Ak.

Step 1. Compute a0 =
1

m

m∑
i=1

ai, put x̄1 = a0, and set ` = 1.

Step 2. If ` = k, then go to Step 5.

Step 3. Use Procedure 4.10 to find an approximate solution x̂ = (x̂1, . . . , x̂`+1)

of problem (4.8).

Step 4. Put x̄j = x̂j, j = 1, . . . , `+ 1. Set ` = `+ 1 and go to Step 2.

Step 5. Compute Ã6 by (4.23) and select an element x̄ = (x̄1, . . . , x̄k) from

Ã6. Using the centroid system x̄, apply the natural clustering procedure to

partition A into k clusters A1, ..., Ak. Print x̄ and A1, ..., Ak. Stop.

Example 4.6 Let n,m, k,A be as in Example 4.1, i.e., n = 2, m = 3, k = 2,

A = {a1, a2, a3}, where a1 = (0, 0), a2 = (1, 0), a3 = (0, 1). Let γ1 = 0.3, γ2 =

0.3 and γ3 = 3. The implementation of Algorithm 4.6 begins with putting

x̄1 = a0 and setting ` = 1. Since ` < k, we apply Procedure 4.10 to find an

approximate solution x̂ = (x̂1, . . . , x̂`+1) of problem (4.8). By the results in

Example 4.1, we have Ā3 = Ā2 = Ā1 = A = {a1, a2, a3}. Next, we apply Pro-

cedure 4.10 to (4.8) with initial points from Ω = {(x̄1, a1), (x̄1, a2), (x̄1, a3)} to

find Ã4. Since the calculation of Ã4 coincides with that of Â5 in Example 4.3,

one gets

Ã4 = Â5

=

{{(1

2
− 1

6

(1
3

)6
,
1

2
− 1

6

(1
3

)6
)
, (0, 0)

}
,
{((1

3

)8
,
1

2
− 1

6

(1
3

)8
)
, (1, 0)

}
⋃ {(1

2
− 1

6

(1
3

)8
,
(1
3

)8
)
, (0, 1)

}}
.

By (4.21), we have

Ã5 =

{(((1
3

)8
,
1

2
− 1

6

(1
3

)8
)
, (1, 0)

)
,

((1

2
− 1

6

(1
3

)8
,
(1
3

)8
)
, (0, 1)

)}
. (4.62)

Put x̄j = xj for j = 1, 2. Set ` = 2 and go to Step 2. Using (4.23), we

get Ã6 = Ã5. Thus, we obtain one of the two centroid systems described in

(4.62). If x̄ happens to be the first centroid system, then A1 = {a1, a3} and

A2 = {a2}. If the second centroid system is selected, then A1 = {a1, a2} and

A2 = {a3}.
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4.4 Numerical Tests

Using several well-known real-world data sets, we have tested the efficien-

cies of the Algorithms 4.1, 4.2, 4.4, 4.5, and 4.6 above, and compared them

with that of the k-means Algorithm, which has been denoted by KM. The

six algorithms were implemented in the Visual C++ 2010 environment, and

performed on a PC Intel CoreTM i7 (4 x 2.0 GHz) processor, 4GB RAM.

Namely, 8 real-world data sets, including 2 small data sets (with m ≤ 200)

and 6 medium size data sets (with 200 < m ≤ 6000), have been used in

our numerical experiments. Brief descriptions of these data sets are given in

Table 4.1 of the data sets. Their detailed descriptions can be found in [56].

Table 4.1: Brief descriptions of the data sets

Data sets Number of instances Number of attributes

Iris 150 4

Wine 178 13

Glass 214 9

Heart 270 13

Gene 384 17

Synthetic Control 600 60

Balance Scale 625 4

Stock Price 950 10

The computational results for the first 4 data sets, where 150 ≤ m ≤ 300,

are given in Table 4.2. In Table 4.3, we present the computational results

for the last 4 data sets, where 300 < m < 1000. In Tables 4.2 and 4.3,

k ∈ {2, 3, 5, 7, 9, 10} is the number of clusters; fbest is the best value of the

cluster function f(x) in (3.2) found by the algorithm, and CPU is the CPU

time (in seconds). Since there are 8 data sets (see Table 4.1) and 6 possibilities

for the number k of the data clusters (namely, k ∈ {2, 3, 5, 7, 9, 10}), one has

48 cases in Tables 4.2 and 4.3.

- Comparing Algorithm 4.2 with Algorithm 4.1, we see that there are 9

cases where Alg. 2 performs better than Alg. 4.1 in term of the CPU time,

while there are 37 cases where Alg. 4.2 performs better than Alg. 4.1 in term

of the best value of the cluster function.

