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Abstract
This paper explores the effectiveness of spin motion in mitigating the flight dispersion of a two-stage solid-propellant rocket 
model due to thrust misalignment. The aerodynamic coefficients of the rocket model are obtained by the use of a panel 
method and semi-empirical equations. A simulation program is developed to solve the equations of motion while consider-
ing the variations of the inertial parameters. Monte Carlo simulation techniques are applied to provide statistical data that 
are used to analyze the relationship between the spin motion and flight dispersion. The spin motion is generated by canting 
the fins to generate the axial aerodynamic moment. The results show that thrust misalignment at the first stage of the rocket 
has a great impact on the dispersion of rocket flight. By canting the first-stage fins at a relatively large angle to create the 
spin motion right after launch, the dispersion area of the payload-release location can be minimized considerably. However, 
thrust misalignment as well as the fin cant angle at the second stage appear to have insignificant effects on the rocket flight 
trajectory. On the other hand, canting the fins of the second stage at a large angle may lead to an increase in the spin rate, 
which may be harmful to the rocket operation. The paper also shows the variation of the dispersion characteristics of rocket 
flight when the fin size is modified.
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1  Introduction

Sounding rockets are used to carry instruments into the 
upper atmosphere to reach an altitude of between 40 and 
2000 km for research on solar physics, astrophysics, Earth 
science, geophysics and microgravity [1, 2]. Basically, 
sounding rockets can be categorized into three types cor-
responding to the solid, liquid and hybrid motors. For solid-
rockets, their engines may produce large thrust, whose mis-
alignment can cause substantial dispersion in the flight data 
[3]. Thrust misalignment can be understood as the angular 
offset of the thrust vector from the centerline of the engine. 
This factor may largely deflect the flight path of a sounding 

rocket through pitch and yaw torques that occur about the 
center of mass. There are many sources of thrust misalign-
ment, such as tolerances on the manufacturing and assembly 
of rocket motors and nozzles, as well as the distortions of 
motor cases and changes in nozzle angle as a result of pres-
surization, etc. [4].

It should be noted that thrust misalignment is only one of 
many causes of sounding rocket flight dispersion, which are 
addressed in 14 CFR Part 417 [5] regarding launch safety. 
The dispersion problem of rocket flight has been investigated 
and discussed in several previous studies [6–10]. However, 
in these studies, researchers did not analyze the impact of 
each factor on the dispersion data separately. Therefore, 
there have not been any data to indicate to what degree the 
thrust misalignment factor can account for the overall dis-
persion of rocket flight. In reality, this kind of data may be a 
very important basis to set the requirement for the fabrica-
tion standard of rocket engines.

To mitigate the effect of thrust misalignment on the flight 
paths of sounding rockets and other types of spacecraft, spin 
stabilization techniques are often applied. In recent years, 
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many studies have been conducted to find analytical solu-
tions for the motion of spinning spacecraft with thrust mis-
alignment [11–17]. These research results have indicated 
that such analytical solutions can provide deeper insight into 
the behavior of spacecraft motions, and also can be used to 
develop control algorithms for on-board computers. How-
ever, it should be noted that this type of approach does not 
include the variation of mass and the contribution of aero-
dynamic loads in the calculation model.

Jarmolow has solved Euler’s dynamical equations of the 
spinning rocket while considering the variation of mass and 
the torque produced by thrust misalignment [18]. The solu-
tion was compared with that in a case of constant mass and 
torque. The characteristics of the two types of solutions were 
found very different, which deduces that in rocket motion 
analyses, the variations of mass and torque produced by 
thrust misalignment cannot be neglected.

Papis et al. have done research on attitude dispersion of 
a spinning rocket in vacuum under various angular distur-
bances [19]. The solutions from the equations of motion were 
derived by employing a numerical integration and a Monte 
Carlo technique. However, it is noteworthy that compared to 
actual rocket flight, the problem in their study is considerably 
simplified since no aerodynamic force is included.

Due to the nonlinear effects of input perturbations on 
sounding rocket trajectories, a full six-degrees-of-freedom 
(6-DOF) dynamic model is usually required together with 
Monte Carlo simulation techniques to obtain the accurate 
statistical properties of flight path dispersion [20]. How-
ever, in all previous studies on spinning-rocket flight with 
thrust misalignment, researchers have not provided complete 
6-DOF models that involve the effects of aerodynamic loads 
and the variations of the rocket’s inertial parameters.

