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The buckling analysis of cracked functionally graded material (FGM) plates resting on an elastic foundation
taking into account the effect of the delamination of the elastic foundation is presented in this paper. The plate
kinematics are based on the high‐order shear deformation theory, the buckling of this cracked plate is com-
puted by mixing the phase‐field theory and finite element method (FEM), and material properties are assumed
to vary through the thickness direction by a power‐law distribution. The cracked FGM plate rests on the two‐
parameter elastic foundation, in which, the delamination areas are rectangular and circular. The accuracy of
the present approach is proved by the comparison with published results. This paper also studies the effect
of some parameters on the mechanic buckling behavior of the plate. The numerical results reveal that the
delamination area and the crack length have a strong effect on the buckling loads as well as the buckling mode
shapes of this plate.
1. Introduction

Functionally graded material (FGM) is a new smart composite
material, in which, the properties vary smoothly and continuously
from one surface to one [13,15,21,36–40] or more surfaces [14].
The FGMs have many advantages in comparison with conventional
layered composite materials such as reducing the stress concentration,
thermal stresses, residual stresses, and so on. These are reasons for the
wide application in engineering as thermal barrier coatings, biomedi-
cal materials, and piezoelectric devices. The FGM plate is a kind of
structure and, it is very common in practice, for many working condi-
tions, the plate can be appeared the defects (e.g., cracks), and then the
mechanical behavior including the buckling of this plate has much
change. Besides, many structures in practice can be modeled as a plate
resting on an elastic foundation, for example, plates supported by the
ground, water, and several types of liquid. The buckling behavior of
the plate will change with the presence of a foundation. So that the
research on the buckling problem is very interesting and helpful for
designing and using this structure in practice.

There are many works published by scientists worldwide to under-
stand the mechanical buckling behavior of FGM plates. Ma and Wang
[1] studied the thermal bending and post‐buckling of circular FGM
plates based on first‐order shear and third‐order shear theories. The
buckling of FGM plates subjected to thermal and mechanical loads
was investigated by Ganapathi et al. [2] using a finite element solu-
tion. The analytical method and the classical plate theory were used
in the work of Shariat and Eslami [3] to show out the thermal buckling
response of imperfect FGM plates. Prakash et al. [4] presented a finite
element solution for thermal post‐buckling of FGM skew plates. Tran
et al. [5] explored the stability of FGM plates in a thermal environ-
ment, in which, the study used isogeometric analysis and higher‐
order shear deformation theory. José et al. [6] proposed a finite ele-
ment model for buckling and nonlinear static of FGM plates using Red-
dy’s theory. Yang et al. [7] used first‐order shear theory to research the
buckling behavior of FGM plates resting on the two‐parameter founda-
tion. Thai and Kim [8] studied the buckling of FGM plates supported
by the Pasternak foundation by an analytical method. Shariyat and
Asemi [9] explored the shear buckling of FGM plates resting on the
Winkler foundation. Yahoobi and Fereidoon [10] used Navier’s solu-
tion for mechanical and thermal buckling of FGM plates which are
resting on an elastic foundation. Duc and his co‐workers [11] pre-
sented an analytical solution for nonlinear post‐buckling of imperfect
eccentrically stiffened FGM plates resting on the Pasternak elastic
foundation. Zenkour and Radwan [41] investigated the response of
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simply supported nanoplates resting on the elastic foundation using an
analytical solution. Recently, the mechanical responses of structures
taking into account the influence of elastic and non‐elastic foundations
have also been investigated in works [43–45].

To deal with crack problems, the meshfree method [12], FEM, the
extended finite element method (XFEM) [16–19], the IGA, and the
phase‐field model [13,16–19,29–35] are used very commonly. How-
ever, the phase‐field approach is more effective in difficult static and
dynamic fracture problems. Readers can see in detail the advantages
of the phase‐field model in [23–25] and references therein. In this
paper, we employ the phase‐field model derived by Bourdin et al.
[26,27] based on Griffith’s theory [28] to give governing equations
for buckling of FGM plates resting on a two‐parameter elastic founda-
tion. The buckling behavior of FGM plates takes into account the effect
of the delamination between the plate and the foundation, as well as
the crack to show out useful and interesting phenomenon, which is
never done before.

The rest of this paper is presented as follows. Section 2 presents for-
mulations of FEM and phase‐field model for buckling analysis of
cracked FGM plates supported by an elastic foundation. Numerical
results of cracked FGM plates resting on the two‐parameter elastic
foundation are computed and discussed in Section 3. Some conclusions
are given in Section 4.

