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� Sound absorption can be tailored by
using optimized composite panels.

� Global sensitivity indices are
computed through Monte-Carlo and
spectral approaches.

� Sensitivity functions are related to
sound absorption resonance
behaviors.

� Foam microstructural parameters are
generally found to be the most
influential ones.
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a b s t r a c t

The acoustic properties of composite structures made of a perforated panel, an air gap, and a porous layer,
can be studied numerically by a combined use of ad hoc optimization and sensitivity analysis methods.
The methodology is briefly described and is systematically applied to a series of multi-layer configura-
tions under manufacturing constraints. We specifically consider a foam layer of constant thickness pre-
senting three different degrees of reticulations (pore opening). For each foam layer, the optimal
geometrical parameters of the perforated panel and the cavity depth maximizing sound absorption under
normal incidence are determined, together with the corresponding sensitivity indices. The simulation
results are found in good agreement with interpretations and experimental data provided elsewhere.
From a general perspective, the framework can be used to identify the most influential parameters within
multiscale settings for acoustics studies, hence enabling robust design under material and microstruc-
tural uncertainties for instance.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

The sound attenuation of compressional waves in layered por-
ous structures is an important engineering physics topic that has
led to various innovative applications in aeronautical, construction,

and transport industries. The study of wave propagation in satu-
rated porous media started with the phenomenological approach
of Biot [1–7]. Later on, important progress was made by having
recourse to homogenization theory for periodic structures with
compressible and incompressible fluids [8–10]. Decisive advan-
tages of this framework include the integration of the local point
equations which govern wave propagation in the exact geometry,
and the ability to derive boundary value problems at leading
orders. This approach has paved the way for the construction of
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numerical models that, while compatible with a phenomenological
description, account for an explicit description of the microstruc-
ture [11–16]. In order to reduce the computational cost associated
with the prediction of the microstructure-dependent macroscopic
parameters that are fed into a phenomenological theory, Doutres
et al. proposed a more direct method which consists in conducting
a series of laboratory measurements on samples presenting differ-
ent microstructural features [18,19].

In order to achieve robust design, one may seek to better under-
stand the statistical correlations between macroscopic parameters
[20], or to predict the sensitivity of these parameters to
microstructural properties [21] (see [22] for a combination of both
strategies). Alternatively, one can consider optimization studies
based on forward numerical simulations; see [23–26] for various
applications involving additive manufacturing techniques and bio-
materials, respectively. In classical robust engineering design, the
main issue is to clarify how the variability associated with the
model inputs affects the model outputs. Sensitivity analysis is also
intended to determine which input parameters contribute the
most to output variabilities (and as a corollary, which parameters
can be considered insignificant for the case under consideration)
and to estimate parameter interactions; [20] for an application in
acoustics. Because in the classical semi-phenomenological
approach the macroscopic parameters are inter-dependent, a
multi-scale procedure has to be implemented to link the macro-
scopic response to the microstructure morphology, at the expense
of the computational time. A way to circumvent this difficulty is to
use a surrogate model to connect microstructure with transport
parameters and account for the microstructure effects solely by a
set of algebraic equations. Several studies have used this approach
based on semi-empirical [18,19] or feedback shift correction tech-
niques [23,26]. To our knowledge, no such unified approach has
been presented for the robust design of composite sound absorbing
structures including a porous material, an air gap, and a perforated
panel. These elements, however, turn out to be the most appropri-
ate ones for the sound absorption involved in industrial systems.
These are the elements we used in our multi-scale robust design
model.

In the case of multi-layer structures (see Chapter 11 in [27]),
prototypical configurations include a perforated panel (PP) and a
porous layer, separated by an air gap. Other configurations include
the use of panels composed of a parallel arrangement of different
quarter-wavelength resonators designed to be impedance matched
at selected frequencies, e.g, optimally designed panels to the limit
imposed by causality [28] or, in a similar way, optimized absorbers
based a periodic array of varying cross-section waveguides, each of
them being loaded by Helmholtz resonators with graded dimen-
sions [29]. For a given frequency range, the design of relevant geo-
metrical parameters can be achieved under constraints related to
the perforation diameter in the covering panel for instance. Several
recent contributions have addressed the optimization of acoustic
properties for composite structures; see [25, 31–34]. In these
works, various inner layers were considered, including metal
foams [30], polymer fibrous layers [25,30], and micro-perforated
panels with and without airgaps. Sound absorption optimization
was addressed for wide bands (for instance, [2000 6000] [Hz] in
[30,32]) or at low frequency (such as 400 [Hz] in [34]), by having
recourse to various optimization techniques (such as a cuckoo
search algorithm [30] or analytical methods [32]) or by tuning
some factors in experiments [34]. However, works addressing opti-
mization and robustness considerations simultaneously remain
relatively scarce. In general, the influence of random parameters
(modeling geometrical uncertainties for instance) on the acoustic
performance of single- or multi-layer absorbers can be character-
ized by means of sensitivity analyses (SA). The latter essentially
aim to quantitatively assess dependencies between the inputs

and outputs of a selected model and allow one to rank model
inputs in terms of their impacts on outputs of interest (see [35],
Part IV Volume II, for reviews). Such calculations were conducted
on acoustic porous models in Refs. [22,20,36,21], for instance. For
single-layer absorbers (consisting of foam materials for example),
previous works have considered macroscopic parameters (such
as transport and mechanical buckling properties) as uncertain
parameters, and acoustic characteristics (including acoustic
absorption or surface impedance) as quantities of interest. The
SA results indicated that resistivity is, in fact, the most influential
parameter—regardless of whether input parameters are assumed
correlated or statistically independent. From a technical stand-
point, both the Sobol method and the Fourier Amplitude Sensitivity
Test (FAST) were used to estimate sensitivity indices and led to
consistent findings. Sensitivity analyses for moderately- to
highly-reticulated polyurethane foams were performed in [21]. It
was shown that in this case, the strut length is the dominant
parameter as (i) it has a substantially impact on three important
macroscopic non-acoustic parameters (namely, the airflow resis-
tivity or viscous permeability, and the thermal and viscous charac-
teristic lengths), and (ii) it generates large variability in the sound
absorption coefficient. In the case of layered composite panels, the
main acoustic responses (i.e. reflection, echo reduction, and trans-
mission loss) over frequencies were selected as indicators for SA in
[37,38], and it was shown that the Poisson’s ratio and thickness of
the coating are the most influential parameters for the reflection
and transmission losses. In [38], the forward mapping was evalu-
ated on surrogate models for semi-analytical laws, based on finite
element computations.

Following the previous discussion, this work has two major
objectives. The first one is to apply a numerical optimization tech-
nique to determine geometrical parameters of composite struc-
tures which maximize sound absorption at normal incidence
under given constraints. The second one is to determine the sensi-
tivity of the design to geometrical parameters. The Transfer Matrix
Method is used to predict the sound absorption of the multilayered
structures stacked in series. In this approach, the perforated plate,
the cavity depth, and the porous layer are addressed separately
(each layer being related to the corresponding geometrical factors).
This paper is organized as follows. Section 2 provides an overview
of acoustical models for multi-layer absorbers, based on semi-
analytical relationships. In Section 3, we present the mathematical
formulation for design optimization and sensitivity analysis. The
approach is subsequently deployed on multi-layer absorbers in
Section 4. In addition to quantitative results, we also provide phys-
ical insight to support key findings. Conclusions and perspectives
are finally provided in Section 5.