In this paper, the 6-DOF model of a two-stage solid-
propellant sounding rocket is built in multibody dynamics 
simulation software MSC Adams. Aerodynamic forces and 
moments are calculated using a constant-pressure panel 
method proposed by Woodward [21] in combination with the 
semi-empirical method of Lebedev [22]. The effects of the 
variations of the inertial properties and the center of mass 
are taken into consideration in this study. Firstly, an analysis 
is carried out to find out how the fin cant angles affect the 
spin motion of the rocket model. Next, Monte Carlo simu-
lation techniques are applied to assess to what degree the 
flight dispersion of the rocket due to thrust misalignment 
can be reduced by the spin motion through canting the fins. 
In the present paper, a complete integrated computational 
model, which includes the details of the aerodynamic loads, 
the variations of the inertial parameters, and the full 6-DOF 
equations of motion, is developed for a multi-stage sound-
ing rocket model while statistically studying the effect of 
thrust misalignment. The model is built in the environment 

of MSC Adams software, and a series of user-defined func-
tions and subroutines are added to the software to make it 
applicable to multi-stage rocket flight simulation. This is 
the first time MSC Adams software has been customized 
to be used for this kind of simulation task. In this work, a 
wide range of data related to the spin rate of the rocket and 
dispersion areas are obtained and intensively analyzed in an 
effort to find appropriate cant angles to enhance the quality 
of sounding rocket flight while thrust misalignment occurs 
at all stages. In addition, the fin size effect on the dispersion 
characteristics of rocket flight is numerically studied and 
discussed in this paper.

2 � Rocket Modeling and Simulation 
Methodology

2.1 � Rocket Modeling

The solid-propellant sounding rocket model studied in this 
work is composed of two stages as shown in Fig. 1. The 
subscript G refers to the ground-fixed coordinate system. In 
this study, the origin of the coordinate system is located at 
the launch point; the positive zG axis points vertically down-
ward, and the rocket is launched toward the xG axis. Some 
main parameters of the rocket are presented in Table 1.
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Fig. 1   The sounding rocket model
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The sounding rocket is launched at an angle of 85°, and the 
first stage separates immediately after it runs out of fuel. The 
ignition of the second-stage motor is delayed by 18 s after 
the separation of the first stage. The purpose of this delay 
is to enhance the maximum altitude of the rocket. In this 
work, we study the flight path of the rocket within the first 
100 s. It is assumed that after this period of time, the 12-kg 
payload compartment separates from the second-stage motor 
and is then recovered by a parachute system. For simplicity, 
the effect of separation impulses is neglected in this study.

2.2 � Aerodynamic Model

The aerodynamic coefficients of the present sounding 
rocket model are computed through the combination of 
Woodward’s panel method [21] and semi-empirical equa-
tions [22, 23]. The code of Woodward’s panel method is 
written in FORTRAN and available in [24]. In this work, 
the original panel code is improved by increasing the 
maximum allowed number of panels and enabling the 
program to work on asymmetric aerodynamic problems. 
The present rocket model operates at low angles of attack, 
so the linear superposition principle can be applied to the 
prediction processes of the aerodynamic coefficients as

where Cx and Cz denote the force coefficients along the xb 
and zb axes of the body-fixed coordinate system. mx and my 
are the moment coefficients about the xb and yb axes. α, ω 
and δ respectively represent the angle of attack, the angular 
velocity of the rocket and the cant angle of the fins used to 
control the spin motion. The superscripts f, p and b refer to the 
skin-friction drag, pressure drag and base drag, respectively. 
Cxi

�

 and Cxi
�

 are the coefficients related to the induced drag 
components when the angle of attack and the fin cant angles 
are nonzero. Here, the area and the radius of the second stage’s 
cross-section are respectively used as the reference area and 
the reference length when defining the aerodynamic coeffi-
cients. In Eq. (1), the superscript * represents the nondimen-
sional quantity, which is expressed as

where lref is the reference length, which is equal to the 
radius of the second stage’s cross-section; and V∞

 is the 
freestream velocity.

The body-fixed coordinate system is illustrated in 
Fig. 2. The xb axis is placed along the body axis of the 
rocket and points toward the nose tip. Before launch, the 
rocket has an initial pitch angle as shown in the figure.

First of all, the equivalent cruciform models, which 
consist of constant-pressure panels, are created as shown 
in Fig. 3 to compute all of the aerodynamic coefficients 
mentioned in Eq.  (1) except for the skin-friction drag, 
pressure drag and base drag coefficients. The pressure 
difference on each panel is computed using the non-pen-
etration boundary condition. Expressions related to the 
velocity field induced by a constant-pressure panel are 
provided in the literature [21]. It is noteworthy that for a 
conventional rocket model with a revolved body, Wood-
ward’s panel method tends to underestimate the lift force. 
Woodward used line sources to model revolved bodies and 
treated them as non-lifting objects. Therefore, lift gen-
erated by the body in this type of model appears to be 
lower than the actual value. Using the cruciform models 
as shown in Fig. 3, this problem can be solved, and the lift 
force prediction becomes more accurate.
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Table 1   Main parameters of the rocket model

Initial mass (kg) 92.0

Mass of the 1st stage (kg) 55.0
Mass of the 1st stage without propellant (kg) 26.0
Mass of the 2nd stage (kg) 37.0
Mass of the 2nd stage without propellant (kg) 14.7
Total length (m) 4.0
1st stage diameter (m) 0.235
2nd stage diameter (m) 0.12
Length of the nose cone (m) 0.5
1st stage wing’s leading-edge location (from the nose tip) 