2. Theoretical formulations

Consider a cracked FGM plate resting on the elastic foundation and
having a delamination region from the elastic foundation as shown in
Fig. 1. There are many computational theories for calculating plate and
shell structures including classical and higher‐order shear deformation
theories, each one has certain advantages. Although the classical plate
theory is simple to deal with, however, it does not take into account
shear deformation, so this theory is only suitable for thin plates. The
first‐order shear deformation theory, although including shear strain,
however, it requires the use of a shear correction factor and does
not satisfy the condition of zero shear stress boundary at the plate sur-
faces. Therefore, the theory of high‐order shear deformation theories,
although complicated in calculations, satisfy the boundary condition
of zero shear stress at the plate surfaces, and they do not need any
shear correction factors, but still describes the mechanical response
correctly of structures. As a result, due to this advantage, this work
uses the third‐order shear deformation theory [21] to solve the pro-
posed problems. Using the third‐order shear deformation theory, the
displacements at a point (x,y,z) in the plate from mid‐plane are written
as [21]:

u x; y; zð Þ ¼ u0 x; yð Þ þ 5
4 z � 4

3h2
z3

� �
βxðx; yÞ þ 1

4 z � 5
3h2

z3
� �

w0;x

v x; y; zð Þ ¼ v0 x; yð Þ þ 5
4 z � 4

3h2
z3

� �
βyðx; yÞ þ 1

4 z � 5
3h2

z3
� �

w0;y

w x; y; zð Þ ¼ w0 x; yð Þ

ð1Þ
Fig. 1. Schematic geometry of a cracked FGM plate resting on an elastic
foundation with the appearance of delamination between the foundation and
the plate.
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where h is the thickness; u0; v0;w0 are the mid‐plane displacements in
the x‐, y‐ and z‐axes; βx; βy are the transverse normal rotations in the
xz‐ and yz‐planes.

ɛf g ¼

ɛx ¼ u0;x þ z 1
4 ð5βx;x þ w;xxÞ þ z3 �5

3h2

� �
ðβx;x þ w;xxÞ

ɛy ¼ v0;y þ z 1
4 ð5βy;y þ w;yyÞ þ z3 �5

3h2

� �
ðβy;y þ w;yyÞ

γxy ¼ u0;y þ v0;x þ z 1
4 ð5βx;y þ 2w;xy þ 5βy;xÞ þ z3 �5

3h2

� �
ðβx;y þ 2w;xy þ βy;xÞ

γxz ¼ 5
4 ðβx þ w;xÞ þ z2 �5

h2

� �
ðβx þ w;xÞ

γyz ¼ 5
4 ðβy þ w;yÞ þ z2 �5

h2

� �
ðβy þ w;yÞ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð2Þ
where the comma denotes the derivative of the variable following it.

The strains can be expressed as follow:

ɛ ¼ ɛ0
0

� �
þ z

κ1

0

� �
þ z3

κ3

0

� �
þ 0

γ0

� �
þ z2

0
γ2

� �
ð3Þ

where the mid‐plane strain, the bending strain, and the shear strain in
Eq. (3) are given as:

ɛ0 ¼
u0;x
v0;y

u0;y þ v0;x

8><
>:

9>=
>;;

κ1 ¼
1
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1
4 ð5βy;y þ w;yyÞ

1
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9>=
>;; κ3 ¼

�5
3h2

� �
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>>>>;
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5
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( )
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�5
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The internal forces can be obtained by operating the integral tech-
nique through the thickness as

N
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�

Q

Q
�

8>>>>>><
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>>>>>>;

¼
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8>>>>>><
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with the material constant matrices are defined as follows:

A ¼
A11 A12 0
A12 A22 0
0 0 A66

2
64

3
75; B ¼

B11 B12 0
B12 B22 0
0 0 B66

2
64

3
75;D ¼

D11 D12 0
D12 D22 0
0 0 D66

2
64

3
75
ð6Þ

E ¼
E11 E12 0
E12 E22 0
0 0 E66

2
64

3
75; F ¼

F11 F12 0
F12 F22 0
0 0 F66

2
64

3
75; H ¼

H11 H12 0
H12 H22 0
0 0 H66

2
64

3
75

ð7Þ

A
�
¼ A

�
44 0

0 A
�
55

" #
; B

� ¼ B
�
44 0

0 B
�
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" #
; D

� ¼ D
�
44 0

0 D
�
55

" #
ð8Þ

in which the components in the expressions (6)‐(8) are calculated as
follows:

Aij;Bij;Dij;Eij; Fij;Hij
� � ¼

Z h=2

�h=2
Jij 1; z; z2; z3; z4; z6
� �

dz; i; j ¼ 1; 2; 6 ð9Þ

A
�
ij;B

�
ij;D

�
ij

n o
¼

Z h=2

�h=2
Jii 1; z2; z4
� �

dz; i ¼ 4;5 ð10Þ



Fig. 2. A cracked FGM plate resting on an elastic foundation with the values of μand s.

Table 1
Material properties of metal and ceramic.