2. Acoustical models of multi-layer absorbers

In this section, we present acoustic models for multi-layer
absorbers including a perforated panel, a cavity (i.e., airgap), and
a membrane foam layer. Such a configuration is shown in Fig. 1
where details about geometrical parameters for the inner compo-
nents are also indicated. For the PP,

2.1. Model of micro-perforated facing and air layer

The PP can be considered as a lattice of short narrow tubes. Dis-
tances between these tubes are typically larger than their diame-
ters, but remain small as compared to the wavelength of the
impinging sound wave. A comprehensive review of the different
perforated plate models, including the comparison of models used
in the literature for different geometries of duct discontinuities or
perforations, has been proposed by Jaouen and Chevillotte [39].
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These comparisons allowed them to obtain two results. First, the
mode-coupling at the discontinuity between two ducts or a perfo-
rated plate and air is negligible for low frequencies (when the wave
number in air times the inner radius of the smallest duct or perfo-
ration radius is much smaller than one). Second, by using a length
correction accounting for the line flow distortion around the aper-
ture of the perforation to quantify the sound radiation effect of a
perforation, they could verify that all consistent models depend
both on a function of the square root of the perforation ratio and
on the thickness of the plate. Therefore, in the perforated panel
model, the periodicity of the perforations and the symmetry of
the sound excitation (plane waves) imply that the linear acoustic
problem at large wavelengths can be solved by studying only one
pattern. The sound propagation in one pattern is considered to
behave independently from its neighbors as the pattern dimen-
sions are much smaller than the acoustic wavelength. In other
words, week interaction between the evanescent modes inside
and outside the perforation is assumed. Here, the Maa model is
used to account for the effects of the perforated plate. At normal
incidence, the wave motion in all the short tubes is in phase and
additive. The relative acoustic impedance of the PP can be calcu-
lated as [40,41]

ZM ¼ 32gtm
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where

� g is the kinematic viscosity of air;
� d denotes the diameter of the hole;
� b represents hole spacing; and
� tm is the thickness of the perforated panel (see Fig. 1a).

In addition, x ¼ 2pf denotes the angular frequency, p is the

perforation ratio (given by p ¼ pd2
=4b2 for a square array), and

kp ¼ d=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xq0=g

p
is the perforate constant which is proportional

to the ratio of the perforation radius to the viscous boundary layer
thickness inside the holes, with q0 denoting the density of the sat-
urating fluid (i.e., air). As shown in Ref. [41], the maximum error of
the approximate formula (1) valid for all kp values is 6% (at some kp
values between 1 and 10) compared to the exact value from Lord
Rayleigh [42] and Crandall [43]. The limiting values of ZM (exact

asymptotic expressions) for small and large values of kp were also
given by Crandall when kp < 1 and kp > 10; see also Eq. (3) of [41].

The acoustic impedance of the rigidly backed air gap with depth
La behind the PP layer (see Fig. 1a) is given by [27,41]

ZA ¼ �jZ0 cot kaLað Þ; ð2Þ

where Z0 ¼ q0c0 is the acoustic impedance of air, and ka ¼ x=c0 is
the wave number in the air and c0 is the speed of sound.

2.2. Multiscale model of a foam layer

In the equivalent fluid approach [3,7,4], the air in a rigid porous
medium is replaced by an equivalent fluid characterized by an
effective density and an effective bulk modulus. The main idea is
to represent the frequency-dependant response functions of the
porous material by an approximate but robust semi-
phenomenological description, relying on a limited set of measur-
able macroscopic transport parameters, characterizing the essen-
tial physics of visco-thermal interactions. These effective
properties account for the visco-inertial and thermal interactions
with the frame and are given, according to the Johnson-
Champoux-Allard (JCA) equivalent fluid model, by

q xð Þ ¼ q0 a1 þ /r
jxq0
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ð4Þ
where q0 is the ambient air density, j ¼ cP0 is the air adiabatic bulk
modulus, P0 is the atmospheric pressure, c is the specific heat ratio,
and m ¼ g=q0 ¼ Prm0, with Pr the Prandtl number. The following
parameters provide the inputs of this semi-phenomenological
model at macro-scale:

� the porosity, /, is the fluid volume fraction of the porous
material;

� the static flow resistivity, r, is related to the classical static vis-
cous permeability, k0, by k0 ¼ g=r ;

� the viscous characteristic length, K, is a parameter introduced
by Johnson et al. [3] that can be interpreted as a weighted
volume-to-surface ratio and accounts for the throat region of
the porous structure;

Fig. 1. (a) Multi-layer absorber configuration with a detailed description of all geometric parameters for the inner components. Here, tm; La , and Lf are the thickness of the PP,
airgap thickness, and foam layer thickness respectively. (b) Microstructure of the real (as-processed) foam. (c) Idealized periodic unit cell based on a Cs-size Kelvin model. The
edge size and length of the ligaments or struts are denoted by l and t, respectively.
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� the high-frequency tortuosity, a1, reflects the dispersion of the
microscopic velocity field around the mean macroscopic value
for the case of an inviscid fluid (when x! 1);

� the thermal characteristic length, K0, is the generalized hydrau-
lic radius, that is, twice the fluid volume in the porous structure
divided by its surface area.

In what follows, these macroscopic parameters are estimated from
semi-empirical equations based on the geometric parameters of
the foam [19]:
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In the equations above, l and t denote the length and thickness of
the struts, respectively; Rw 2 0;1½ � is the reticulation rate (i.e., the
membrane content, see Fig. 1b) in the foam layer. The cases
Rw ¼ 0 and Rw ¼ 1 correspond to fully closed-cell and fully open-
cell foams, respectively. In this model, the purely geometrical
macroscopic parameters / and K0 are derived from analytical calcu-
lations, whereas the general structure of the equations used to
determine K;a1, and r follows exact calculations in idealized situ-
ations from which the values of the coefficients and of the expo-
nents were fitted against experimental data. It should be noticed
that these morphological parameters can be estimated by using
scanning electron microscope and optical images of the foam
microstructure. The wave number kc and characteristic impedance
Zc for the homogeneous layer can then be estimated from the JCA
equivalent fluid model as

kc xð Þ ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffi
q xð Þ
K xð Þ

s
; Zc xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q xð ÞK xð Þ

p
: ð10Þ

2.3. Sound absorption performance of multi-layer absorbers

Applying the transfer matrix method [27,44], the total transfer
matrix Ttotal of a multi-layer absorber (MA) can be obtained from
the individual transfer matrices of the inner layers as follows:

Ttotal ¼
T11 T12

T21 T22

� �
¼ TmTaTf ; ð11Þ

where Tm; Ta, and Tf are the transfer matrices of the single PP, air
gap, and foam layers, respectively. These matrices are given by

Tm ¼ 1 ZM

0 1

� �
; ð12Þ
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j
Z0

sin kaLað Þ cos kaLað Þ

" #
; ð13Þ

and

Tf ¼
cos kcLf
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j
Zc
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cos kcLf
	 
" #

: ð14Þ

The normal incidence sound absorption coefficient (SAC) of a multi-
layer absorber, denoted by a xð Þ, is calculated as

a xð Þ ¼ 4R ZT=Z0ð Þ
1þR ZT=Z0ð Þ½ �2 þ I ZT=Z0ð Þ½ �2

; ð15Þ

where R and I denote the real and imaginary parts of a complex
number, ZT is the surface impedance of the multi-layer absorber.
The parameter ZT can be estimated as ZT ¼ T11=T21, where T11 and
T21 are defined in Eq. (11).