(m)
3.75

1st stage wing’s length (m) 0.22
1st wing’s root chord (m) 0.25
1st wing’s tip chord (m) 0.15
1st wing’s sweep angle (deg.) 24.4
2nd stage wing’s leading-edge location (m) 2.65
2nd stage wing’s length (m) 0.15
2nd wing’s root chord (m) 0.15
2nd wing’s tip chord (m) 0.15
2nd wing’s sweep angle (deg.) 45
1st stage thrust (N) 19,300
2nd stage thrust (N) 5,950
1st stage burn time (s) 2.8
2nd stage burn time (s) 4.6
Specific impulse (s) 190



	 International Journal of Aeronautical and Space Sciences

1 3

The pressure distribution on the rocket body surface 
is then computed by the line-source-based aerodynamic 
model [21]. By integrating this distribution we can obtain 
the pressure drag coefficient Cp

x0
 . The base drag coefficient 

Cb
x0

 , which occurs when the rocket engine is off, is deter-
mined by the following semi-empirical equation:

where kbase is a coefficient that depends on the Mach 
number and the geometry of the base. The value of this 
coefficient is determined by a look-up table given in the 
literature [22].

Fleeman’s equation is used to determine the skin-fric-
tion drag coefficient Cf

x0
 as follows [23]:

(3)Cb
x0
= kbase

Sbase

S0
,

(4)C
f

x0
= 0.053

l

d

(

14.6
M

ql

)0.2

,

where l and d are the length and the diameter of the rocket, 
respectively; M is the Mach number; and q denotes the 
dynamic pressure.

To validate the aerodynamic model used in this study, 
we compare aerodynamic coefficients of the “stage 2 and 3” 
model of a theater ballistic missile target with those from 
a wind tunnel experiment [25]. A good agreement, which 
is observed in Fig. 4, confirms the validity of the present 
aerodynamic model.

Applying the present method to the sounding rocket 
shown in Fig. 1, the aerodynamic coefficients in Eq. (1) 
can be determined and some of them are plotted against the 
Mach number in Fig. 5. Here, Cx0 denotes the total drag at 
a zero angle of attack and zero fin cant angles, and δ1 and 
δ2 are the cant angles at the first and second stages, respec-
tively. In this figure, the moment coefficients before and 
after the stage separation event are calculated with respect 
to the centers of mass of the full rocket model and the second 
stage before burn, respectively. According to these data, for 
the full rocket model before the burning of the first-stage 
propellant, the location of the center of pressure is about 
0.42 m behind the center of mass; and this distance slightly 
increases to 0.44 m when the propellant completely burns 
out at a Mach number of about 1.8. For the second stage, 
right after the stage separation event, the center of pressure 
is located 0.58 m behind the center of mass. When the sec-
ond-stage motor stops working, the rocket reaches the high-
est speed at a Mach number of about 3.0, and the distance 

xb
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Fig. 2   The body-fixed coordinate system of the rocket before launch

Fig. 3   The cruciform models of the all-stage rocket model (a) and its 
second stage (b)
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between the center of pressure and center of mass enlarges 
to 0.74 m. Based on these data, it obvious that the rocket is 
statically stable.

2.3 � Rocket Dynamics Model

2.3.1 � The Development of the Dynamics Model

Compared to previous rocket dynamics simulation studies 
[26–31], the present dynamics model can include the effects 
of the variations of the rocket’s inertial properties based on 
the use of Thomson’s equations for a variable-mass system 
[32]. Figure 6 shows an illustration of a rocket with total 
mass of m, and the mass of its propellant grain is mp. It is 
assumed that the grain burns in a manner that the location 
of its center of mass does not change. Therefore, according 
to Eke [33], the current rocket motor may burn in one of the 
following scenarios: the uniform burn, the radial burn and 
the centripetal burn. Let the center of mass of the grain O 

be the reference point to study the dynamics of the rocket 
model. According to Thomson [32], the force equation is

where superscript b refers to the body-fixed coordinate 
system, F denotes the external force, m is the mass of the 
rocket, r is the position vector, u is the velocity of ejected 
mass relative to the rocket, ω is the angular velocity of the 
rocket, and O, c and e respectively represent the reference 
point, the center of mass of the rocket and the location where 
mass is ejected.

The velocity of the center of mass rb
c
 can be expressed 

as

Then
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b
c
= ṙ
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Fig. 5   Aerodynamic coefficients of the sounding rocket model against the Mach number

Fig. 6   Illustration of a rocket and its propellant grain
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During the burning process of the motor, the center of 
mass of the grain always coincides with O, then rb

Oc
 can be 

defined as

where m0 and c0 denote the mass and the center of mass of 
the system before the burn.