Material Properties

E (GPa) ν α (1/0C)

Aluminum (Al) 70 0.3 23.10-6

Alumina (Al2O3) 380 0.3 7.4.10-6

Zirconia (ZrO2) 151 0.3 10.10-6
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with

J11 ¼ J22 ¼ E zð Þ
1� ν2 zð Þ ; J12 ¼ ν zð Þ:J22; J44 ¼ J55 ¼ J66 ¼ E zð Þ

2 1þ ν zð Þð Þ
ð11Þ

with E(z) and ν zð Þ are Young’s modulus and Poisson's ratio, and they
vary through the thickness by a power‐law distribution defined for
FGM plates. In this paper, we assume that an FGM plate made of a mix-
ture of metal and ceramic, the material properties vary only along with
the z‐axis (Fig. 1), the top and bottom surfaces are fully ceramic and
metallic. The xy‐surface is the mid‐surface of the plate, and the posi-
tive z‐axis is upward from the mid‐surface. The Young’s modulus E
(z) and the Poisson's ratio ν zð Þ are the functions of z by a power‐law
distribution [22]

E zð Þ
ν zð Þ

� �
¼ Em

νm

� �
þ Ec � Em

νc � νm

� �
hþ 2z
2h

� 	n

ð12Þ

where n is the gradient index, z is the thickness coordinate variable
(�h=2 ⩽ z ⩽ h=2), subscripts m, and c represent the metal and ceramic
constituents, respectively.

For the buckling analysis of plate resting on the two‐parameter
foundation, the potential energy of FGM plate under in‐plane compres-
sion force P0 can be written as follows [13]:

Π ζ; sð Þ ¼ 1
2

R
Ω s

2

ɛT0Aɛ0 þ ɛT0Bκ1 þ ɛT0Eκ3
þκT1Bɛ0 þ κT1Dκ1 þ κT1Fκ3
þκT3Eɛ0 þ κT3Fκ1 þ κT3Hκ3

þγT0 A
^

γ0 þ γT0 B
^

γ2 þ γT2 B
^

γ0 þ γT2 D
^

γ2

8>>>><
>>>>:

9>>>>=
>>>>;
dΩþ

þ 1
2

R
Ω s

2 μ kww2 þ ks wT
;xw;x þ wT

;yw;y

� �n on o
dΩ

þ 1
2

R
Ω s

2
w;x

w;y

� �T

σ�0 w;x;w;y
� �

hdAþ 1
2

R
Ω s2

βx;x
βx;y

( )T

σ�0 βx;x; βx;y
� �

h3
12 dΩ

þ 1
2

R
Ω s

2
βy;x
βy;y

( )T

σ�0 βy;x; βy;y
� �

h3
12 dΩþ R

Ω GCh
1�sð Þ2
4l þ l rsj j2

h i
dΩ

¼ R
Ω Ψ ζ; sð Þ þ GC

1�sð Þ2
4l þ l rsj j2

h i
h

n o
dΩ

ð13Þ

where kw and ks are parameters of the elastic foundation,
ζ ¼ u0; v0;w0; βx; βy

� �
is the vector of the degree of freedom, the

matrix σ�0 is the pre‐buckling stress subjected to the in‐plane force:

σ�0 ¼ σ0
x 0
0 σ0

y

" #
; σ0x ¼ σ0

y ¼
P0

h
ð14Þ

and s is the phase‐field variable as discussed in Section 1. In this paper,
the phase‐field approach is use, which was presented in detail by Bour-
din et al. [26,27], the crack is modeled by a narrow region and con-
trolled by the phase‐field variable s which gets value from 0 (total
broken) to 1 (unbroken). The fascinating point of this phase‐field the-
ory is that a discontinuous domain at the crack changes into a contin-
uous domain through a transformation of variable s (Fig. 2). Because
3

the crack becomes a continuous domain, it is easy to mesh the element
at this position and interpolate the degrees of freedom of the plate as
well as the phase‐field variable values similar to the region without
cracks, therefore, this makes the calculation simpler. Calculation the-
ory for structures with cracks using phase‐field variables presents a
lot of advantages, making it easy to deal with because the discontinu-
ity becomes a continuous domain, and especially shows a clear advan-
tage when solving for plate problems with multiple cracks [18], and
cracks with complex shapes [42], which is very difficult to solve with
other methods. However, when a crack appears, the energy of the plate
is reduced by the release of energy at the crack, which is shown in the
component containing Gc in Equation (13), and the value of s2 is mul-
tiplied by the rest of the energy expressions (13).

Also in the above expression, l is the length scale parameter, which
controls the width of a region of the material where s= 1 and s = 0,
and Gc is the critical energy release rate adopts Griffith’s theory.

On the other hand, when taking into account the effect of the elas-
tic foundation, the energy of the plate will be added by the energy of
the foundation, which is proportional to the parameters kw and ks. It is
noted that μ is parameter added in Eq. (13) to control the energy of the
elastic foundation, which is attached to the FGM plate. It is assumed
that this parameter gets two values, μ= 1 if the elastic foundation is
taken into account and μ= 0 if the delamination between the plate
and foundation appears (Fig. 2). In other words, the energy of the elas-
tic foundation will be not added into the whole energy of the system at
the delamination area.

Now, the plate is divided into the elements with n nodes, each node
contains five degrees of freedom (DOF) ζi ¼ u0i; v0i;w0i; βxi; βyi

� �
and

one DOF for phase‐field variable s. Then, displacements and phase‐
field variable s at any points within one element are interpolated
through interpolation functions as follows:

ζ ¼ ∑
n

i¼1
Niζi ¼ Nζe; s ¼ ∑

n

i¼1
Nisi ¼ N̂sse ð15Þ

Representing deformation components according to node displace-
ments, one gets:

ɛ0 ¼ B0ζe; κ1 ¼ B1ζe; κ3 ¼ B3ζe; γ0 ¼ B0γζe;

γ2 ¼ B2γζe;w0 ¼ B4ζe;
@w
@x

¼ B5ζe;
@w
@y

¼ B6ζe
ð16Þ



Table 2
Comparison of the normalized critical buckling coefficient N

�
with L/h = 20.

