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Abstract: 

The studies of ordinary derivaives based nanofluids have limitations and some restrictions to 

solve and analyze the integer ordered leading partial differential equations and also have some 

memory effect complications. Fractional order in nanofluids can enhance and analyze more 

efficiently the memory effects on nanofluid behavior by different fractional derivatives 

techniques. In this study, the analytical solution of nanofluids containing water as a base fluid 

with copper oxide and silver as nanoparticles with heat and mass characteristics is investigated. 

The water-based nanofluid is flowing on an infinite sheet with constant temperature and 
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thermal radiation. The dimensionless partial differential governing equations are solved in the 

sense of the most recent definition of fractional derivatives that is the Atangana-Baleanu 

fractional derivative. To dig out the mathematical solution of the developed fractional model 

of temperature and velocity field, the Laplace transformation technique and some of its inverse 

method i.e. Zakians method are utilized. To enhance the innovation of this article, the graphical 

and numerical representation of temperature and velocity fields are described and discussed by 

varying the values of different constraints such as fractional parameter and volume fraction. 

As a result, we concluded from the graphical illustration of the parameters, in comparison to 

copper oxide and silver nanofluid, 𝐶𝑈𝑜-water nanofluids has always slightly greater heat 

transfer rate as compared to 𝐴𝑔-water fractional nanofluid, which also depends on the 

enhancement of volume fraction. Furthermore, temperature and velocity profile shows 

decaying behavior with the enhancement in the fractional parameter 𝛽. 

Keywords: Fractional nanofluids, Natural convection, Analytical solution, Thermal radiation 

  

1. Introduction 

Nanofluids are very diminutive elements in the base fluid which can exaggerate the process. 

To conquer the failure of heat transfer, nanofluids are unique in properties for altering the 

thermal features of different fluids [1, 2]. The process of heat transfer mostly is contingent on 

the thermophysical properties of nanoparticles and volume fraction it also is contingent on the 

thermophysical properties of the base fluid. The nanofluids flow under a magnetic field has a 

lot of real-world applications in many engineering fields i.e. hot rolling metal extrusion, energy 

extraction, and fiberglass. The best way to develop a heat transfer ratio is to use the use of 

nanoparticles in the base fluid. Firstly the idea of nanofluids was given by Choi [3]. For 

conventional liquids, nanofluids are considered the best substitute technique. Many examples 
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of the contemporary use of forces and nanofluids have been discussed in the literature. Rostami 

et al. [4] considered the thermophysical possessions of nanofluids to get better thermal 

conductivity of nanofluids. The most studied model is Maxwell modal due to viscosity and 

elasticity properties i.e. Aman et al. [5] examined the Maxwell nanofluids solution in the sense 

of Laplace transformation and another Aman et al. [6] considered Maxwell graphene 

nanofluids for the exact solution of governed equations. Single-wall carbon nanotubes and 

multi-wall nanotubes have been discussed by Alzahrani et al. [7] with rotating plates. Recently, 

the influence of magnetic field and non-linear thermal radiation effect on hybrid bio-nanofluid 

flowing in a peristaltic channel by varying the values of Reynolds number with copper and 

gold as nanoparticles is studied in [8]. The intra-uterine nanofluid with gold as nanoparticles 

flowing through an asymmetric channel is studied in [9] under the magnetic field and thermal 

radiation effect. A comprehensive review of heat transfer in the cavities with their applications 

is analyzed by Hussien et al. [10]. In which they discussed the fluid thermal properties, the 

magnetic field effect, the thermal source discretion, and the entropy generation. Gul et al. [11] 

observed the effects of nanofluids on a needle base medium with carbon CNTs (SWCNTs and 

MWCNTs). In which governing equations are solved by Caputo fractional derivatives and the 

Laplace transformation technique. The numerical analysis of Non-Newtonian flow in the 

closed cavities with the buoyant convection effect is analyzed by the Rehman et al. [12].  The 

study of natural convection fluid mixed with nanoparticles flowing on an infinite vertical plate 

under the magnetic field and radiation effect is investigated by mohankrishana et al. [13]. Other 

comprehensive and interesting applications of nanofluids with their applications can be seen in 

[14-18].  