Substituting Eq. (8) into Eq. (7), we derive

Then

Replacing mr̈b
O

 by 
(

m0 − Δm
)

r̈
b

O
 , where Δm is the mass 

loss during the burn, we then derive

It is easy to find that r̈b
O
+ 𝝎̇

b × r
b
Oc0

+ 𝝎
b ×

(

𝝎
b × r

b
Oc0

)

 
is an expression of r̈b

c0
 . Therefore,

Substituting Eq. (12) into Eq. (5), we can obtain

It is assumed that the thrust force FT is independent of 
the flight condition and always equal to ṁu . Here, it is noted 
that ṁ is negative during the burning process; thus, FT has an 
opposite direction to the relative ejection velocity u. Thus,
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(

2𝝎b
×
(

r
b
Oe

− r
b
Oc

)

− 2
drb

Oc

dt
+ u

b

)

.

(14)

F
b
+ F

b
T
+ Δmr̈

b

O
− 2m𝝎b

×
drb

Oc

dt
− m

d2rb
Oc

dt2
+ m̈

(

r
b
Oe

− r
b
Oc

)

+ṁ
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From Eq. (8), it follows that mrb
Oc

= m0r
b
Oc0

 , which is a 
constant. Therefore, the first and second derivatives of mrb

Oc
 

are zero, which means

Substituting Eq. (15) into Eq. (14), the force equation 
could be simplified as follows:

In Eq. (16), the first two terms in the left-hand side are 
the external and thrust forces while the remaining three 
terms are from the mass variation effect. Without these 
three terms, Eq. (16) becomes the force equation of a con-
stant-mass system. Compared to Eq. (5), all of the terms in 
Eq. (16) are expressed about points O or c0, which are fixed 
to the rocket body.

Similarly, the moment equation is derived on the basis of 
Thomson’s work [32]. The original equation is

where B is a closed boundary surface within which we define 
the variable-mass system, and S is the surface where parti-
cles cross over B. Ib denotes the moment of inertia of the 
rocket about point O in the body-fixed coordinate system. 
For simplicity, we assume that inside the motor, all particles 
are distributed symmetrically and move uniformly at a con-
stant speed. Therefore, the terms 2

∑

B

mir
b
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dt

�

 and 
∑

B
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∑

S
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b
i
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the moment Mb
T
 generated by the thrust force about point O 

expressed in the body-fixed coordinate system. Hence, 
Eq. (17) can be reformed as

Replacing m by m0 − Δm and Ib by �b
0
− Δ�b , and taking 

Eq. (8) into account, we can obtain the following moment 
equation:
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ṁ
i
r
b

Oi
× u

b

i
,

(18)M
b
O
= −mr̈

b

O
× r

b
Oc

+ �
b d𝝎

b

dt
+ 𝝎

b
×
(

�
b
𝝎
b
)

−MT .



International Journal of Aeronautical and Space Sciences	

1 3

Here, �b
0
 and Δ�b are the initial moment of inertia and its 

loss due to the burn, respectively.
The last two terms in the left-hand side of Eq. (19) are 

related to the variations of the rocket’s inertial properties. Simi-
lar to the force equation [Eq. (16)], using Eq. (19), the moment 
equation is expressed in a preferable form about points O and 
c0, which are fixed to the rocket body. Compared to their 
original forms [Eqs. (5) and (17)], the new force and moment 
equations [Eqs. (16) and (19)] can be handled more easily. In 
these equations, the six-degrees-of-freedom comprise three 
translational displacements and three Euler angles to deter-
mine the position and the attitude of the rocket, respectively. 
The expression of a vector in the body-fixed coordinate system 
can be converted to that in the ground-fixed coordinate system 
through a direction cosine matrix and vice versa. In this study, 
the solutions from Eqs. (16) and (19) are obtained in the MSC 
Adams environment using the GSTIFF integrator with the pre-
diction and correction phases [34]. MSC Adams solver was not 
created to deal with variable-mass problems. To overcome this 
challenge, a novel idea is applied to customize the program by 
putting all of the terms related to the variations of the mass 
and the moment of inertia in Eqs. (16) and (19) to the solver 
in the forms of external forces and moments. Additionally, the 
solver also includes the contributions of the aerodynamic loads 
and thrust. The aerodynamic force and moment are calculated 
based on the model presented in Sect. 2.2. It should be noted 
that the change in the gravitational force due to mass loss is 
also considered separately in the simulation program.

2.3.2 � Validation of the Dynamics Model

To validate the present dynamics model, we study a case of 
a simple rocket that has an initial mass of 70 kg. The rocket 
propellant grain weighs 20 kg and the burn time is 2.0 s. The 
grain is assumed small and its center of mass is located near 
the motor nozzle as shown in Fig. 7. The thrust is assumed 
constant and equal 20,000 N. The rocket is launched verti-
cally, and a small lateral force of 10 N is applied to the 
model to curve the trajectory. Here, for the sake of simplic-
ity, the aerodynamic loads are not considered.