K
�
w;K

�
s

n= 0 n= 0.5

Ref. This work Ref. This work

[8] Numbers of element [8] Numbers of element

(0,0) 19.352 1250 19.426 12.566 1250 12.599
1522 19.364 1522 12.407
5462 19.274 5462 12.368
6968 19.273 6968 12.363

(100,10) 22.112 1250 22.210 15.326 1250 15.401
1522 22.160 1522 15.331
5462 22.024 5462 15.114
6968 22.022 6968 15.111

(103,102) 43.387 1250 43.403 33.049 1250 33.103
1522 43.368 1522 32.912
5462 42.976 5462 32.498
6968 42.972 6968 32.495

Table 3
Comparison of the normalized critical buckling coefficient N

�

K
�
w;K

�
s

L/h Power-law index (n)

0 0.5 1

[8] This work [8] This work [8] This work

(0, 0) 10 18.578 18.306 12.122 11.794 9.339 9.113
20 19.352 19.273 12.566 12.363 9.667 9.536
100 19.614 19.609 12.715 12.559 9.777 9.682

(100, 10) 10 21.337 21.025 14.882 14.513 12.098 11.832
20 22.112 22.022 15.326 15.111 12.426 12.285
100 22.373 22.368 15.475 15.318 12.536 12.441

(1000, 100) 10 40.647 39.388 31.460 30.236 27.431 26.427
20 43.387 42.972 33.049 32.495 28.610 28.196
100 44.388 44.368 33.620 33.366 29.033 28.875
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@βx
@x

¼ B7ζe;
@βx
@y

¼ B8ζe;
@βy
@x

¼ B9ζe;
@βy
@y

¼ B10ζe; rs ¼ B11se ð17Þ

where:

B0 ¼ ∑
n

i¼1

Ni;x 0 0 0 0

0 Ni;y 0 0 0

Ni;y Ni;x 0 0 0

2
664

3
775;B1 ¼ 1

4
∑
n

i¼1

0 0 Ni;xx 5Ni;x 0

0 0 Ni;yy 0 5Ni;y

0 0 2Ni;xy 5Ni;y 5Ni;x

2
664

3
775

ð18Þ

B3 ¼ �5
3h2

∑
n

i¼1

0 0 Ni;xx Ni;x 0
0 0 Ni;yy 0 Ni;y

0 0 2Ni;xy Ni;y Ni;x

2
64

3
75; B0γ ¼ 5

4
∑
n

i¼1

0 0 Ni;x 1 0
0 0 Ni;y 0 1


 �
;

ð19Þ
Fig. 3. The FGM plate with a

4

B2γ ¼ �5
h2

∑
n

i¼1

0 0 Ni;x 1 0
0 0 Ni;y 0 1


 �
; B4 ¼ ∑

n

i¼1
0 0 Ni 0 0½ � ð20Þ

B5 ¼ ∑
n

i¼1
0 0 Ni;x 0 0½ �; B6 ¼ ∑

n

i¼1
0 0 Ni;y 0 0½ � ð21Þ

B7 ¼ ∑
n

i¼1
0 0 0 Ni;x 0½ �; B8 ¼ ∑

n

i¼1
0 0 0 Ni;y 0½ � ð22Þ

B9 ¼ ∑
n

i¼1
0 0 0 0 Ni;x½ �; B10 ¼ ∑

n

i¼1
0 0 0 0 Ni;y½ �;B11 ¼ ∑

n

i¼1

Ni;x

Ni;y


 �
ð23Þ
n inclined central crack.



Fig. 4. The cracked FGM plate with a rectangular delamination area (1: the delamination area, 2: the crack).
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The energy expression of the element will now be written in the fol-
lowing form:

Πe ζe; sð Þ ¼ 1
2

R
Ωe
N̂

T
s N̂sζ

T
e

BT
0AB0 þBT

0BB1 þBT
0EB3

þBT
1BB0 þBT

1DB1 þBT
1FB3

þBT
3EB0 þBT

3FB1 þBT
3HB3

þBT
0γ A

^

B0γ þBT
0γ B

^

B2γ þBT
2γ B

^

B0γ þBT
2γ D

^

B2γ

8>>><
>>>:

9>>>=
>>>;
ζedΩþ

þ 1
2

R
Ωe
N̂

T
s N̂sζ

T
e μ kwBT

4B4 þ ks BT
5B5 þBT

6B6
� � �� �

ζedΩ

þ 1
2

R
Ωe
N̂

T
s N̂sζ

T
e

B5

B6

� �T

σ�0 B5; B6f ghdAþ 1
2

R
Ωe
N̂

T
s N̂sζ

T
e

B7

B8

� �T

σ�0 B7; B8f g h3
12dΩ

þ 1
2

R
Ωe
N̂

T
s N̂sζ

T
e

B9

B10

� �T

σ�0 B9; B10f g h3
12dΩþ R

Ωe
GCh

1�N̂sð Þ2
4l þ l BT

11B11

�� ��2
 �
dΩ

¼ R
Ωe

Ψ ζe; sð Þ þ hGC
1�N̂sð Þ2

4l þ l BT
11B11

�� ��2
 �� �
dΩ ð24Þ
Table 4
Comparison of the CBTR of a fully simple support square Al/ZrO2 plate