In practice, the mean sound absorption coefficient aA over a
specific range of frequencies is often introduced in order to esti-
mate the acoustic performance of an absorber in dedicated applica-
tions. This factor can be calculated as

aA ¼ 1
Nf

XNf

i¼1

a xið Þ; ð16Þ

where Nf is the number of discrete angular and frequencies xif gNf

i¼1

in the range of interest fmin; fmax½ � (see Section 4.1 and also Ref. [23]
for two illustrative examples for sound absorption targets at low
and high frequencies).

3. Methodology for sensitivity analysis and design optimization

In this section, we present a methodology pertaining to the
optimization of multi-layer absorbers (that is, we seek a configura-
tion for the multi-layer absorber that exhibits desired target prop-
erties). We specifically consider the maximization of the sound
absorption coefficient a xð Þ at a given frequency x, or the maxi-
mization of the mean sound absorption coefficient aA. In order to
derive the formulation, let x be the D-dimensional vector of geo-
metrical design parameters, and let J denote a relevant cost func-
tion (which is the objective function representing the property to
be maximized). In the present work, we consider a cost function
related to the sound absorption coefficient (described in Sec-
tion 2.3), namely

J xð Þ ¼ aA xð Þ; ð17Þ
or

J xð Þ ¼ a x; xð Þ; ð18Þ
where a x; xð Þ denotes the sound absorption coefficient estimated at
point x (in the design space) and at frequency x (using Eq. (15) and
the geometry parameterized by x). Notice that the dependence on
the frequency is omitted in the equation above, for the sake of nota-
tional convenience. For a single-layer absorber, one may consider

x ¼ tm;d; b; Lað ÞT for instance (in which case D ¼ 4), where the
parameters tm;d; b, and La are shown in Fig. 1. The design space is
denoted by S � RD and is typically defined through inequality con-
straints, that is:

S ¼ xjlb 6 x 6 ubf g; ð19Þ
where inequalities hold component-wise, and lb and ub are two
deterministic vectors in RD whose components are denoted by lb;i
and ub;i, respectively. The vectors lb and ub represent bounds on
design parameters and are introduced to reflect manufacturing con-
straints for instance. For latter use, we write S as the cartesian
product

S ¼
YD
i¼1

Ii; ð20Þ
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where Ii ¼ lb;i; ub;i

� �
defines the admissible set for design variable xi.

Finally, inequality constraints between design parameters are for-
mally written as h xð Þ P 0, where h is a vector with values in R

nic

and 0 is the null vector.
The approach builds upon two ingredients, namely (i) variance-

based sensitivity analysis, which is used to determine the influence
of design parameters on the quantity of interest (here, the cost
function J), and (ii) an optimization method able to handle the
non-convexity of the cost function in acoustical design. These com-
ponents are reviewed in the next sections.

3.1. Variance-based sensitivity analysis

Following the preceding introduction, we consider the mapping
x # J xð Þ from S into 0;1½ �, where x denotes the vector of design
variables and J is the objective function. A global sensitivity analy-
sis aims to characterize the influence of design parameters on J and
enables, in particular, the identification of the most influential vari-
ables. To this end, a probabilistic interpretation is introduced
where uncertainties on x are propagated through the model and
contributions to the variance exhibited by the now stochastic
quantity of interest are analyzed through so-called sensitivity
indices. Interested readers are referred to Part IV in the Handbook
on Uncertainty Quantification [35] (and in particular, Chapter 34
for the material presented below) for a review, for instance.

We assume that uncertainties on x are modeled by a random
variable X � PX , where PX denotes the probability distribution of
X. It is commonly assumed that the components Xif gDi¼1 of X are
statistically independent, in which case

PX ¼ �D
i¼1

PXi
; ð21Þ

where PXi
denotes the (marginal) probability measure of Xi with

support Ii. In order to ensure well-posedness, we further assume
that J is square-integrable:Z
RD

J xð Þ2PX dxð Þ < þ1: ð22Þ

Following the notation introduced by Owen [45], the ANOVA (or
Sobol’) decomposition of J then reads as [46]

J xð Þ ¼
X
u#I

Ju xuð Þ; ð23Þ

whereI ¼ 1; . . . ;Df g denotes an index set, u is a so-called set of fac-
tors, Ju is the effect corresponding to u, and the notation xu desig-

nates the vector xi1 ; . . . ; xijuj
� �T

for u ¼ i1; . . . ; ijuj
 �

#I, with juj the
cardinality of u (likewise, the notation Xu denotes the random vari-

able Xi1 ; . . . ;Xijuj

� �T
). The effects are defined recursively as

Ju xuð Þ ¼
Z
RD�juj

J xð ÞPXuc
dxucð Þ �

X
v�u

Jv xvð Þ; ð24Þ

where uc is the complementary set I n u and v � u indicates that v
is a proper subset of u. An effect corresponding to a singleton,
u ¼ if g with i 2 I, characterizes the main effect associated with
variable xi, while effects defined for subsets of factors having a car-
dinality greater than 1 measure interaction effects amongst relevant
variables. The effect J£ defined by taking the set of factors as the
empty set is given by

J£ ¼
Z
RD

J xð ÞPX dxð Þ; ð25Þ

which allows one to define the variance of J as

r2 ¼
Z
RD

J xð Þ � J£
	 
2 PX dxð Þ: ð26Þ

It follows, using Eq. (23) and owing to the orthogonality of the
effects, that

r2 ¼
X

u#I;u–£

r2
u; ð27Þ

where

r2
u ¼

Z
Rjuj

Ju xuð Þ2 PXu dxuð Þ ð28Þ

is the variance component associated with u –£. The closed sensi-
tivity index is subsequently defined as

s2u ¼
X
v#u

r2
v ð29Þ

and can be normalized to yield the global sensitivity index

bs2
u ¼ s2u

r2 : ð30Þ

The Sobol’ (first-order) sensitivity index related to the main effect
J kf g is denoted by

Sk ¼ bs2
kf g; ð31Þ

where bs2
kf g is given by Eq. (30). The total sensitivity index associated

with variable xk is finally defined as the sum of all Sobol’ indices
associated with factors involving the index k, and is denoted by STk:

STk ¼
X
u2Jk

bs2
u; ð32Þ

where the set of factor subsets is defined as

Jk ¼ u#I;u –£j9j 2 1; . . . ; jujf g;uij ¼ k
n o

: ð33Þ

With a view towards the evaluation of Sobol’ indices through statis-
tical sampling, it is convenient to rewrite the closed sensitivity
index s2u as (see Section 2.1 in [45])

s2u ¼ Var E J Xð ÞjXu ¼ xuf gf g: ð34Þ
In practice, one can resort to Monte-Carlo simulations to compute
indices of interest (see Refs. [46–48]), or use a spectral decomposi-
tion as proposed by Sudret [49]. The former approach is usually
more intensive from a computational standpoint, since numerous
calls to the model are necessary to ensure the convergence of the
statistical estimators. Several strategies were proposed to partially
circumvent this issue, such as the use of nonparametric kernel
regression [50] or learning techniques [51]. In the latter approach,
a surrogate model based on a generalized polynomial chaos expan-
sion is built to approximate the mapping x# J xð Þ. This enables the
derivation of Sobol’ indices in closed-form at the additional expense
of the computation of the coefficients in the chaos representation.
In this work, we use the spectral decomposition approach to evalu-
ate the sensitivity indices (see the aforementioned reference). In all
subsequent computations, Monte Carlo simulations were also con-
ducted to define reference results and characterize the convergence
of the spectral decomposition.

3.2. Particle swarm optimization for sound absorption applications

We now turn to the optimization strategy for sound absorption
coefficients. The problem is stated as: Find xopt 2 S such that

xopt ¼ arg maxx2 SJ xð Þ; ð35Þ
subject to the constraint
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h xð Þ ¼ x3 � x2 P 0; ð36Þ
where x gathers the design variables tm (thickness of the perforated
panel), d (diameter of the hole), b (hole spacing), and La (airgap
thickness); see Fig. 1. Notice that the above inequality constraint
is introduced to ensure that b P d for geometric consistency (as
x3 and x2 correspond to the geometric variables b and d, respec-
tively). This problem is classically transformed into an uncon-
strained optimization problem through a penalty method [52]:

xopt ¼ arg maxx2 S J xð Þ þ Ph xð Þ; ð37Þ
where the penalty function Ph is defined as

Ph xð Þ ¼ sgn min 0;h xð Þf gð Þð Þ; ð38Þ
and sgn denotes the sign function. The first term in the right-hand
side in Eq. (37) is the initial cost function to be maximized (see Eqs.
17,18), while the second term is added to penalize nonconstrained
candidates for which the inequality constraint given by Eq. (36) is
not satisfied.

For the formulation detailed in Section 2, the optimization
problem above is highly nonconvex [53]. It is therefore solved
heuristically in this work, by using particle swarm optimization
[54] (PSO) (notice that a discussion regarding optimization algo-
rithms for general, non-convex problems is beyond the scope of
this study). The stochastic approach conceptually emulates group
behavior by introducing a population of potential solutions (called
the swarm) randomly, and by updating these solutions in a recur-
sive manner, according to a maximization criterion. In order to
review the updating procedure, let xit 2 S be the position of particle
i at iteration t. The velocity vector for particle i at iteration t is

denoted by v i
t and is defined as v i

t ¼ xit � xi
t�1. Finally, let Pi

t and
Gt be the i-th particle’s individual best solution and the swarm best
solution up to iteration t, respectively. In a basic PSO implementa-
tion, these vectors are updated for all particles as follows. First the
velocity of particle i is updated according to

v i
tþ1 ¼ /tv i

t þu1R
i
1t Pi

t � xit
� �

þu2R
i
2t Gt � xit
	 


; ð39Þ

where /t is the particle inertia introduced by Shi and Eberhart
[54,55], u1 and u2 are the cognitive and social coefficients, respec-

tively, and Ri
1t and Ri

2t are two diagonal matrices of independent
random numbers following a uniform distribution on 0;1½ �. In Eq.

(39), the quantities Pi
t � xi

t

� �
and Gt � xit

	 

represent social and cog-

nitive influences, respectively: these terms, weighted by their
respective coefficients u1 and u2, aim to attract the particle
towards pseudo-optimal solutions at the particle and swarm levels.
The position and individual best solution for particle i are next
updated following

xitþ1 ¼ xit þ v i
tþ1; ð40Þ

and

Pi
tþ1 ¼ xitþ1 ifJ xitþ1

	 

> J Pi

t

� �
Pi

t otherwise
:

8<: ð41Þ

The SA and optimization formulations will be used, in the next sec-
tion, to investigate the design of single-layer and multi-layer
absorbers.

4. Results and discussion

In order to illustrate the contributions of the proposed frame-
work, the geometries of the components (i.e., the excited PP, the
air cavity, and the foam layer) in the multi-layer absorber (see
Fig. 1) are selected as follows. For the foam layer, three foam con-

figurations [19] with various geometrical parameters are intro-
duced as listed in Table 1. The structures of the foam material in
Table 1 below is taken from [19] (see P1, P2, and P3 in Table 1 in
[19]). In terms of material representation, note that a SEM picture
of foam sample P2 is shown in Fig. 1 (left panel) in [19]. To the
authors’ knowledge, SEM images of the remaining foam samples
P1 and P3 are not available in the literature. One possible strategy
to circumvent that limitation would consist in reconstructing the
corresponding microstructures, by combining the parameters
available in Table 1 with an idealized model (see Fig. 1, right
panel).

For the other components of the MA configuration, the PP geo-
metrical parameters and cavity length are selected as design
parameters with admissible ranges listed in Table 2. Notice that
these ranges are selected to account for manufacturing constraints
and lead to a total thickness for the MA that is twice the value of Lf .

Regarding the choice of the design parameters, it is important to
notice that parameters like Rw; l, and t can be accurately adjusted
through advanced laboratory techniques, such as milli-fluidic tech-
niques; see for instance [16]. Adapting these manufacturing tech-
niques to large-scale industrial production capabilities may,
however, still be an issue. One may note that alternative parame-
ters and models have been proposed in the literature to potentially
replace microstructural descriptors of the foam morphology by a
suitable statistical distribution for the pore size, for instance [17].

Regarding the sensibility analyses, we consider uniform proba-
bility measures, that is, we take

PX ¼ �D
i¼1

PXi
ð42Þ

with

PXi
dxið Þ ¼ 1

bi � ai
dxi; 1 6 i 6 D; ð43Þ

where ai ¼ 0:95xi; bi ¼ 1:05xi, and xi is the nominal value for design
parameter xi. For the PP single-layer case, the support of the uni-
form distributions are listed in Table 2.

Sensitivity analysis for single-layer absorbers are first presented
in Section 4.1. We subsequently perform design optimization for
multi-layer absorbers in Section 4.2. Sensitivity results for the con-
figurations thus obtained are finally provided in Section 4.3.