(19)

M
b

O
+M

b

T
+Δ𝐈

b d𝝎
b

dt
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b
×
(

Δ𝐈
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Firstly, the solution for the dynamics problem is obtained 
by the simulation program described in Sect. 2.3.1. Then, 
this solution is compared with that of an MSC Adams pro-
gram using an emulated rocket motor. For the rocket emula-
tion program, the grain is discretized into particles that leave 
the nozzle one after another. Right after a particle leaves the 
nozzle, its connection to the rocket is deactivated, and the 
total mass of the system is reduced. Applying this technique, 
these particles are used to emulate the product of combus-
tion that happens in the rocket motor (Fig. 8). In the present 
study, 10 particles are employed for the emulation purpose.

The solution from Eqs. (16) and (19) for the first two 
seconds shows a very good agreement with that by the emu-
lation program (Fig. 9). The most noticeable differences are 
found in the translational and angular acceleration plots, 
which are explained by the discretization technique used in 
the emulation program. However, the overall trends of the 
two types of solutions are very close, which can confirm the 
validity of the present rocket dynamics model.

3 � Results and Discussion

3.1 � The Effect of Canted Fins on the Spin Rate

As mentioned earlier, to cancel out the unfavorable effects of 
asymmetric conditions, such as thrust misalignment on the 
flight trajectory of the rocket, the fins are deliberately canted 
to generate the spin motion of the rocket. In this subsection, 
we investigate the relationship between the fin cant angles 
and the rocket spin rate. It is assumed that the fins at the first 
and second stages of the rocket may be canted up to 0.5°. 

Fig. 7   A simple rocket model with grain Fig. 8   Rocket and particles in the rocket emulation program
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Figure 10 shows the 40-s time histories of the rocket speed 
and the variations of the spin rate for several combinations 
of the first- and second-stage cant angles δ1 and δ2. Based on 
our observations, after 40  s the spin rate monotonously 
decreases for all cases. It is noted that thrust misalignment is 
not included here, and the cant angles do not have any sig-
nificant effect on the rocket speed. In general, the spin rate 
follows the trend of the speed. It is found that the spin rate 
grows rapidly when the rocket is accelerated during the motor 
burn. The separation of the first stage is followed by a rapid 
increase in the spin rate. This increase could be explained by 
a sudden reduction in the spin-damping coefficient mx

�
∗
x

 after 
the separation, which is exhibited in Fig. 5.

As shown in Fig. 5, mx
�2

 may have a negative value when 
the Mach number above 1.0 for the all-stage configuration, 
which signifies a roll reversal effect [35]. This effect can be 
observed before the separation of the first stage in Fig. 10 
when δ1 = 0. A negative value of the spin rate is induced by 
the deflections of the second stage’s fins according to the roll 
reversal effect.

Tables 2 and 3 present the maximum spin rates with respect 
to various combinations of δ1 and δ2 during the burns of the 
first- and second-stage motors, respectively. It is seen that for 
most cases, the maximum spin rate during the burn of the 
second-stage motor is larger, which is attributed to the higher 
speed of the rocket and the lower absolute value of the spin-
damping coefficient mx

�
∗
x

 at this phase. The spin rate of the 
rocket can be calculated by the following equation:

The left-hand side of the above equation is the aerodynamic 
spin-damping moment while the right-hand side expresses the 
aerodynamic moment arising from the cant angles of the fins. 
From Eq. (20), it follows that

It is obvious that at a higher speed V and a lower abso-
lute value of the spin-damping coefficient mx

�
∗
x

 , the spin 
rate ωx is larger. Figure 11 shows the maximum spin rates 

(20)−mx
�
∗
x

�x

lref

2V
= mx

�

�.
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−2Vmx
�

�

mx
�
∗
x
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.

Fig. 9   Solution from Eqs. (16) and (19) (theory) and that by the emulation program

Fig. 10   Rocket speed and spin rates against time
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based on the data given in Tables 2 and 3. It is observed 
that while the maximum spin rate during the burn of the 
second-stage motor ω2 almost depends only on the cant 
angle of the second-stage fins δ2, the maximum spin rate 
during the burn of the first-stage motor ω1 can be deter-
mined mainly based on the value of the first-stage fin angle 
δ1. However, δ2 also has a slight influence on the value of 
ω1. This influence comes from the roll reversal effect as 
mentioned earlier, which means with an increase of δ2, the 
maximum spin rate during the burn of the first-stage motor 
ω1 decreases. It should be noted that a too large value of 
the maximum spin rate should be prevented to avoid any 
excessive centrifugal acceleration that may cause severe 
damages to the rocket structures and the on-board 
equipment.