In the mathematical study, the non-integer order modals of PDEs are solved by different 

mathematical techniques. Fractional calculus treats with non-local integration and 

differentiation [19]. For mathematical modeling and many physical phenomenons, fractional 
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calculus has been widely used. An analytic solution of fractional type fluid for tangential stress 

and velocity was considered by Wang et al. [20]. Fractional derivative is the best approach to 

improve these mathematical models and numerical results. Fractional derivative models can 

clarify more efficiently numerical and analytical results of the real word problems such as 

diffusive transport, viscoelastic materials, electromagnetic theory, electrical networks, fluid 

flows, and rheology [21]. Makris et al. [22] accomplished the Maxwell model in the sense of 

fractional derivative rather than the classical derivatives and proved by his numerical results 

that the non-integer order model has more suitable results rather than the classical derivative 

model. With time, different definitions and algorithms were concluded by different researchers 

and mathematicians. To solve different physical and numerical phenomenon’s different 

fractional-order definitions were used i.e. Riemann-Liouville [23], Caputo [24], Caputo-

Fabrizio [25], and Atangana-Baleanu [26]. Recently, the solution for different fluids on mass 

and heat transfer with different mechanical and thermal conditions has been introduced by 

Caputo fractional derivatives by different authors [27-30]. The most recent approach and a 

modified form of Caputo-Fabrizio (CF) is the Atangana-Baleanu (AB) time-fractional 

derivative, which has the ideal properties in which non-singularity, non-locality of the kernel, 

good memory effects, and heredity effects are most common. 

The Non-local and non-singular kernels of the AB fractional derivative utilized, namely as 

Mittag-Leffler function, and in some cases, this can accurately represent the dynamics of non-

local phenomena. Prompted by this innovative methodology to fractional derivatives, namely 

AB-fractional derivative, the following points are remarkably noted for the comparison of AB 

and CF-fractional derivatives, that what are the advantages of AB- fractional derivative over CF-

fractional derivatives;(a): The CF-fractional derivative is non-Markovian and some well 

Riemann-Liouville derivative is just Markovian. Whereas AB-fractional derivative has both 

Markovian and non-Markovian characteristics. (b): Caputo-Fabrizio is an exponential 
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progression, and the Riemann-Liouville derivative is a power rule. While Atangana-Baleanu 

fractional derivative contains all properties power law, stretched exponential and Brownian 

motion. (c): RL-fractional derivative is still just power law and scale-invariant, whereas 

Atangana-Baleanu fractional derivative's mean square displacement is a transition from normal 

distribution to sub-diffusion. This demonstrates that the AB derivative is capable of explaining 

problems of various sizes in the real world [31]. This concept of the AB operator is implemented 

by Atangana and Koca [32] to a non-linear structure and demonstrates the presence and 

distinctiveness of the conceptual model solution of the fractional order. In [33], the authors 

discussed the hybrid nanofluid with alumina oxide and copper nanoparticles with water as base 

fluid flowing in a micro-channel under the magnetic field effect. They investigated the solution 

of the problem with the help of the AB-fractional derivative and the Laplace transformation 

scheme. And they concluded that temperature was enhanced by varying the volume fraction and 

heat generation parameter. In [34], the analysis of radiative heat transfer rate with different 

nanoparticles of hybrid nanofluid flowing on an inclined plate with ramped temperature is studied 

by using the AB-fractional derivative technique. The analysis of stoke’s second problem by using 

AB-fractional derivative approach for nanofluids is studied by Abro et al. in [35]. The analytical 

solution of blood-based nanofluid with SWCNTs and MWCNTs is investigated by Saqib et al. 

[36] in the sense of AB-fractional derivative. 

However, by inspiring the above literature study, we have investigated the analytical solution of 

fractional nanofluids flowing on an infinite sheet with constant temperature with heat flux and 

radiation effect. Initially, the infinite plate is at rest but after some time the plate starts to oscillate 

with constant velocity and fluid starts to flow. As fractional partial differential equations can 

explain and represent the physical behavior of any physical problem rather than simple partial 

differential equations. So to dig out the solution of different nanofluids modals many other 

definitions and techniques have been used but in this study, we have used the most recent 
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definition of fractional derivatives i.e Atanga-Baleanu fractional derivatives and the Laplace 

transformation technique is utilized to find out the numerical results of temperature and velocity 

field. Furthermore, at the end of this study to check out the graphical behavior of different 

constraints on temperature and velocity field, the numerical discussion of obtained results is 

discussed and concluded. 