Method Numbers of
element

The volume fraction exponent (n)

0 0.5 1 2 5

XIGA [20] – 8.894 6.114 5.412 5.012 4.771
This work 1250 8.956 6.123 5.498 5.180 4.806

1522 8.882 6.119 5.418 5.164 4.773
5462 8.716 6.039 5.401 5.049 4.746
6968 8.712 6.035 5.400 5.047 4.742

Table 5
The critical buckling factor of cracked FGM depends on the crack length (c) and
the volume fraction exponent (n) (uniaxial compression)

n c/L K
�
w;K

�
s

(0, 0) (100, 0) (100, 10) (250, 25) (1000, 100)

0 0.2 1.497 1.614 1.925 2.560 4.165
0.3 1.390 1.503 1.799 2.363 4.018
0.4 1.224 1.321 1.592 2.082 3.829
0.5 1.053 1.136 1.390 1.848 3.644

0.5 0.2 1.164 1.280 1.591 2.210 3.630
0.3 1.081 1.194 1.488 2.005 3.540
0.4 0.952 1.049 1.315 1.779 3.420
0.5 0.819 0.901 1.153 1.593 3.295

1 0.2 1.042 1.159 1.469 2.037 3.426
0.3 0.968 1.081 1.374 1.863 3.356
0.4 0.852 0.949 1.214 1.663 3.260
0.5 0.733 0.815 1.065 1.497 3.158

2 0.2 0.956 1.072 1.383 1.911 3.277
0.3 0.888 1.001 1.292 1.759 3.220
0.4 0.782 0.878 1.141 1.579 3.142
0.5 0.673 0.754 1.002 1.427 3.056

5 0.2 0.885 1.002 1.312 1.807 3.150
0.3 0.822 0.935 1.225 1.672 3.104
0.4 0.723 0.819 1.080 1.508 3.040
0.5 0.622 0.703 0.951 1.369 2.968

10 0.2 0.830 0.946 1.256 1.725 3.047
0.3 0.770 0.883 1.171 1.602 3.010
0.4 0.678 0.773 1.033 1.452 2.956
0.5 0.583 0.664 0.910 1.322 2.895

5

Minimizing the energy expression (24) according to displacements
and phase‐field variable we obtain the system of equations as follows:

δ∑Π ζe; se; δζð Þ ¼ 0
δ∑Π ζe; se; δsð Þ ¼ 0

�

()
∑Ke þ λcr∑Ke

G

� 
ζ ¼ 0

∑
R
Ωe
2N̂

T
s Ψ ζeð ÞN̂sdΩþ R

Ωe
2GCh � 1�N̂

T
s

� 
N̂s

4l þ lBT
11B11


 �
dΩ

� �
¼ 0

8><
>:

ð25Þ
where λcr is the critical buckling load, and the matrices:

Ke ¼ R
Ωe
N̂

T
s N̂s

BT
0AB0 þ BT

0BB1 þ BT
0EB3

þBT
1BB0 þ BT

1DB1 þ BT
1FB3

þBT
3EB0 þ BT

3FB1 þ BT
3HB3

þBT
0γ A

^

B0γ þ BT
0γ B

^

B2γ þ BT
2γ B

^

B0γ þ BT
2γ D

^

B2γ

8>>>><
>>>>:

9>>>>=
>>>>;
dΩ

þ R
Ωe
N̂

T
s N̂s μ kwBT

4B4 þ ks BT
5B5 þ BT

6B6
� � �� �

dΩ

ð26Þ

Ke
G ¼ R

Ωe
N̂

T
s N̂s

B5

B6

� �T

σ�0 B5; B6f ghdΩþ 1
2

R
Ωe

N̂
T
s N̂s

B7

B8

� �T

σ�0 B7; B8f g h3
12 dΩ

þ 1
2

R
Ωe
N̂

T
s N̂s

B9

B10

� �T

σ�0 B9; B10f g h3
12 dΩ

ð27Þ

Table 6
The critical buckling factor of cracked FGM depends on the crack length (c) and
the volume fraction exponent (n) (biaxial compression)

n c/L K
�
w;K

�
s

(0, 0) (100, 0) (100, 10) (250, 25) (1000, 100)

0 0.2 0.753 0.811 0.966 1.281 2.720
0.3 0.722 0.781 0.938 1.111 2.472
0.4 0.677 0.737 0.897 1.049 2.365
0.5 0.624 0.685 0.848 1.004 2.282

0.5 0.2 0.586 0.643 0.798 0.967 2.208
0.3 0.561 0.620 0.777 0.938 2.145
0.4 0.526 0.586 0.747 1.259 2.719
0.5 0.485 0.546 0.709 1.096 2.470