3.2 � Thrust Misalignment Generation and Flight 
Dispersion Reduction

3.2.1 � Random Thrust Misalignment Generation

As mentioned earlier in this paper, there are many sources of 
thrust misalignment, which may cause unpredictable nega-
tive effects on sounding rocket trajectories. Figure 12 shows 
angles φ and θ that are used to define the thrust misalign-
ment. For vertical launch, when θ equals 0, the thrust vec-
tor lies on the xGOzG plane (Fig. 1). It is assumed that for 
the first- and second-stage rocket motors, φ has the same 
Gaussian distribution with the mean value of 0 and a stand-
ard deviation of 0.1°. These values are selected based on 
a study of Knauber [4], who stated that most fixed-nozzle 
solid rocket motors have a thrust misalignment of less than 
0.25°. The angle θ takes a uniform distribution within 0 to 
180°. In this work, 100 sets of the misalignment angles, 
which encompass the angles φ and θ of the first- and second-
stage rocket motors, are generated randomly and presented 
in Fig. 13. Figure 14 shows the thrust misalignment histo-
grams at the first and second stages, which are represented 
by the absolute value of φ. The histograms of the generated 
data are close to the theoretical ones, which are built based 
on the Gaussian distribution of φ.

3.2.2 � Flight Dispersion of the Non‑Spinning Rocket

100 random data sets of thrust misalignment shown in 
Fig. 13 are applied to the present sounding rocket model to 
study the dispersion of its flight. In this study, the effect of 
thrust misalignment on rocket flight is investigated through 
the dispersion of the payload-release point. The rocket is 
assumed to be launched from the origin of the ground-fixed 
coordinate system xGyGzG at an angle of 85° towards the xG 
direction, and the payload is released 100 s after launch. 
The dispersion is characterized by the area an ellipse that 
is expected to cover 95% of the probable cases. This ellipse 

Table 2   Maximum spin rates before the separation of the first-stage 
motor

�1(
◦)∕�2(

◦) 0 0.1 0.2 0.3 0.4 0.5

0 0.00 5.25 10.51 15.77 21.02 26.27
0.1 0.67 4.83 10.09 15.35 20.6 25.86
0.2 1.33 4.41 9.67 14.93 20.18 25.44
0.3 2.00 3.99 9.25 14.51 19.76 25.02
0.4 2.66 3.75 8.83 14.09 19.34 24.60
0.5 3.33 4.08 8.41 13.67 18.92 24.17

Table 3   Maximum spin rates after the separation of the first-stage 
motor

�1(
◦)∕�2(

◦) 0 0.1 0.2 0.3 0.4 0.5

0 0.00 0.00 0.00 0.00 0.00 0.00
0.1 12.94 12.94 12.94 12.94 12.94 12.94
0.2 25.88 25.87 25.87 25.88 25.88 25.88
0.3 38.83 38.81 38.82 38.83 38.83 38.83
0.4 51.77 51.75 51.74 51.75 51.75 51.76
0.5 64.69 64.7 64.67 64.67 64.68 64.68

Fig. 11   Maximum spin rates 
before (a) and after (b) the sepa-
ration of the first-stage motor at 
various values of δ1 and δ2

a b
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is called a 95% confidence ellipse, whose properties can be 
found in the literature [36].

Figure 15 presents the dispersion data for several cases of 
thrust misalignment with their 95% confidence ellipses. The 
expected release point of the payload is 12.2 km from the 
launch point along the xG axis. The ellipse area correspond-
ing to thrust misalignment occurring at both stages is 167.8 
km2, which is slightly larger than an area of 165.3 km2 in 
the case of the first-stage thrust misalignment. At the same 
time, the area of the 95% confidence ellipse corresponding 
to the second-stage thrust misalignment is only 1.2 km2. 
Hence, it is relevant to state that thrust misalignment at the 
second stage has a minimal effect on the dispersion of rocket 
flight. The main source of the total dispersion is the first-
stage thrust misalignment, which accounts for 98.5% of the 
area of the 95% confidence ellipse.

According to Boersma et al. [7] and 14 CFR Part 420 
[37], the impact dispersion radius of unguided rockets is 
from 20 to 40% of the apogee altitude, and based on the 
simulation data in this paper, it is possible to state that the 

dispersion due to thrust misalignment is considerable in a 
comparison with that arising from other factors. Therefore, 
once again, we can assert the importance of studying rocket 
flight dispersion due to thrust misalignment in the prelimi-
nary design phase.

3.2.3 � Flight Dispersion Reduction by Spinning the Rocket

In this part, we study how the spin motion of the rocket 
can affect the flight dispersion data. The fins at the first and 
second stages are canted deliberately in an effort to spin 
the sounding rocket through axial aerodynamic moments. 
Table 4 shows the normalized areas of the 95% confidence 
ellipses for various combinations of the first- and second-
stage cant angles δ1 and δ2. Here, the data are normalized 
with the area of the ellipse corresponding to the non-spin-
ning rocket. The mean payload-release altitude data are 
presented in Table 5. Figure 16 illustrates the variations 
of the normalized dispersion area with respect to the cant 
angles. From this figure, we can observe that the disper-
sion almost depends only on the first-stage cant angle δ1. 
As shown in Fig. 15, the first-stage thrust misalignment, 
which occurs at a low altitude, may cause a profound effect 
on the trajectory of the rocket. Therefore, by canting the 
first-stage fins, the flight dispersion may be reduced sig-
nificantly through the spin motion of the rocket right after 
launch. As shown in Fig. 17, the dispersion decreases with 
an increase of the maximum spin rate during the burn of 
the first-stage motor ω1. By increasing the spin rate, the 
thrust misalignment averages out, and the dispersion is 
minimized.