2. Statement of the Problem 

Suppose an unsteady viscous free convection nanofluid flow flowing on an infinite sheet lying 

in the XY-plane. Initially, both plate and fluid velocity are at rest with constant 

temperature 𝑇∞ , then at 𝑡 = 0+  the plate starts to oscillate with some constant velocity. In 

addition, the radiation effect is also considered and radiative heat flux is applied on the plate in 

a perpendicular direction, as shown in Fig 1. As here we have considered an infinite plate so 

we assumed the components of velocity and temperature are 𝜁 and 𝑡. And Copper oxide 𝐶𝑢𝑂  

and Silver (𝐴𝑔) are considered as nanoparticles with base fluid water 𝐻2𝑂 whose physical 

properties are shown in Tab 1. 

 

Fig 1: Physical representation of the problem 
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 Now by using the Boussinesq’s approximation[37, 38] and Rosseland approximation [39], the 

unsteady flow of nanofluid governed by the following governing partial differential equations 

[40] 

𝜌𝑛𝑓
𝜕𝑣(𝜁,𝑡)

𝜕𝑡
= 𝜇𝑛𝑓

𝜕2𝑣(𝜁,𝑡)

𝜕𝜁2 + 𝑔(𝜌𝛽𝑇)𝑛𝑓(𝑇(𝜁, 𝑡) − 𝑇∞) ;       𝜁, 𝑡 > 0    (1) 

(𝜌𝐶𝑝)
𝑛𝑓

𝜕𝑇(𝜁,𝑡)

𝜕𝑡
= 𝑘𝑛𝑓 (1 +

𝑞𝑟

𝑘𝑛𝑓
)

𝜕2𝑇(𝜁,𝑡)

𝜕𝜁2   ;       𝜁, 𝑡 > 0     (2) 

Where 𝑞𝑟 is the radiative heat flux which can be defined mathematically as 𝑞𝑟 =

−
16𝜎𝑇∞

3

3𝑘

𝜕𝑇(𝜁,𝑡)

𝜕𝜁
, and the suitable initial and boundary conditions are 

𝑣(𝜁, 𝑡) = 0,      𝑇(𝜁, 𝑡) = 𝑇∞   ;       𝜁 > 0,    𝑡 = 0       (3) 

𝑣(𝜁, 𝑡) = 0,        𝑇(𝜁, 𝑡) = 𝑇𝑤  ;       𝜁 = 0,    𝑡 > 0      (4) 

𝑣(𝜁, 𝑡) → 0,       𝑇(𝜁, 𝑡) → 0    𝑎𝑠   𝜁 → ∞,    𝑡 > 0      (5) 

𝑣(𝜁, 𝑡), 𝜌𝑛𝑓 , 𝑔,   𝑇𝑤, (𝛽𝑇)𝑛𝑓, 𝜇𝑛𝑓 are the fluid velocity in the XY-plane, Density of the fluid, 

the force of gravity, the temperature of the plate, thermal expansion, and dynamic viscosity 

respectively. Which can be summarized as 

Table 1: Thermophysical characteristics of nanoparticles [41] 

Base Fluid/Nanoparticles 𝝆(𝑲𝒈/𝒎𝟑) 𝑪𝒑(𝑱/𝑲𝒈 𝑲) 𝒌(𝒘/𝒎. 𝑲) 𝛽𝑇 × 𝟏𝟎𝟓(𝟏/𝑲) 

𝑯𝟐𝑶 997.1 4179 0.613 21 

𝑪𝒖𝑶 6320 531.8 76.5 1.80 

𝑨𝒈 10500 235 429 1.89 

 

𝜌𝑛𝑓 = (1 − 𝜑)𝜌𝑓 + 𝜑𝜌𝑠  ,       𝜇𝑛𝑓 =
𝜇𝑓

(1 − 𝜑)2.5
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(𝜌𝛽)𝑛𝑓 = (1 − 𝜑)(𝜌𝛽𝑇)𝑓 + 𝜑(𝜌𝛽𝑇)𝑠  ,       (𝜌𝐶𝑝)
𝑛𝑓