- Comparing Algorithm 4.5 with Algorithm 4.4, we see that there are 14

cases where Alg. 4.5 performs better than Alg. 4.4 in term of the CPU time,

while there are 48 cases where Alg. 4.5 performs better than Alg. 4.4 in term
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of the best value of the cluster function.

- Comparing Algorithm 4.5 with Algorithm 4.6, we see that there are 17

cases where Alg. 4.5 performs better than Alg. 4.6 in term of the CPU time,

while there are 32 cases where Alg. 4.5 performs better than Alg. 4.6 in term

of the best value of the cluster function.

- Comparing Algorithm 4.2 with KM, we see that there are 39 cases where

Alg. 4.2 performs better than KM in term of the best value of the cluster

function.

- Comparing Algorithm 4.5 with KM, we see that there are 45 cases where

Alg. 4.5 performs better than KM in term of the best value of the cluster

function.

The above analysis of the computational results is summarized in Table 4.4.

Clearly, in term of the best value of the cluster function, Algorithm 4.2 is

preferable to Algorithm 4.1, Algorithm 4.5 is preferable to Algorithm 4.6, Al-

gorithm 4.2 is preferable to KM, and Algorithm 4.5 is also preferable to KM.

It is worthy to stress that the construction of the sets Ai(y), i = 1, . . . , 4, and

the sets Ā1, Ā2, etc., as well as the choice of the control parameters γ1, γ2, γ3

allow one to approach different parts of the given data set A. Thus, the

computation made by each one of the Algorithms 4.1, 4.2, 4.4, 4.5, and 4.6,

is more flexible than that of KM. This is the reason why the just mentioned

incremental clustering algorithms usually yield better values of the cluster

function than KM.
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Table 4.4: The summary table

CPU time fbest

Algorithm 4.2 vs. Algorithm 4.1 9 37

Algorithm 4.5 vs. Algorithm 4.4 14 48

Algorithm 4.5 vs. Algorithm 4.6 17 32

Algorithm 4.2 vs. KM 0 39

Algorithm 4.5 vs. KM 0 45

Figure 4.1: The CPU time of the algorithms for the Wine data set

4.5 Conclusions

We have presented the incremental DC clustering algorithm of Bagirov

and proposed three modified versions Algorithms 4.4, 4.5, and 4.6 for this

algorithm. By constructing some concrete MSSC problems with small data

sets, we have shown how these algorithms work.

Two convergence theorems and two theorems about the Q−linear con-

vergence rate of the first modified version of Bagirov’s algorithm have been

obtained by some delicate arguments.

Numerical tests of the above-mentioned algorithms on some real-world

databases have shown the effectiveness of the proposed algorithms.
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Figure 4.2: The value of objective function of the algorithms for the Stock Wine data set

Figure 4.3: The CPU time of the algorithms for the Stock Price data set
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Figure 4.4: The value of objective function of the algorithms for the Stock Price data set

112



General Conclusions

In this dissertation, we have applied DC programming and DCAs to an-

alyze a solution algorithm for the indefinite quadratic programming prob-

lem (IQP problem). We have also used different tools from convex analysis,

set-valued analysis, and optimization theory to study qualitative properties

(solution existence, finiteness of the global solution set, and stability) of the

minimum sum-of-squares clustering problem (MSSC problem) and develop

some solution methods for this problem.

Our main results include:

1) The R-linear convergence of the Proximal DC decomposition algorithm

(Algorithm B) and the asymptotic stability of that algorithm for the given

IQP problem, as well as the analysis of the influence of the decomposition

parameter on the rate of convergence of DCA sequences;

2) The solution existence theorem for the MSSC problem together with the

necessary and sufficient conditions for a local solution of the problem, and

three fundamental stability theorems for the MSSC problem when the data

set is subject to change;

3) The analysis and development of the heuristic incremental algorithm of

Ordin and Bagirov together with three modified versions of the DC incremen-

tal algorithms of Bagirov, including some theorems on the finite convergence

and the Q−linear convergence, as well as numerical tests of the algorithms

on several real-world databases.

In connection with the above results, we think that the following research

topics deserve further investigations:

- Qualitative properties of the clustering problems with L1−distance and

Euclidean distance;

- Incremental algorithms for solving the clustering problems with L1−distance
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and Euclidean distance;

- Booted DC algorithms (i.e., DCAs with a additional line search procedure

at each iteration step; see [5]) to increase the computation speed;

- Qualitative properties and solution methods for constrained clustering

problems (see [14,24,73,74] for the definition of constrained clustering prob-

lems and two basic solution methods).
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