Regarding the payload-release altitude, with increases of 
fin cant angles, this quantity tends to be lower due to the 
larger drag coefficient. However, it should be noted that this 
effect is extremely small.

As indicated above, canting the fins at the first stage is 
effective in reducing the dispersion area while that of the 
second-stage fins is proved to be inconsiderable. Moreover, a 
large cant angle at the second stage causes a significant spin 
rate during the burn of the second-stage motor. As shown 

Fig. 12   Angles used to define the thrust misalignment

a b

Fig. 13   Thrust misalignment angles of the first- (a) and second-stage 
(b) motors

a b

Fig. 14   The thrust misalignment histograms of the first- (a) and sec-
ond-stage (b) motors
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in Table 2, when the second-stage cant angle is 0.5°, the 
maximum spin rate of the rocket is around 64 rad/s, which 
is regarded as extremely large and may cause severe damage 
to the on-board equipment. In general, the second-stage cant 
angle δ2 should be held low to avoid the above mentioned 

adverse effects on rocket flight while the fins at the first stage 
could be canted at a value as large as 0.5°. It is noteworthy 
that a larger value of the first-stage fin angle δ1 may have a 
greater effect on the reduction of the dispersion area; how-
ever, the maximum spin rate will increase, too. To compro-
mise between these two factors, a value of 0.5° is selected, 
and the corresponding maximum spin rate is around 26 rad/s 
according to Table 1.

Figure 18 shows the dispersion data of spinning and 
non-spinning rockets. For the spinning rocket, the first- and 
second-stage cant angles δ1 and δ2 are 0.5° and 0.1°, respec-
tively. The area of the 95% confidence ellipse is about halved 

Fig. 15   The dispersion of the payload-release point for several cases of thrust misalignment

Table 4   Normalized area of the 95% confidence ellipse for various 
combinations of δ1 and δ2

�1(
◦)∕�2(

◦) 0 0.1 0.2 0.3 0.4 0.5

0 1.00 0.71 0.66 0.63 0.55 0.51
0.1 0.98 0.68 0.65 0.62 0.54 0.50
0.2 0.97 0.66 0.64 0.61 0.54 0.50
0.3 0.96 0.65 0.65 0.61 0.54 0.51
0.4 0.94 0.66 0.66 0.63 0.55 0.52
0.5 0.91 0.65 0.66 0.62 0.54 0.51

Table 5   Mean payload-release altitude in km for various combina-
tions of δ1 and δ2

�1(
◦)∕�2(

◦) 0 0.1 0.2 0.3 0.4 0.5

0 47.43 47.27 47.25 47.25 47.29 47.27
0.1 47.48 47.28 47.27 47.26 47.28 47.25
0.2 47.51 47.28 47.26 47.25 47.28 47.24
0.3 47.49 47.23 47.24 47.24 47.25 47.21
0.4 47.45 47.22 47.22 47.23 47.23 47.18
0.5 47.43 47.18 47.19 47.20 47.21 47.14

Fig. 16   The normalized dispersion area at various values of δ1 and δ2
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from 167.8 km2 to 84.6 km2 when the spinning technique 
is applied.

For better understanding of the flight dispersion reduction, 
the detailed trajectory data of a specific case are analyzed. In 
this case, the thrust misalignment angles (angle φ in Fig. 12) 
of the first- and second-stage motors are given randomly and 
equal 0.2° and 0.3°, respectively. Similarly, angle θ takes ran-
dom values of − 70° and − 50° respectively for the first and 
second stages. For the case of the spinning rocket, the fins at 
the both stages are assumed to be canted at 0.5°. Figure 19 
shows the altitude, the downrange and the lateral deflection 
in the cases of the non-spinning and spinning rockets together 
with the ideal trajectory without thrust misalignment. It is 

seen that when the rocket spins, the trajectory becomes closer 
to the expected one. The lateral deflection is reduced from 
7.7 km to 5.1 km. In terms of speed, the spin motion does 
not cause any noticeable effect as shown in Fig. 20. However, 
there is a significant change in the orientation of the veloc-
ity vector. Figure 21 presents the deflection of the velocity 
vector from the longitudinal vertical plane (plane xGOzG). 
According to the data in this figure, the spin motion decreases 
the final deflection angle of the velocity vector from 27° to 
21.5°. It is also shown that most of the deflection comes 
from the misalignment of the first-stage thrust vector, which 
agrees with the statistical analysis result shown in Fig. 15. 
The similar trend is seen in Fig. 22 for the deflection angle 
of the rocket body axis from the longitudinal vertical plane. 
The large thrust of the first-stage motor can cause significant 
deflections as shown in Figs. 21 and 22 when its vector and 
the body axis are misaligned. Moreover, due to the lower 
speed during this phase (Fig. 20), the rocket becomes easier 
to be deflected from its expected trajectory. From Fig. 22 we 
can see that while the rocket is spinning, its own body axis 
also fluctuates strongly during the burn of the motors.