= (1 − 𝜑)(𝜌𝐶𝑝)
𝑓

+ 𝜑(𝜌𝐶𝑝)
𝑠
 

𝑘𝑛𝑓

𝑘𝑓
=

𝑘𝑠 + 2𝑘𝑓 − 2𝜑(𝑘𝑓 − 𝑘𝑠)

𝑘𝑠 + 2𝑘𝑓 + 𝜑(𝑘𝑓 − 𝑘𝑠)
 

Where 𝜑, 𝜌𝑓 , 𝜌𝑠, 𝐶𝑝, 𝑘𝑛𝑓 , 𝑘𝑓 , 𝑘𝑠 are volumetric fraction, the density of the base fluid, density 

of solid particles, specific heat at constant pressure, thermal conductivity, nanofluid, and solid 

particles respectively. Now to non-dimensionalize the governing equations introducing the 

dimensionless variables  

𝑡∗ =
𝜐𝑓

𝐿2 𝑡,    𝜁∗ =
𝜁

𝐿
,    𝑣∗ =

𝐿

𝜐𝑓
𝑣,    𝑇∗ =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
,    𝐿 = [

𝜐𝑓
2

𝑔(𝛽𝑇)𝑛𝑓(𝑇𝑤−𝑇∞)
]

1/3

   (6) 

By utilizing these non-dimensional variables of Eq. (6) and ignoring the star notation, 

governing equations with conditions in the non-dimensional form will turn into as 

𝜕𝑣(𝜁,𝑡)

𝜕𝑡
=

1

𝜆1

𝜕2𝑣(𝜁,𝑡)

𝜕𝜁2 + 𝜆2𝑇(𝜁, 𝑡) ;       𝜁, 𝑡 > 0       (7) 

𝜕𝑇(𝜁,𝑡)

𝜕𝑡
=

1

𝜆3

𝜕2𝑇(𝜁,𝑡)

𝜕𝜁2   ;         𝜁, 𝑡 > 0        (8) 

with initial and boundary conditions: 

𝑣(𝜁, 𝑡) = 0,   𝑇(𝜁, 𝑡) = 𝑇∞   ;       𝜁 > 0, 𝑡 = 0    (9) 

𝑣(𝜁, 𝑡) = 0,     𝑇(𝜁, 𝑡) = 1  ;       𝜁 = 0, 𝑡 > 0              (10) 

𝑣(𝜁, 𝑡) → 0,      𝑇(𝜁, 𝑡) → 0    𝑎𝑠   𝜁 → ∞, 𝑡 > 0              (11) 

Where  

𝜆1 = (1 − 𝜑)2.5 (1 − 𝜑 + 𝜑
𝜌𝑠

𝜌𝑠
),    𝜆2 =

1 − 𝜑 + 𝜑
(𝜌𝛽𝑇)𝑠

(𝜌𝛽𝑇)𝑓

1 − 𝜑 + 𝜑
𝜌𝑠

𝜌𝑓

   ,    𝜆3 = 𝑃𝑟

1 − 𝜑 + 𝜑
(𝜌𝐶𝑝)

𝑠

(𝜌𝐶𝑝)
𝑓

𝑘𝑛𝑓

𝑘𝑓
+ 𝑁𝑟
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𝑃𝑟 =
𝜇𝑓𝐶𝑝𝑓

𝑘𝑓
  ,      𝑁𝑟 =

16𝜎∗𝑇∞
3

3𝑘∗𝑘𝑓
              (12) 

Now the fractional modal i.e. Atangana-Baleanu time-fractional derivative modal of the above 

governing equations (7) and (8) can be defined as 

𝔇𝑡
𝛽

 
𝐴𝐵 𝑣(𝜁, 𝑡) =

1

𝜆1

𝜕2𝑣(𝜁,𝑡)

𝜕𝜁2 + 𝜆2𝑇(𝜁, 𝑡) ;       𝜁, 𝑡 > 0                (13) 

𝔇𝑡
𝛽

 
𝐴𝐵 𝑇(𝜁, 𝑡) =

1

𝜆3

𝜕2𝑇(𝜁,𝑡)