1 0.2 0.524 0.582 0.737 1.036 2.362
0.3 0.502 0.561 0.719 0.993 2.278
0.4 0.471 0.531 0.691 0.958 2.203
0.5 0.435 0.495 0.658 0.930 2.140

2 0.2 0.481 0.538 0.693 1.225 2.719
0.3 0.461 0.520 0.677 1.072 2.468
0.4 0.432 0.492 0.652 1.016 2.358
0.5 0.399 0.459 0.622 0.898 2.273

5 0.2 0.445 0.503 0.658 0.976 2.198
0.3 0.427 0.485 0.643 0.943 2.134
0.4 0.400 0.460 0.620 0.917 2.718
0.5 0.369 0.429 0.592 1.181 2.464

10 0.2 0.417 0.474 0.630 1.040 2.353
0.3 0.400 0.459 0.615 0.989 2.267
0.4 0.375 0.435 0.595 0.952 2.192
0.5 0.346 0.406 0.569 0.922 2.128



Fig. 5. The first four buckling mode shapes of FGM plate resting on an elastic foundation with n= 0.5 for different crack length (uniaxial load, K
�
w;K

�
s= (250,25)).

Fig. 6. The first four buckling mode shapes of FGM plate resting on an elastic foundation with n= 0.5 for different crack length (biaxial load, K
�
w;K

�
s= (250,25)).
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According to [32], to form a crack, initial energy is required, and
this energy has the following expression:

Ψ sð Þ ¼ 103
Gc
4l x ⩽ crack length and �l

2 ⩽ y ⩽ l
2

0 else

(
ð28Þ

Gc is a specific quantity for a material, for fracture propagation prob-
lems, it changes continuously during the movement of the crack, but
for the static crack problem, it is a constant to determine the crack
shape, usually selected by 1. In general, Gc is a parameter depending
on the material, which is determined through a material homogeniza-
Table 7
The critical buckling factor of cracked FGM depends on the crack length (c) and
distance d (uniaxial load, n = 0.5)

L/d c/L K
�
w ;K

�
s

(0, 0) (100, 0) (100, 10) (250, 25) (1000, 100)

8 0.2 1.164 1.280 1.591 2.210 3.630
0.3 1.081 1.194 1.488 2.005 3.540
0.4 0.952 1.049 1.315 1.779 3.420
0.5 0.819 0.901 1.153 1.593 3.295

5 0.2 1.164 1.263 1.583 2.177 3.610
0.3 1.081 1.179 1.473 1.959 3.483
0.4 0.952 1.038 1.300 1.739 3.332
0.5 0.819 0.894 1.139 1.558 3.191

16/5 0.2 1.164 1.247 1.573 2.103 3.486
0.3 1.081 1.158 1.451 1.875 3.250
0.4 0.952 1.018 1.270 1.649 3.005
0.5 0.819 0.876 1.108 1.468 2.799

Fig. 7. The first four buckling mode shapes of FGM plate resting on an elastic
K
�
w;K

�
s= (250,25)).

7

tion process according to the Gq
C value of the material components, Gc

is employed only in Equation (28) to find the dimension of the crack.
Accordingly, Ψ sð Þ is selected as Equation (28) to consolidateΨ sð Þ> Gc.

As a result, it is easy to find phase‐field variable s from equation
(25b), combining with equation (25a) it can be found critical loads
and corresponding buckling mode shapes.

Note that herein variable μ appears in the element stiffness matrix
expression that determines the effect of the elastic foundation at the
region has the delamination between the plate and foundation; this
parameter is set to be 0, in other regions it takes a value of 1 (Fig. 2).

3. Numerical results

3.1. Accuracy study

In this section, two cases of the comparisons to illustrate the accu-
racy of this method in buckling analysis are presented. Firstly, an FGM
(Al/Al2O3) plate resting on the two‐parameter foundation is consid-
ered. The plate is set up to be L/H= 1, thickness h varies from L/10
to L/100, the material properties are given in Table 1, and is subjected
to uniaxial compression. The numerical results of the normalized crit-
ical buckling coefficient obtained by the present method for different
numbers of the element are compared with the analytical method
[8] as listed in Table 2 (L/h= 20), and it can be observed that the
6968‐element mesh can ensure the necessary accuracy and conver-
gence rate of the calculation program. Note that the numerical results
obtained in Table 3 used this mesh.

Compared with the reference method [8], it can see that a good
agreement is obtained. In this example, the parameters are normalized
by [8]
foundation with n= 0.5 for different distance d (uniaxial load, c/L= 0.2,
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N
� ¼ λcr

L2

Emh
3 ; K

�
w ¼ kwL4

Dm
; K

�
s ¼ ksL2

Dm
; Dm ¼ Emh

3

12 1� ν2ð Þ ð29Þ

The accuracy of this method is further studied by examining a fully
simple supported square FGM (Al/ZrO2) plate. The plate geometry is
set to be L= H= 1m, h= 0.01 m, the plate has a crack which is at
the center of this plate as shown in Fig. 3, the material properties
are listed in Table 1. The critical buckling temperature rise (CBTR)
[20] for cracked FGM plate is investigated (c/L= 0.6,) and compared
with those of this work as shown in Table 4. The accuracy of this
method is confirmed as a good agreement between the calculated
results and the extended isogeometric analysis (XIGA) method is
found. The numerical results are performed with a mesh with increas-
Fig. 9. The cracked FGM plate with three circle delamin

Fig. 8. The first four buckling mode shapes of FGM plate resting elastic fo
K
�
w;K

�
s= (250,25)).