4.1. Sensitivity analysis for single-layer absorbers

In this section, the sensitivity analysis is performed for single-
layer foam absorbers. We specifically characterize the sensitivity
with respect to four parameters, namely the strut length l, the strut
size t, the reticulation rate Rw, and the layer thickness Lf . Since the
indices are computed through a spectral decomposition at all fre-
quencies (using the results from Monte Carlo simulations for veri-
fication purposes), the convergence with respect to the order of the
polynomial chaos expansion (which is used as the polynomial sur-
rogate approximating the mapping between the input and output
variables, as discussed at the end of Section 3.1), denoted by Q, is
first analyzed. Fig. 2 shows the convergence of the statistical esti-
mators for all indices as a function of the polynomial chaos expan-
sion order, which is denoted by Q. For a given order Q, and
following [49], coefficients in the polynomial chaos representation
are evaluated with a regression method, using

M ¼ kM
Dþ Qð Þ!
Q !D!

ð44Þ

independent samples of the input parameters (kM P 2). From Fig. 2,
it is seen that reasonable convergence is obtained for Q P 4 (requir-
ing M ¼ 140 evaluations of the multiscale model).
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The evolution of the sensitivity indices over the frequency
ranges can be seen in Figs. 3–5 for the three foams F1 to F3, respec-
tively. Based on these results, we can formulate the following
observations.

� For the first foam F1 (see Fig. 3), the most influential
microstructural parameters are, in order, the struts length l
and the thickness t. In general, the ratio l=t significantly affects
the behavior of the foam. It should also be noticed that the exis-
tence of residual membranes can impact the acoustic response
of the foam, through Rw. Finally, the thickness of the porous
layer plays a major role for open foams with a rigid backing.
In particular, the sensitivity index for Lf varies very substan-
tially at very low frequencies (x 	 0) where the absorption
tends towards zero, and becomes smaller than the other indices
at higher frequencies. It is seen that the influence of Lf is greater
for wavelengths that are much greater than the quarter wave-
length (that is, far away from the peak of absorption, which
occurs around 4500 [Hz]). At the quarter wavelength resonance,
the acoustic response, indeed, strongly depends on the bound-
ary conditions at the rear surface of the porous sample and is
thus less impacted by variations in foam thickness Lf . Beyond
4300 [Hz], the porous material is very efficient, so that the rel-

ative influence of the foam thickness Lf on the global response
decreases (in contrast with the behavior at very low
frequencies).

� The second foam F2 has a characteristic cell size similar to F1,
but contains membranes (Rw ¼ 0:32). In this case (see Fig. 4),
the absorption coefficient (for normal incidence and rigid back-
ing) is primarily dominated by the thickness Lf for the porous
material. Near the quarter wavelength resonance (	 2300
[Hz]), the influence of Lf becomes negligible as compared to
other parameters, and in particular with respect to the strut
length l and reticulation rate Rw (the influence of l is predomi-
nant on the cell size and hence, on the resistivity r at low retic-
ulation rates).

� Overall, similar comments can be made on the third foam F3.
The most influential parameter for a normal incidence sound
absorption with a rigid backing is the thickness Lf , except when
Lf is an integer multiple of the quarter wavelength. This influ-
ence drops substantially near the quarter wavelength reso-
nance, for which the strut length l and the reticulation rate Rw

become more important parameters. The resonances observed
at one and three times the quarter wavelength correspond to
configurations where the particle velocity at the front surface
of the porous sample is extreme and viscous effects dominate.
In contrast, the particle velocity vanishes at the front surface
of the porous material when the sample thickness coincides
with two times the quarter wavelength (near 2500 [Hz]). In this
case, the microstructural parameters—and in particular, the
parameter Rw for a foam with low reticulationrate
(Rw ¼ 0:05)—become more important (as compared to Lf ). This
highlights the benefit of foams with gradients of properties, as
discussed in Ref. [23]. It can further be observed that because
keq fð Þ is a complex function of frequency (as shown in Fig. 10
in Ref. [58]), the frequency at which the second peak occurs is
not simply equal to three times the frequency at which the first

Table 1
Microstructural parameters of three membrane foam samples [19].

Foam sample Morphology factors and thickness

Cs mm½ � l [lm� t lm½ � Rw / Lf mm½ �
F1 613 208 46 1.00 0.956 25.4
F2 616 209 50 0.32 0.957 25.4
F3 1710 550 149 0.05 0.971 25.4

Table 2
Admissible ranges for the PP geometrical parameters and air gap distance.

Parameter Admissible range [mm]

PP thickness tm 1;3½ �
Hole diameter d 1;3½ �
Hole spacing b 2;8½ �

Airgap distance La 5;30½ �

Fig. 2. Convergence of the statistical estimators of the sensitivity indices estimated at 1000 [Hz] (foam F2). Here, Q is the order of the polynomial expansion, and the dashed
lines represent the sensitivity indices estimated using Monte-Carlo simulations (N ¼ 106 samples). Following the notation introduced in Section 3.1, S xð Þ and ST xð Þ denote the
normalized global and total sensitivity indices associated with variable x (see Eqs. (30) and (32), respectively). This figure shows that an order Q P 4 must be retained to
properly estimate the sensitivity indices using the surrogate model.
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Fig. 3. First-order and total sensitivity indices for foam F1. Following the notation introduced in Section 3.1, S xð Þ and ST xð Þ denote the normalized global and total sensitivity
indices associated with variable x (see Eqs. (30) and (32), respectively). The evolution of the sensitivity indices over the frequency range shows that l and Rw are predominant
variables, except at w ! 0 where the foam thickness Lf becomes more influential.

Fig. 4. First-order and total sensitivity indices for foam F2. Following the notation introduced in Section 3.1, S xð Þ and ST xð Þ denote the normalized global and total sensitivity
indices associated with variable x (see Eqs. (30) and (32), respectively). By comparing this figure with Fig. 3, it is seen that the thickness Lf is now predominant, due to
membrane effects (here, the foam behaves as a resistive layer). In the vicinity of the quarter wavelength and half wavelength resonant frequencies, the microstructural
parameters l and Rw prevail again, as observed in Fig. 3.

Fig. 5. First-order and total sensitivity indices for foam F3. Following the notation introduced in Section 3.1, S xð Þ and ST xð Þ denote the normalized global and total sensitivity
indices associated with variable x (see Eqs. (30) and (32), respectively). Because the sound absorption of a porous material backed by a rigid layer is essentially controlled by
the product of its resistivity r times the corresponding thickness Lf , the dominating parameter on the overall response function is the thickness Lf for a given foam
morphology (global resonance dominated by bulk effects). The relative influence of Lf declines appreciably for multiple integers of the quarter wavelength resonance; where
the effects of cell size and membrane become dominant through l and Rw microstructural parameters.
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peak occurs, and the frequency at which the first dip occurs is
not simply equal to two times the frequency at which the first
peak occurs. Indeed, the quarter wavelength resonance absorp-
tion of the porous material is governed by its intrinsic damped
complex wavelength, keq fð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K fð Þ=q fð Þ

p
=f , and not the one in

the air. This was also underlined in Refs. [56,57]. The first peak
appears at the quarter wavelength, where L=R keq fð Þ	 
 ¼ 1=4.