Figures 23 and 24 provide the variations of the body pitch 
angle and the angle of attacks in different cases. We can rec-
ognize that the spinning rocket has a similar pitch angle vari-
ation to that of an ideal case without thrust misalignment. As 
for the angle of attack, the variation in the non-spinning case 
is characterized by the frequencies of the vibrations in the 
pitch and yaw directions while for the spinning case, in addi-
tion to these vibrations, the angle of attack also varies together 
with the spinning motion of the rocket about its own axis.

Fig. 17   The relationship between the normalized dispersion area and 
the maximum spin rate during the burn of the first-stage motor

Fig. 18   The payload-release location dispersion of spinning and non-spinning rockets
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3.2.4 � Effect of Fin Size on the Dispersion

Here, we study the size effect of the first-stage fins, which 
have a great impact on the dispersion area. In addition to the 
model with the original fins, two others with the modified 
fin size are investigated (Fig. 25). The dimensions of the 
small and large fins are decreased and increased by 25%, 
respectively. The simulation process runs for the three rocket 

models with the cant angle of the first-stage fins of 0°, 0.1°, 
0.2°, 0.3°, 0.4° and 0.5° while the second-stage fins are not 
canted. Figure 26a shows that the fin size has a great effect 
on the dispersion area. When the fins are canted at 0.5°, 
the maximum spin rate of the rocket before the separation 
of the first stage ω1 in all cases are similar and at around 
25 rad/s; however, the dispersion area of the rocket with 
the small fins is increased by 2.6 times from 86.1 km2 to 
226.4 km2 whereas using the large fins reduces this area to 
46.7 km2. The big differences in the dispersion area between 
the cases are related to the pitch-damping coefficient. Larger 
fins provide larger damping in the pitch motion; therefore, 
the rocket becomes more stable when it is affected by thrust 
misalignment. It should be noted that the fin size does not 
have a considerable influence on the spin rate. As indicated 
by Eq. (21), the spin rate is a function of the ratio between 
the derivative coefficient of the roll moment with respect 
to the fin cant angle mx� and the spin-damping coefficient 
mx�x∗ . When the size of the fins increases, these both coef-
ficients become larger; however; their ratio is not affected 

Fig. 19   The rocket trajectory in different cases

Fig. 20   The speed of the spinning and non-spinning rockets

Fig. 21   Velocity vector deflection of the spinning and non-spinning 
rockets

Fig. 22   The deflection angle of the rocket body axis in the spinning 
and non-spinning cases

Fig. 23   The pitch angle of the rocket in different cases
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significantly. Despite of the noticeable fin size effect on the 
dispersion area, the effectiveness of the spin motion in the 
reduction of this area tends to be unaffected as shown by 
Fig. 26b. In this figure, the area is normalized with its maxi-
mum value when the fins are not canted. It is seen that for 
all rocket models, the dispersion area decreases by approxi-
mately 50% when the maximum spin rate is around 25 rad/s.

In general, using larger fins seems to be more favorable 
in terms of stabilizing the rocket flight path due to thrust 
misalignment. However, a sounding rocket with large fins 
may be susceptible to the weathervane effect, which causes 
a considerable deflection of the flight path due to horizontal 
wind [20].

4 � Conclusions

This paper presents the effectiveness of spin motion in reduc-
ing the flight dispersion of a two-stage solid-propellant sound-
ing rocket model due to thrust misalignment. The aerodynamic 
coefficients of the rocket are determined by the combination of 
semi-empirical equations and a potential-based panel method 
that works for both subsonic and supersonic flows. The dynam-
ics model is developed to solve the 6-DOF equations of motion 
while taking the variations of the inertial parameters into con-
sideration. Through Monte Carlo simulation techniques, it is 
found that thrust misalignment at the first stage has a consid-
erable effect on the dispersion of sounding rocket flight while 
the effect due to the second-stage thrust misalignment is small. 
Moreover, the results show that by canting the fins at the first 
stage, the rocket starts spinning right after launch, then flight 
is stabilized and the dispersion can be reduced significantly. 
However, canting the fins at the second stage may not be nec-
essary as it does not have any substantial effect in terms of 
dispersion reduction while an unfavorable extremely high spin 
rate may occur at a large angle. According to the analysis, if 
the fins at the first stage are canted at 0.5°, the area of the 95% 
confidence ellipse of the payload-release location is expected 
to be halved. The paper also exhibits an important effect of the 
fin size on the dispersion area. Even though the effectiveness of 
the spin motion tends to be independent of the fin size, using 
larger fins shows a positive effect on the dispersion reduction. 
However, the rocket with the larger fins may be more suscep-
tible to the weathervane effect due to horizontal wind, which 
is not discussed in this paper.
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