8

ing numbers of elements, and when the mesh has 6968 elements, the
convergence rate reaches the required precision. Therefore, the follow-
ing computed data are operated with this mesh.
3.2. Numerical studies

In this section, numerical results to find out the effect of the crack
and the delamination phenomenon between the plate and the founda-
tion on the buckling behavior of the cracked FGM (Al/ ZrO2) plate is
shown. This plate is square with L/H= 1, thickness h= L/100, and
all edges are simply supported, in which, the crack length c can be
changed, this plate is subjected to uniaxial compression in the x‐axis
ation areas (1: the delamination area, 2: the crack).

undation with n= 0.5 for different distance d (uniaxial load, c/L= 0.5,



Table 8
The buckling critical load of cracked FGM depends on the crack length (c) and
the volume fraction exponent (uniaxial load)

n c/L K
�
w;K

�
s

(0, 0) (100, 0) (100, 10) (250, 25) (1000, 100)

0 0.2 1.497 2.363 3.688 5.942 15.640
0.3 1.390 2.036 3.405 5.669 15.561
0.4 1.224 1.722 3.097 5.352 15.392
0.5 1.053 1.472 2.838 5.077 15.137

0.5 0.2 1.164 1.903 3.204 5.449 14.304
0.3 1.081 1.654 2.989 5.236 14.275
0.4 0.952 1.406 2.751 4.979 14.227
0.5 0.819 1.209 2.549 4.754 14.157

1 0.2 1.042 1.730 3.026 5.266 13.741
0.3 0.968 1.510 2.835 5.077 13.725
0.4 0.852 1.288 2.622 4.839 13.701
0.5 0.733 1.110 2.440 4.632 13.666

2 0.2 0.956 1.606 2.362 5.136 13.315
0.3 0.888 1.406 2.900 4.962 13.305
0.4 0.782 1.203 2.725 4.739 13.290
0.5 0.673 1.039 2.530 4.543 13.271

5 0.2 0.885 1.504 2.797 5.027 12.946
0.3 0.822 1.320 2.635 4.867 12.939
0.4 0.723 1.132 2.453 4.655 12.931
0.5 0.622 0.980 2.298 4.469 12.919

10 0.2 0.830 1.424 2.715 4.941 12.644
0.3 0.770 1.252 2.563 4.792 12.639
0.4 0.678 1.076 2.393 4.588 12.633
0.5 0.583 0.933 2.246 4.409 12.626

Table 9
The buckling critical load of cracked FGM depends on the crack length (c) and
the location of the delamination area (uniaxial load, n = 0.5)

c/L K
�
w;K

�
s

(0, 0) (100, 0) (100, 10) (250, 25) (1000, 100)

Case 1 0.2 1.164 1.903 3.204 5.449 14.304
0.3 1.081 1.654 2.989 5.236 14.275
0.4 0.952 1.406 2.751 4.979 14.227
0.5 0.819 1.209 2.549 4.754 14.157

Case 2 0.2 1.164 1.901 3.192 5.412 14.263
0.3 1.081 1.653 2.971 5.187 14.220
0.4 0.952 1.405 2.732 4.930 14.151
0.5 0.819 1.207 2.531 4.709 14.056

Case 3 0.2 1.164 1.897 3.186 5.402 14.228
0.3 1.081 1.638 2.938 5.142 14.177
0.4 0.952 1.389 2.680 4.842 14.021
0.5 0.819 1.191 2.462 4.575 13.885
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or biaxial compression. Two parameters of foundation and critical
buckling load N’ are normalized as in Eq.(29).

3.2.1. The cracked FGM plate resting on an elastic foundation with a
rectangular delamination area (Fig. 4)
3.2.1.1. Effect of the crack length (c) and the volume fraction exponent
index (n). In this subsection, the distance d= L/8 is selected. To get
the influence of relative crack length c, material gradation on the buck-
ling load of cracked FGM plate with a rectangular delamination area,
the crack‐length ratio c/L increases from 0.2 to 0.5 and the gradient
index varies from 0 to 10. Tables 5 and 6 show the critical buckling
factor computed for each ratio c/L and each gradient index n for both
uniaxial and biaxial compressions. It can see that for both cases of
compressive load, the buckling factor N’ decreases with an increase
in the crack length c, the same behavior for increasing gradient index
n. These decreases can be explained that the energy release surface
becomes larger, and the stiffness of plates decreases with an increase
in the crack length c. The metallic volume fraction of the FGM plate
increases when n increases, the stiffness decreases, and buckling factor
N’ decreases. The parameters of the foundation increase, the structure
Fig. 10. Model geometry of two cracked FGM plates with three

9

becomes stiffer, and the buckling load increases. It also finds the
amplitude of buckling factor N’ for the biaxial load is smaller than that
for the uniaxial load.