𝜕𝜁2   ;         𝜁, 𝑡 > 0      (14) 

Where 𝔇𝑡
𝛽

 
𝐴𝐵  is the AB-time fractional derivative with fractional operator 𝛽 which can be 

defined as mathematically  

𝔇t
β

 
AB   u(ξ, t) =

1

1−β
∫ Eβ [

β(t−z)β

1−β
]

t

0
u′

(ξ,t)dt     ;            0 < β < 1   (15) 

Where Eβ(z) is a Mittage-Laffer function which can be expressed as  

Eβ(z) = ∑
zβ

Γ(rβ+1)
  ;         0 <  𝛽 < 1, 𝑧 ∈ ℂ∞

r=0      (16) 

And the Laplace transformation of  𝔇t
β

 
AB   is 

ℒ{ 𝔇t
β

 
AB u(ξ, t)} =

qβℒ[u(ξ,t)]−qβ−1u(ξ,0)

(1−β)qβ+β
      (17) 

and 

lim
β→1

𝔇t
β

 
AB   u(ξ, t) =

𝜕𝑣(𝜁,𝑡)

𝜕𝑡
        (18) 

3. Solution of the Problem 

To dig out the solution of fractional modeled governing equations (13)-(14) and its 

corresponding initial conditions (9)-(11), the Laplace transformation method will be used. 

3.1.Temperature field 
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By applying the Laplace transformation on the governed equation (14) and its corresponding 

initial and boundary conditions, and utilizing the result of equation (17) 

𝑞𝛽ℒ[𝑇(𝜁,𝑡)]−𝑞𝛽−1𝑇(𝜁,0)

(1−𝛽)𝑞𝛽+𝛽
=

1

𝜆3

𝜕2𝑇̅(𝜁,𝑞)

𝜕𝜁2     (19) 

Where 𝑞 is the transformation of 𝑡, the Laplace of T(ξ, t) to 𝑇̅(𝜁, 𝑞), satisfying the flowing 

conditions 

𝑇̅(0, 𝑞) =
1

𝑞
 ;      𝑇̅(𝜁, 𝑞) → 0   as     𝜁 → ∞   (20) 

Utilizing the above conditions, the solution of temperature field (19) will become as  

𝑇̅(𝜁, 𝑞) =
1

𝑞
𝑒

−𝜁√
𝜆3𝑞𝛽

(1−𝛽)𝑞𝛽+𝛽
    (21) 

By applying the inverse of Laplace transformation on equation (21), and utilizing the Appendix 

equation (A1), the inverse of equation (21) can be written as 

𝑇(𝜁, 𝑡) = 𝜙 (1,
−𝛽

2
;  −𝜁√𝜆3𝑞𝛽) ;     𝜁 > 0  (22) 

Where: 

𝜙(𝑎, −𝑏;  𝑧) = ∑
𝑧𝑛

𝑛!Γ(𝑎−𝑛𝑏)
  ;       𝑏 𝜖 (0,1)∞

𝑛=1   (23) 

is the Wright function. When 𝛽 = 1 then equation (21) will become as in the conditional form 

as 

𝑇(𝜁, 𝑡) = 𝑒𝑟𝑓𝑐 (
𝜁√𝜆3

2√𝛽𝑡
)       ;       𝜁√

𝜆3

𝛽
> 0   (24) 

3.2.Solution of Velocity Field 

Jo
urn

al 
Pre-

pro
of



Now utilizing the Laplace transformation on fractional modeled equation (13) and utilizing the 

result (17), the Laplace of AB-fractional derivative, the equation (13) with its corresponding 

conditions will be yield as 

𝑞𝛽ℒ[𝑣(𝜁,𝑡)]−𝑞𝛽−1𝑣(𝜁,0)

(1−𝛽)𝑞𝛽+𝛽
=

1

𝜆1

𝜕2𝑣̅(𝜁,𝑞)

𝜕𝜁2 + 𝜆2𝑇̅(𝜁, 𝑞)  ;       0 < 𝛽 < 1 (25) 

Where 𝑞 is the transformed parameter of 𝑣(𝜁, 𝑡) to 𝑣̅(𝜁, 𝑞) satisfying the subsequent 

conditions: 