These SA results are consistent with the findings in Refs. [19–
21]. The first order sensitivity index of all inputs is very close to
the total order ones. This indicates that the interactions of input
variables in a small range can be ignored in the SA performance
for acoustic models of such materials.

Then, we evaluated the sensitivity functions for the PPs backed
by an air cavity in order to see how these input design factors affect
the SAC under normal incidence. We are assuming that the four
geometric factors are following a uniform distribution over the
ranges listed in Table 2. As shown in Fig. 6, the sensitivity functions
of input variables fluctuate strongly with the frequency of interest.
In Fig. 6a, the results of the first-order sensitivity index reveal that
factors d and b are the most influential factors in the broad low fre-
quency range (i.e., < 3 [kHz]), whereas the length of the air gap, La,
displays a strong impact at the remaining frequencies. We note
that the latter geometric factors, b and d, could be gathered in a
single non-dimensional parameter, which is the surface porosity.
In Fig. 6b, the sum of the total-order indices is larger than 1.5 in
the whole frequency range. This observation indicates that in con-
trast with previous results regarding a single foam layer (Figs. 3–5
and related comments), the interaction of input parameters must
be specifically considered in the investigated range of frequencies.
It can be seen from Fig. 6(a) and (b) that the sensitivity indices S xð Þ
and ST xð Þ both reveal a relatively small effect of the plate thickness
tm when compared to the other variables of the design space, d; b,
and La (in the range of constrained geometrical parameters given in
Table 2). Here, the coupling between the design space variables can
be attributed to the fact that a PP is essentially a Helmholtz res-
onator, or a mass-spring system, where the air mass is directly
related to the perforations (d; b; tm) and the stiffness of the spring
linked to the air cavity Lað Þ. These important levels of the design
variables are also investigated through the optimization procedure
in the next section.

4.2. Multi-layer absorber design optimization

In this section, we consider the optimization of the mean
absorption coefficient aA (see Eq. (16), where we take Nf ¼ 100,
and Eq. (17) over low and high frequency ranges, specified as
[200, 1500] [Hz] and [1500, 4000] [Hz], respectively.

Following the results in the previous section, where it was
shown that the thickness of PP structure has less influence than
the other parameters, we consider two scenarios where tm is either
integrated (in which case D ¼ 4) or disregarded (i.e., D ¼ 3) in the
optimization process. We denote by (WiT) and (WoT) these scenar-
ios. Multiple (WoT) analyses are conducted by selecting a value tim
for the thickness tm such that tim ¼ 1þ i� 1ð Þ=2 [mm], with
1 6 i 6 5. Relevant variables are assumed to vary within the ranges
reported in Table 2.

We use the particle swarm optimization framework presented
in Section 3.2 to compute the optimal parameters of PP and airgap
for MA configurations. Results are reported in Table 3 and illus-
trated, for the (WoT) analysis, in Fig. 9. Notice that in Table 3,
results obtained for the (WiT) computations are compared with
the ones obtained with the (WoT) scenario, taking tm ¼ t3m ¼ 2
[mm].

In Fig. 7, we show the evolution of the cost function with
respect to iteration numbers in the PSO, as well as the associated
optimal SAC curves.

First, we examine the optimal configurations in the low fre-
quency range [200, 1500] [Hz], for the different foam layers
(MA1-MA3), Fig. 7b. At high reticulation rate (Rw ¼ 1), visco-
thermal losses are relatively low (Foam layer F1), and only a Helm-
holtz resonator partially filled with the open cell structure can
absorb sound energy in this low frequency range (MA1, with a
peak of absorption around 800 [Hz], and visco-thermal dissipation
of the open-cell foam for larger frequencies). The quarter wave-
length resonance of the partially open-cell foam (Rw ¼ 0:32) is
about 2000 [Hz] (Foam layer F2), a value larger than the aimed fre-
quency range [200, 1500] [Hz]; both effects effectively increase
sound absorption in the frequency range of interest. A Helmholtz
resonator is therefore still necessary to tackle the low frequency
range of interest. The visco-thermal dissipations of the porous
material (Foams layer 2) enable to significantly increase the overall
efficiency of the multi layer absorber (MA2) above the low fre-
quency absorption peak (due to the Helmholtz resonator). The
third resistive layer of foam (Foam layer F3, Rw ¼ 0:05) already
exhibit a peak of absorption (around 1000 [Hz]) in the frequency
range of interest [200, 1500] [Hz]. The associated optimal configu-
ration consists in a first peak of absorption due to a Helmholtz res-
onance (around 800 [Hz]) coupled with quarter wavelength
resonance (around 1500 [Hz]) resulting in a large band of high
sound absorption. Interestingly, the quarter wavelength resonance
of the (equivalent) porous material (Foam layer F3 with the corre-
sponding air gap, around 1100 [Hz]) has been shifted towards a
higher frequency (around 1500 [Hz]).

We note that the admissible range of values for the hole diam-
eter, d in [1,3] [mm] imposes a strong constraint, the resistance of

Fig. 6. Area plots of the (a) first- and (b) total-order sensitivity indices of the PPs backed an air cavity. The results shown here were obtained for a polynomial order Q ¼ 8 and
M ¼ 12375.
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the perforated plate (the product of the resistivity of the perforated
plate and its thickness) corresponds to a value too low for the per-
forated plate to be optimal [60], see Eq. (10).

In the frequency range [1500, 4000] [Hz], the quarter wave-
length resonances are still observed, but the Helmholtz resonance
are shifted towards higher frequencies—in order to obtain a wide-
band resonator in the target frequency range (see the panel (d) in
Fig. 7). It should be noticed that other designs could lead to similar
behavior, including (i) a solution where the perforation ratio is
increased and the perforation hole diameter decreased (so that
the resistivity is adapted to air characteristic impedance), and (ii)
a scenario where the thickness of the porous medium is decreased
in order to shift the quarter wavelength towards the desired fre-
quency range [60].

Fig. 8 shows how the sound absorption varies for each configu-
ration (MA1-MA6) when a modification of the plate thickness is
imposed (tm) in the constrained range of admissible values [1,3]
[mm]. We note that the values of d and b (governing the perfora-
tion ratio) are adapted to keep the maximized sound absorption
(in the frequency ranges of interest); see Fig. 9.

Table 4 shows that this effect is not significant when consider-
ing the overall sound absorption average, aA. A detailed analysis of
Fig. 7 shows, however, that a selection of a specific optimal design
may be done within the obtained set tm; d; b; Lmð Þ to favor specific
parts of the absorption spectrum.

It can be seen from Fig. 7 and Table 4 that the multi-layer con-
figuration provides a clear improvement as compared to single
foams:

� For a low-frequency target, a peak of sound absorption with a
magnitude larger than 0.9 can be obtained in the middle of
the frequency range, except for sample MA1 for which a slightly
lower value of 0.8 is observed (notice that in this case, the aver-
age sound absorption obtained for MA1 is three times greater
than the one for the foam; see the first line in Table 4);

� For a high-frequency target, we also obtained a wideband sound
absorption aA > 0:9, and a > 0:8 over the whole frequency
range (that is, [1500 4000] [Hz]) for configurations MA5 and
MA6.