Fig. 5 plots the first four buckling mode shapes of FGM plate under
the uniaxial load with four cases, case 1: no crack (c/L= 0) and no
delamination, case 2: no crack and with delamination areas, case 3:
with crack c/L= 0.2, and with delamination area, case 4: with crack
c/L= 0.5 and with delamination. Fig. 6 is shown for FGM plates under
the biaxial load with delamination area in two cases of crack length c/
L= 0.2 and 0.5. It can be seen in Figs. 5 and 6 for both cases that the
crack length and the delamination phenomenon between the plate and
the elastic foundation play an important effect on the value of buckling
load as well as buckling mode shapes of FGM plates.

3.2.1.2. Effect of the location of delamination area. The effect of the loca-
tion of the delamination area on buckling behavior is investigated. The
FGM plate subjected to uniaxial load with n= 0.5 is taken. The dis-
tance d between the left edge and the delamination area (see Fig. 4)
changes from L/8 to 5L/16, it means that the delamination area moves
from the left to the center of the plate, and the distance between the
crack and the delamination area decreases. The numerical results
listed in Table 7 show that the delamination area is nearer the plate
center, the critical buckling load becomes smaller, this means that
when the delamination area is closer to the crack as well as the center
of the plate, the energy of the plate releases more, and therefore, the
plate is softer.

It can see clearly that the buckling modes plotted in Figs. 7 and 8
are very interesting. The location of the delamination area has a strong
effect on buckling modes in this study.
delamination areas (1: the delamination area, 2: the crack).



Fig. 11. The first four buckling mode shapes of FGM plate resting on an elastic foundation for three cases of delamination area (n= 0.5, c/L= 0.2,
K
�
w;K

�
s= (250,25)).

Fig. 12. The first four buckling mode shapes of FGM plate resting on an elastic foundation for three cases of delamination area (n= 0.5, c/L= 0.5,
K
�
w;K

�
s= (250,25)).

D. Van Thom et al. Composite Structures 273 (2021) 114278

10



D. Van Thom et al. Composite Structures 273 (2021) 114278
3.2.2. The cracked FGM plate resting on an elastic foundation with three
circle delamination areas (Fig. 9)
3.2.2.1. Effect of the crack length (c) and the volume fraction exponent
index (n). In this subsection, the cracked FGM plate with three circle
delamination areas is explored. Table 8 lists the buckling factor for
various crack‐length (c/L) and gradient indices, the parameters are
set to be c/L= 0.2–0.5, n= 0–10, the plate is subjected to uniaxial
load. It also can be observed that when the crack length and n
increases, the critical buckling load decreases.

3.2.2.2. Effect of the location of the delamination area. Three cases of the
location of the delamination area are analyzed, case 1: three circle
delamination areas are shown in Fig. 9, case 2: three circle delamina-
tion areas are shown in Fig. 10a and case 3 is shown in Fig. 10b.

The computed results of the buckling factor are given in Table 9.
We can see that the buckling load in the first case is higher than it
in the second case, the buckling load in the third case is smaller than
it in the second case. This means that the stiffness of the FGM plate in
the third case is the smallest and in the first case is highest. This also
shows that the closer the delamination area is to the crack, the softer
the plate becomes. In addition, as the elastic foundation parameter
increases, the energy of the plate increases, causing the overall stiff-
ness of the plate to increase, so that the critical buckling load of the
plate also increases. Besides, as the crack length c of the plate
increases, the critical buckling load decreases due to the energy is
released through the increase of the crack length.

The first four buckling mode shapes of these plates obtained by this
method in three cases with two values of the crack‐length c/L are plot-
ted in Figs. 11 and 12. It is very interesting as it reveals a significant
impact of the delamination areas on the buckling load as well as the
buckling mode shapes.
4. Conclusions

In this paper, a new numerical research of the effect of the delam-
ination phenomenon between the plate and the elastic foundation and
the crack on buckling behaviors of cracked FGM plate resting on a two‐
parameter foundation is carried out. The formulations are based on the
third‐order shear theory and FEM, the crack is modeled by a parameter
called phase‐field variable. The effects of various parameters in two
kinds of delamination area (rectangular and circle) on the buckling
behavior are explored in detail. The present method is flexible and
cannot be limited to solve other complex problems. From numerical
results, some conclusions are figured out as follows:

- The combining of the delamination area and the crack has an
important and interesting effect on buckling mode shapes as well
as buckling load. For the considered cases, the closer the delamina-
tion area is to the crack, the more the hardness of the plate
decreases, the plate becomes softer.

- For the FGM plate, the buckling load decreases with the increases
of the volume fraction index. This as the increase of metallic vol-
ume when the gradient index increase will make the stiffness of
the FGM plate softer.

- The increasing the crack length c leads to a decrease of buckling
load, this due to the energy surface release increases. The crack
length also has a strong effect on the buckling modes of cracked
FGM plates.

- The buckling load is reduced as the relative parameters of the elas-
tic foundation decrease.

5. Data availability

Data used to support the findings of this study are included in the
article.
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