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ABSTRACT

Building a precise model of insect wing structure and investigating its dynamic characteristics are difficult tasks because of its complex nature. In this paper, an in-house code based on a multibody dynamic approach is presented to compute the dynamics of a hawkmoth wing. From the experimental data of a biological wing, a finite element method (FEM) model is firstly constructed, then is used to build an equivalent beam model. From the equivalent beam structural parameters, a Hencky-bar chain model of the wing is created with rigid bodies connected together by bending and torsion springs. The equations of motion are derived using the Lagrange's equation and solved by a quasi-Newton method. The code is then validated against MSC Adams software. The experimental results of the biological wing and numerical results show good agreement. 
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1. INTRODUCTION

In recent years, flapping-wing micro air vehicles (FWMAVs) mimicking insect flight are widely developed and have many applications. A lot of effort has been made for research on insect-wing structures, flight dynamics and stability characteristics [1]–[3]. Results from these studies play an important role in the improvement of modern FWMAVs’ designs. 

In general, the wing structure of insects consists of veins and membrane with geometric and material properties that change nonlinearly over the entire surface [4]. When moving in the air, insect wings undergo large deformations. To study the dynamics and deformation of an insect wing, experimental methods are often developed with high-tech equipment such as digital particle image velocimetry (DPIV) measurement devices [5], high-speed digital cameras [6], robotic model with man-made flexible wings [7], etc. To simulate wing dynamics, some authors have used the finite element method for modeling wing structures [8]. However, this method is quite complex, requires a lot of computer resources. Therefore, another approach is developed using the equivalent beam model of a wing while applying the modal superposition technique to simulate the deformation characteristics [2], [9]. This method can provide only linear solutions that are suitable for structures with small deformations. Insect wing may be heavily deformed while moving, so it is necessary to develop an alternative efficient method to consider the nonlinear deformations of the structure.

In this paper, the authors employ the multibody dynamics approach to model an insect wing using Hencky bar-chain model comprising rigid-body parts connected to each other by torsional springs. The equations of motion are derived using Lagrange's equation and solved by a quasi-Newton method. To determine the properties of the multibody system, a FEM model of the wing is firstly created based on measurement data from a biological hawkmoth wing. The FEM wing is then used to determine the parameters of the rigid bodies-springs system such as mass, the positions of mass centers, spring stiffness, etc. The results are then compared with experimental data.
2. MULTIBODY DYNAMICS APPROACH

2.1. Hencky-bar chain model

A multi-body dynamics approach is employed to model the wing structure with rigid-body parts and springs. The bodies are connected by bending and torsional springs whose stiffness values are determined based on the rigidity distribution of the wing. 
Two types of coordinate systems are used in this study. A ground-fixed coordinate system (XG, YG, ZG) has a vertically downward OZG with the origin at the wing base. For each rigid part, a body-fixed coordinate system (Xk, Yk, Zk) is used as shown in figure 1.
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Figure 1. Multibody dynamic model
The kinematic data of the wing at its base is used to impose the motion of the first body. 

3.2. Equations of motion

The equations of motion of the system are derived using the Lagrange method. The coordinates of each body is defined by 
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 denote the relative bending and torsion angles of the k-th body to the (k-1)-th body. Therefore, the generalized coordinates of the system are 
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 is a rotation matrix that converts the coordinates of a point in the (k-1)-th to the k-th coordinate system.
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The angular velocity of the k-th body relative to the (k-1)-th body can be expressed as:
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where 
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The angular velocity of the k-th body in the k-th body-fixed coordinate system is:
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where 
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The velocity of the k-th body mass center in the k-th body-fixed coordinate system is:
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where
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 are skew-symmetric matrices corresponding to the coordinates of the endpoint and the mass center in the local reference frame. 
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The kinetic energy of the k-th body:
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where 
[image: image18.wmf]K

m

 and 
[image: image19.wmf]K

K

I

 are respectively the mass and the tensor of moment of inertia of each body in its own body-fixed coordinate system.