In order to illustrate the PSO framework, the evolution of the
positions for a swarm having 50 particles is shown below, in
Fig. 10. Here we consider the maximization of the mean sound
absorption coefficient aA as a function of the design parameters
tm; d; b, and La. The plots correspond to the configurations MA3
(top panels) and MA6 (bottom panels) in the (WoT) scenario (i.e.,
tm ¼ 2 [mm]). For representation purposes, we set d ¼ 1 [mm]
(which is the optimal value for d, see Table 3), and we plot the
graph of the function b; Lað Þ# aA b; Lað Þ. As shown in the far right
panels (see Fig. 10 (c,f)), all particles in the swarm have converged

Table 3
Optimal values for design parameters of PP and airgap for MA configurations. Results for the (WoT) case are obtained using a thickness tm ¼ t3m ¼ 2 [mm].

Configuration Foam Freq. range [Hz] PP structure Airgap

tm [mm] d [mm] b [mm] La [mm]

WiT WiT (WoT) WiT (WoT) WiT (WoT)

MA1 F1 200;1500½ � 1.00 1.00 (1.00) 6.31 (5.04) 5.0 (5.0)
MA2 F2 200;1500½ � 1.00 1.00 (1.00) 4.99 (3.98) 5.0 (5.0)
MA3 F3 200;1500½ � 1.00 1.00 (1.00) 2.86 (3.36) 25.9 (25.9)
MA4 F1 1500;4000½ � 3.00 1.00 (1.00) 2.48 (2.20) 30.0 (30.0)
MA5 F2 1500;4000½ � 1.00 1.13 (1.46) 2.00 (2.00) 13.6 (13.5)
MA6 F3 1500;4000½ � 2.22 1.00 (1.00) 2.11 (2.19) 8.4 (8.0)

Fig. 7. PSO normalized fitness function(a,c) and sound absorption coefficient for the optimal MAs (solid lines) and original foam layers (dashed lines) (c,d). Results in (a,b) and
(c,d) are obtained by maximizing the SAC at low and high frequencies, respectively.
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to the global optimum locations at the final iteration, for both opti-
mization processes.

4.3. Sensitivity analysis for optimized multi-layer absorbers

In this section, sensitivity analysis for acoustic models is per-
formed for the optimal MA configurations defined in Table 1 and
Table 3. Due to the small impact of the PP thickness on the sound
absorbing behavior of MA absorbers (in the frequency ranges of

interest), this parameter is omitted in the SA computations. We
therefore consider a total of seven geometric input variables,
including four factors related to the foam layer (namely, l; t;Rw,
and Lf , as described in Section 4.2) and three other parameters
related to the structural configuration (namely, the perforated
characteristics of the PP, d and b, and the air gap thickness, La).
We recall that these input parameters are defined by Eq. (43) with
the nominal values listed in Table 1 and Table 3. As in Section 4.1,
we first conduct a convergence analysis to ensure that the sensitiv-

Fig. 8. Sound absorption property for optimal MAs with different PP structures: (a) foam F1, with a maximization at low frequencies; (b) foam F2, with a maximization at low
frequencies; (c) foam F3, with a maximization at low frequencies; (a) foam F1, with a maximization at high frequencies; (b) foam F2, with a maximization at high frequencies;
(c) foam F3, with a maximization at high frequencies.

Fig. 9. Optimal values of design parameters for the (WoT) scenarios: (a) evolution of the hole diameter d as a function of the thickness of the perforated panel tm; (b)
evolution of the hole spacing b as a function of tm; (c) evolution of the airgap thickness La as a function of tm .

Table 4
Comparison of the optimal average SAC of MA absorbers and the original ones of the foam single foam layers.

Freq. range [Hz] Average sound absorption, aA [-]

Foam MA (WiT, topm ) MA (t1m) MA (t2m) MA (t3m) MA (t4m) MA (t5m)

200;1500½ � 0.1372 (F1) 0.4664 0.4664 0.4647 0.4637 0.4629 0.4624
200;1500½ � 0.4430 (F2) 0.6435 0.6435 0.6433 0.6431 0.6430 0.6429
200;1500½ � 0.6275 (F3) 0.7454 0.7452 0.7453 0.7453 0.7454 0.7454
1500;4000½ � 0.3803 (F1) 0.4781 0.4781 0.4773 0.4767 0.4736 0.4700
1500;4000½ � 0.8674 (F2) 0.9440 0.9440 0.9435 0.9432 0.9429 0.9427
1500;4000½ � 0.7584 (F3) 0.9018 0.9017 0.9017 0.9015 0.9018 0.9014
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ity indices are properly estimated through the spectral expansion
approach. Results are presented in Fig. 11 for a specific configura-
tion, namely MA2. It is seen that selecting Q ¼ 4 (corresponding to
only 660 evaluations of the multiscale model) provides reasonably
well converged estimates for the sensitivity indices.

The results of the sensitivity analysis are illustrated in Fig. 12
and Fig. 13. These results are in accord with the observation that
the impact of the input geometric parameters on the sound absorb-
ing coefficients strongly depends on both (i) the absorber
microstructure and (ii) the considered frequency range of interest.
The coupling effects between input parameters occur mainly at the
frequency of the sound absorption peaks as demonstrated by total

order effects larger than 1. The results reveal a difference in the
impact levels of input parameters before a resonance frequency,
for a resonance frequency, and after a resonance frequency.

For the multi-layer absorber configurations MA1 to MA3 for the
low frequency target (i.e., in the range [200, 1500] [Hz]), the size
and the spacing of the holes (i.e., d; b), and the foam layer thickness
(Lf ) dominate on the impact of the variability of the sound absorp-
tion coefficient in the whole frequency range, since they respec-
tively control the selectivity of the Helmholtz resonance and the
quarter wavelength resonance (see Sections 4.1 and 4.2). At fre-
quencies around the first SAC peak, the strut length parameter in
foam materials is a key parameter for highly reticulated foams

Fig. 10. Evolution of the positions (black solid markers) for a swarm having 50 particles. Here we seek to optimize the mean sound absorption coefficient aA as a function of
tm; d; b, and La . For representation purposes, we set tm ¼ 2 [mm] and d ¼ 1 [mm], and consider b and La as design variables. The following results are displayed: (a,c) initial
positions for the swarm, (b,e) positions at the 15th iteration, and (c,f) final positions for the swarm (at the 50th iteration). For the MA3 configuration (top panels), the global
maximum is located at x
 ¼ 3:3625:9½ � and corresponds to amax

A ¼ aA x
ð Þ ¼ 0:7453. For the MA6 configuration (bottom panels), the global maximum is located at
x
 ¼ 2:198:0½ � and corresponds to amax

A ¼ aA x
ð Þ ¼ 0:9015.