𝑣̅(0, 𝑞) = 0   ;     𝑣̅(𝜁, 𝑞) → 0 as 𝜁 → ∞  (26) 

A particular solution of the velocity field (25) is 

𝑣̅(𝜁, 𝑞) = −
𝜆1𝜆2

𝜆3−𝜆1

(1−𝛽)𝑞𝛽+𝛽

𝑞𝛽+1 𝑒
−𝜁√

𝜆3𝑞𝛽

(1−𝛽)𝑞𝛽+𝛽
   (27) 

With its general solution 

𝑣̅(𝜁, 𝑞) = 𝐴𝑒
𝜁√

𝜆1𝑞𝛽

(1−𝛽)𝑞𝛽+𝛽
+ 𝐵𝑒

−𝜁√
𝜆1𝑞𝛽

(1−𝛽)𝑞𝛽+𝛽
−

𝜆1𝜆2

𝜆3−𝜆1

(1−𝛽)𝑞𝛽+𝛽

𝑞𝛽+1 𝑒
−𝜁√

𝜆3𝑞𝛽

(1−𝛽)𝑞𝛽+𝛽
 (28) 

Now utilizing the above-transformed conditions (26) the solution of the velocity field can be 

concluded as 

𝑣̅(𝜁, 𝑞) =
𝜆1𝜆2

𝜆3−𝜆1

(1−𝛽)𝑞𝛽+𝛽

𝑞𝛽+1
(𝑒

−𝜁√
𝜆1𝑞𝛽

(1−𝛽)𝑞𝛽+𝛽
− 𝑒

−𝜁√
𝜆3𝑞𝛽

(1−𝛽)𝑞𝛽+𝛽
)   (29) 
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Fig 2: Variation in fractional parameter 𝛽 for temperature distribution and 𝐶𝑢𝑂 nano-particles 

at 𝑡 = 0.1 and 𝑡 = 0.3 
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Fig 3: Variation in fractional parameter 𝛽 for temperature distribution and 𝐴𝑔 nano-particles 

at 𝑡 = 0.1 and 𝑡 = 0.3 
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Fig 4: Variation in fractional parameter 𝛽 for the velocity field and 𝐶𝑢𝑂 nano-particles at 𝑡 =

0.1 and 𝑡 = 0.3 

The Eq. (29) corresponds to the velocity field of fractional nanofluids is so complicated, so their 

Laplace inverse also difficult to solve analytically. For numerical inverse of Laplace, we have 

used here Zakians method w.r.t transformed variable t. Zakians method mathematically can be 

expressed as 

u(ξ, t) =
2

t
  ∑ Re (kj .  u (ξ,

αj

t
))N

j=1    (30) 
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4. Discussion of Results 

The analytical solution of free convection unsteady nanofluid flow of water-based fractional 

fluid on an infinite sheet with the constant temperature at boundaries is studied. The most recent 

definition of fractional derivatives, AB-time fractional derivative is utilized to generate the 

fractional modal of the under conversation problem. To dig up the analytical solution of 

dimensionless governing equations i.e. temperature and velocity field the Laplace 

transformation technique is utilized. The thermophysical properties of nanoparticles such as 

Silver (𝐴𝑔) and Copper oxide (𝐶𝑢𝑂) with water as a base fluid are shown in Tab. 1. To 

enhance the innovation of this work graphical and numerical results are represented in Figs 2-

8 for altered values of different constraints such as fractional parameter 𝛽, and volumetric 

friction 𝜑.  The temperature field against the fractional parameter 𝛽 is plotted in Fig 2 for the 

altered values of the fractional parameter and volume fraction 𝜑 at different times. By 

enhancing the value of the fractional parameter Fig 2 shows the decay in the temperature field 

of the fluid. Similarly, the effect of fractional parameter 𝛽 at different values of time 𝑡 for 

temperature field and 𝐴𝑔 nanoparticles are plotted in Fig 3. As a result, this can be seen in Figs 

2 and 3 that the temperature field decreases as the values of the fractional parameter increase 

due to the physical characteristics of nanoparticles. In Tab 2 the comparison of different 

nanoparticles that’s are copper oxide and silver for changed values of fractional 

parameter 𝛽 and 𝜁 are represented at time 𝑡 = 0.5 and volume fraction 𝜑 = 0.2. Furthermore, 

the copper oxide 𝐶𝑢𝑂 nanoparticles show large temperature values as compared to 

silver 𝐴𝑔 nanoparticles in Tab 2. 