The derivatives of kinetic energy of each beam:
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The Lagrange equation can be written as:
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where Qη is the generalized force. 

Finally, the governing equation can be derived in the following form:
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where
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with i is the index of the generalized coordinate 
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An in-house code was written in FORTRAN to solve the nonlinear differential system of equations (10) numerically using a quasi-Newton method based on the Broyden update approach [10].

3.3. Validation

To validate the in-house code, MSC Adams software is used to solve the dynamics problem of a simple system with 3 rigid bodies, connected together by bending and torsion springs. The total length of 3 bodies is 4.8 cm, the width of each body is 1.68 cm, which are identical to the spanwise and wing chord of the hawkmoth wing. The mass of each body is 
[image: image31.wmf]5

1.125310
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´

kg, so the total mass of the system is identical to hawkmoth wing mass. The model built in MSC Adams is shown in figure 2.
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Figure 2. Model in MSC Adams
The system oscillates about the vertical axis at a frequency of 26.1 Hz and an amplitude of 54 degrees. The positions of the mass centers of the second and third bodies are calculated along with results from MSC Adams simulation. Good agreement can be seen between the in-house MBD code and Adams results in figure 3.
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(b)
Figure 3. Displacements of the mass center expressed in the ground-fixed coordinate system of the 
a) second body; b) third body
3. BEAM MODEL OF HAWKMOTH WINGS
3.1. FEM Model

In this paper, we use the multibody dynamics system described in section 2 to study the dynamics of the forewing of the hawkmoth Manduca sexta. Therefore, inertial and stiffness characteristics of the bar-chain model must be obtained.

O’Hara and Palazotto utilized various state-of-the-art techniques to measure the geometry, stiffness and mass properties of the hawkmoth Manduca sexta. Based on those measurements, we constructed an FEM model in ANSYS APDL (fig. 4). The FEM model contains about 4000 nodes with veins modeled by BEAM 188 elements and membrane modeled by SHELL 181 elements.
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Figure 4. FEM wing
The scale is assumed to uniformly coat the wing surface and does not affect the wing stiffness properties. The total mass of the FEM wing is 0.033 g, and the wingspan is 4.83 cm. 
3.2. Mass and stiffness distributions of the multibody system
From the FEM wing presented in 3.1, an Euler-Bernoulli beam which undergoes bending and torsion is constructed to model the wing structure. The flexural axis is assumed to be from the wing base to the wingtip, where the largest veins of the wing are distributed. More details about the beam model can be found in the literature [11].

The mass and rigidity distributions of the beam are then used to determine the inertial properties of the bodies and the stiffness coefficients of the springs illustrated in figure 1 [12]. These data are shown in figure 5 for the case of 10 bodies.
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Figure 5. Mass, position of mass center of beams and stiffness of springs along spanwise direction
4. RESULTS AND DISCUSSION

Using the multi-body dynamics model in Section 2.1 with parameters obtained from the beam model in Section 3.2, we calculate the dynamics of a hawkmoth forewing when flapping in vacuum about the vertical axis at 26.1 Hz with an amplitude of 54 degrees. 
Measuring the coordinates and the bending angles at three markers located at the leading edge, the trailing edge and the wing tip (fig. 6), we can make a comparison with the results from Combes’s experiment [13].
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Figure 6. Position of markers on the wing surface
Good agreement can be seen between the experimental and numerical results in figures 7 and 8. However, some high-order oscillations cannot be captured in the simulation, especially at the trailing edge where some local oscillations are very difficult to be captured even with high-order numerical methods. 
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Figure 7. Angular position at the wing tip, leading edge and trailing edge
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Figure 8. Bending angles at the wing tip, leading edge and trailing edge
5. CONCLUSIONS

This paper has presented a multi-body dynamics approach to simulate the dynamics of an insect flapping wing. The wing structure is modeled by a rigid bodies-springs system, that allows us to take into account the nonlinear deformation of the structure. Compared with a biological wing, it showed that the presented numerical model can make relatively accurate predictions of the wings dynamics. The approach presented here can be further completed with the integration of the aerodynamic model into the code.
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