Fig. 11. Sensitivity indices at frequency of 2500 [Hz] with different values of expansion order Q for configuration MA2. The dashed lines correspond to the sensitivity indices
estimated with the Monte Carlo approach (with sample size N ¼ 106). Following the notation introduced in Section 3.1, S xð Þ and ST xð Þ denote the normalized global and total
sensitivity indices associated with variable x (see Eqs. (30) and (32), respectively).
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(i.e., Rw > 0:32) due to its strong impact on the internal visco-
thermal dissipations of the foams through the porosity and the
resistivity, [Eqs. (5)–(9)], (see Fig. 12a-b with the sensitivity indices
around 0.4 for the strut length parameter). For the configuration

MA3 based on a more resistive and tortuous foam sample with a
low reticulation rate (i.e., Rw ¼ 0:05) [Eqs. 8,9], the sound absorp-
tion coefficient is highly impacted by the foam thickness (Lf , with
its sensitivity indices greater than 0.5) in particular at frequencies

Fig. 12. Area plots for sensitivity indices: (a) first-order indices for sample MA1; (b) first-order indices for sample MA2; (c) first-order indices for sample MA3; (d) total
indices for sample MA1; (e) total indices for sample MA2; (f) total indices for sample MA3.

Fig. 13. Area plots for sensitivity indices: (a) first-order indices for sample MA4; (b) first-order indices for sample MA5; (c) first-order indices for sample MA6; (d) total
indices for sample MA4; (e) total indices for sample MA5; (f) total indices for sample MA6.
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lower than the first SAC peak (i.e., f < 1 kHz½ �); since the foam layer
thickness controls the quarter wavelength resonance which is here
coupled with the Helmholtz resonance.

With the absorbers MA4 to MA6 in the frequency range of inter-
est [1500, 4000] [Hz], sensitivity functions of input variables of the
foam layer (l; t; Lf ) display a similar behavior to the one reported
for the frequency range of interest [200, 1500] [Hz]. However,
because the second sound absorption peak is somehow correlated
to a quarter wavelength resonance of the foam sample, the
microstructural descriptors of the porous layer together with the
foam layer thickness have a strong impact on a large frequency
range, i. e. [0, 4000] [Hz]. As expected for the MA4 configuration,
the SAC variability is also affected by the PP parameters (d; b)
around 1200 [Hz] due to the Helmholtz resonance. Likewise, strong
effects of (d; b) in the vicinity of the second peaks of the SAC for
MA5 and MA6 confirm that they are due to a Helmholtz resonance.
In addition, Fig. 13f reveals the significant effect of the Helmholtz
resonator (b; d; La) on the SAC in a wide frequency band [2000,
5000] [Hz], MA6 configuration. We see that pronounced visco-
thermal dissipations are already occurring (3/4 wavelength reso-
nance) around 4200 [Hz] (see Fig. 7d, MA6). Visco-thermal losses
are then coupled with the Helmholtz resonator design (”holes” or
internal ducts and cavity of the equivalent ”mass-spring” system;
see also Ref. [59]). Therefore, adding a perforated panel with a cav-
ity to the visco-thermal losses provided by the foam layer leads to
an enhancement of the SAC in the range of frequencies [0, 4000]
[Hz]. Noticeably, the forced sound absorption peak around 3800
[Hz] also results from a modification of the effective bulk modulus
of the medium. Fig. 13 equally shows that the resistive foam layer
is specifically influenced by the microstructural characteristics
(l;Rw; t). We see that, in the configuration MA5, the perforation
ratio is large compared to the other configurations (around 25
%); this reduces the levels of the sound absorption peaks, but
increases the overall sound absorption in a large frequency range
(at least 1800 [Hz] to 4800 [Hz])—see for instance Ref. [60].

Here we considered the output of aA computed with a number
of frequencies Nf ¼ 100 for both the ”low” frequency target and the
”high” frequency target. Fig. 14 shows SA results for MA configura-

tions studied in Fig. 12 and Fig. 13. Generally, the values of the first
sensitivity index are very close to those of the total one. This sug-
gests that at the leading order, the interaction effects of the input
parameters on the output metric can be neglected (as previously
discussed). Once the geometrical parameters of the resonator
(namely, d; b, and La) have been determined by the optimization
algorithm, the local resonating behavior effect provided by the
Helmholtz resonator is robust. Moreover, the interaction with the
global quarter wavelength resonance strongly depends on the
intrinsic properties and thus, on the microstructural features
(l; t;Rw, and Lf ) of the porous layer itself. This statement has to be
hampered when the visco-thermal dissipations provided by the
porous substrate are low (MA1) or when local and global reso-
nances closely interact (MA6).

5. Conclusion

The design of porous layers under sound absorption constraints
was investigated using variance-based sensitivity analysis, con-
ducted through a spectral decomposition for enhanced computa-
tional efficiency, and non-convex particle swarm optimization.
From a practical standpoint, the methodology can be used to iden-
tify the most influential parameters within the multiscale setting,
hence enabling (i) robust design when design parameters are con-
sidered uncertain, and (ii) optimization in a lower dimensional
space (disregarding variables that have negligible impacts on the
quantities of interest). The inner layers of the multi-absorber con-
figuration including a micro-perforated panel and a foam layer, as
well as air depth, are specifically tuned to maximize sound absorp-
tion at normal incidence in specific frequency ranges. The follow-
ing conclusions can be drawn from the sensitivity and
optimization results.

1. For foam-based absorbers without membranes, the most influ-
ential microstructural parameter is generally the strut length
(which has a predominant effect on the resistivity), in accor-
dance with results provided elsewhere.

Fig. 14. First-order and total sensitivity indices for aA: (a) sample MA1; (b) sample MA2; (c) sample MA3; (d) sample MA4; (e) sample MA5; (f) sample MA6.
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2. In the case of foams having a membrane content, the layer
thickness is the most influential factor for a sound absorption
at normal incidence with a rigid backing (bulk effect), except
when the frequency is a integer multiple of the quarter-
wavelength resonant frequencies (where, for a given porous
sample thickness, the microstructural parameters influencing
resistivity play a major role).

3. The sensitivity indices related to the geometrical parameters of
the multi-layer absorbers strongly depend on the properties of
the porous layer. In frequency-dependent terms, both the main
and the total effects vary substantially in the whole frequency
range of interest, and interaction effects between input vari-
ables occur essentially around the local resonance frequencies
(Helmholtz resonator).

4. The sound absorption response typically exhibits two peaks
related to Helmholtz and quarter-wavelength resonances,
respectively. The role of the geometrical factors for the micro-
perforated panel and cavity depth essentially consists in shift-
ing and amplifying both of these resonances such that they
can occur in the frequency range of interest. Once robust design
is achieved in terms of these design factors, the microstructural
parameters in the porous layer become the predominant
factors.

Possible avenues for further research include:

(i) the consideration of multi-layer composite systems, such as
multi-layer (micro-) perforated panels or multi-layer porous
materials, with extended admissible ranges (especially with
regards to geometrical parameters such as the perforation
ratio and diameter for the perforated panels) or an increased
number of input variables (including, for instance, the
microstructural parameters of the porous layer, for a large
range of corresponding porosity);

(ii) the modeling of sound absorption in diffuse fields;
(iii) robust design under uncertainty;
(iv) the study of sound transmission loss including elastic and/or

hole interaction effects in the overall frequency-dependent
response functions.
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