 

Table 2: Comparison of temperature field for both 𝐶𝑢𝑂 and 𝐴𝑔 nanoparticles at 𝑡 = 0.5 and volumetric fraction 𝜑 = 0.2 

𝜻 𝑪𝒖𝑶 𝑨𝒈 
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𝜷 = 𝟎. 𝟑 𝜷 = 𝟎. 𝟓 𝜷 = 𝟎. 𝟕 𝜷 = 𝟎. 𝟗 𝜷 = 𝟎. 𝟑 𝜷 = 𝟎. 𝟓 𝜷 = 𝟎. 𝟕 𝜷 = 𝟎. 𝟗 

0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.1 0.8742 0.8904 0.9136 0.9387 0.8773 0.8931 0.9158 0.9403 

0.2 0.7641 0.7922 0.8330 0.8786 0.7695 0.7971 0.8371 0.8818 

0.3 0.6678 0.7044 0.7581 0.8201 0.6750 0.7110 0.7639 0.8247 

0.4 0.5836 0.6260 0.6887 0.7634 0.5920 0.6339 0.6958 0.7693 

0.5 0.5100 0.5559 0.6245 0.7086 0.5192 0.5648 0.6328 0.7158 

0.6 0.4456 0.4934 0.5655 0.6561 0.4553 0.5029 0.5745 0.6643 

0.7 0.3894 0.4377 0.5111 0.6058 0.3992 0.4476 0.5209 0.6149 

0.8 0.3401 0.3881 0.4613 0.5579 0.3500 0.3981 0.4715 0.5678 

0.9 0.2971 0.3439 0.4158 0.5125 0.3068 0.3540 0.4262 0.5230 

1.0 0.2595 0.3045 0.3741 0.4694 0.3690 0.3146 0.3848 0.4806 

 

Table 3: Comparison of the velocity field for both 𝐶𝑢𝑂 and 𝐴𝑔 nanoparticles at 𝑡 = 0.7 and volumetric fraction 𝜑 = 0.2 by 

using Zakians Method 

𝜻 
𝑪𝒖𝑶 𝑨𝒈 

𝜷 = 𝟎. 𝟑 𝜷 = 𝟎. 𝟓 𝜷 = 𝟎. 𝟕 𝜷 = 𝟎. 𝟗 𝜷 = 𝟎. 𝟑 𝜷 = 𝟎. 𝟓 𝜷 = 𝟎. 𝟕 𝜷 = 𝟎. 𝟗 

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.3 0.0749 0.0874 0.1063 0.1313 0.0463 0.0541 0.0659 0.0816 

0.6 0.1052 0.1269 0.1600 0.2045 0.0634 0.0768 0.0972 0.1248 

0.9 0.1107 0.1379 0.1793 0.2356 0.0650 0.0815 0.1066 0.1409 

1.2 0.1037 0.1329 0.1773 0.2379 0.0593 0.0767 0.1030 0.1390 

1.5 0.0910 0.1198 0.1633 0.2222 0.0508 0.0674 0.0926 0.1265 

1.8 0.0768 0.1035 0.1436 0.1967 0.0416 0.0567 0.0793 0.1088 

2.1 0.0629 0.0868 0.1220 0.1671 0.0332 0.0463 0.0655 0.0896 
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2.4 0.0505 0.0712 0.1011 0.1374 0.0259 0.0369 0.0527 0.0712 

2.7 0.0400 0.0574 0.0820 0.1100 0.0199 0.0289 0.0415 0.0549 

3.0 0.0313 0.0456 0.0655 0.0860 0.0150 0.0223 0.0320 0.0412 

 

 

 

Fig 5: Variation in volume fraction 𝜑 for the velocity field and 𝐶𝑢𝑂 nano-particles at 𝜑 =

0.1 and 𝜑 = 0.3 
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The effects of fractional parameters on velocity field via AB-fractional derivative at different 

time values for copper oxide nanoparticles are plotted in Fig 4. By increasing the value of 

fractional parameter 𝛽 Fig 4 represents the decay in the velocity field. Physically, the 

enhancement in the velocity fractional parameter increases the thickness of the boundary layers 

which causes the reduction in the velocity of nanofluids. The effects of volume fraction 𝜑 at 

altered values of fractional parameter 𝛽 and 𝜁 are plotted in Fig 5 for copper 

oxide 𝐶𝑢𝑂 nanoparticles in the existence of thermal radiation. As shown in the figure, the 

velocity field again decreases by increasing the value of volume fraction and fractional 

parameter and the boundary layer viscosity is smaller for ordinary nanofluids as compared to 

fractional nanofluid. Physically enhancement in the volume fraction increases the viscousness 

and thermal conduction of the fluid that’s clues to slow down the fluid velocity with the 

enhancement in volume fraction parameter and fractional parameter 𝛽. The rate of the 

fractional parameter corresponds to the velocity of nanofluid with 𝐴𝑔 nanoparticles is brought 

to light in Fig 6, in the existence of thermal radiation at different values of the time. This Fig 

also represents the decay in the velocity field by amassed the value of fractional parameter 𝛽. 

The variation of volume fraction 𝜑 on velocity field is represented in Fig 7 which also decays 

fluid velocity, similar to water-based 𝐶𝑈𝑜 nanoparticles. The comparison for the temperature 

field of copper oxide and silver-based fractional nanofluid when 𝛽 → 1 and ordinary nanofluid 

temperature is plotted in Fig 8(a). It can be seen that, in natural convection flow, the 

enhancement of heat transfer is lesser in copper oxide and silver-based fractional nanofluid as 

compared to ordinary nanofluid temperature. Because, for fractional nanofluid, the thermal 

boundary layer is denser. And the temperature field shows decay by enhancing the value of the 

fractional parameter for both cases i.e. silver nanofluid and copper oxide nanofluid. And the 

comparison of the velocity field obtained by the AB-fractional derivative and the velocity field 

of Fetecau et al. [42] is highlighted in Fig 8 (b). The curves of our study result velocity overlap 
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to the velocity field obtained by Fetecau et al. [42]. The overlapping of the curves represents 

the validation of our obtained results. Furthermore, in comparison to copper oxide and silver 

nanofluid, copper oxide shows greater values as compared to silver-fractional nanofluid for 

velocity field which can be seen in Tab 3. 

 

 

Fig 6: Variation in fractional parameter 𝛽 for the velocity field of Water-Ag nanofluid at 𝑡 =

0.1 and 𝑡 = 0.5 

Jo
urn

al 
Pre-

pro
of



 

 

Fig 7: Variation in volume fraction 𝜑 for the velocity field and 𝐴𝑔 nano-particles at 𝜑 =

0.1 and 𝜑 = 0.3 
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Fig 8: Comparison of (a): temperature field of fractional and ordinary nanofluid (b): our 

study velocity with Fetecau et al. [42]  solutions velocity 

5. Conclusions 

An analytical study of free convection nanofluid flow is studied with the most recent definition 

of fractional derivative i.e. Atangana-Baleanu time-fractional derivative with the uniform 

temperature at the boundaries of an infinite sheet. To find out the physical behavior of 

temperature and velocity field for altered values of different parameter fractional parameter, 
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and volume fraction graphical and numerical representation is plotted and presented in figures 

and tables. The leading results concluded from the whole study of this work can be 

encapsulated as 

 In natural convection flow, the enhancement of heat transfer is lesser in fractional 

nanofluid as compared to ordinary nanofluid. For fractional nanofluid, the thermal 

boundary layer is denser. And the temperature field shows decay by enhancing the 

value of the fractional parameter for both cases i.e. silver nanofluid and copper oxide 

nanofluid. 

 The enhancement in volume fraction 𝜑 decreases the dimensionless velocity of water-

based nanofluid and ordinary nanofluid. 

 Copper oxide nanofluid increases the heat transfer in natural convection flow as 

compared to silver nanofluid flow. 

 In this study, this can be concluded that the fractional derivatives have a substantially 

different behavior as compared to ordinary nanofluid. And on the heat transfer, the 

fractional parameter has a more solid impact as compared to other models. 
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