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Abstract
The current work has been performed an effective optimization to decrease the total energy consumption (Etotal) and total

machining time (Ttotal) with the constraint of the average roughness for the actively driven rotary turning (ADRT) of the

material labeled SKD11. The optimizing factors are the tool rotational speed (vt), depth of cut (a), feed rate (f), and

workpiece speed (vw). The analytical approach was used to construct the models of the Etotal and Ttotal. The weightage

principal component analysis (WPCA) was applied in conjunction with the non-dominated sorting particle swarm opti-

mization (NSPSO) and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to determine the

weight values of machining responses and select the best optimal solution. The scientific findings revealed that the optimal

values of the vt, a, f, and vw were 78 m/min, 0.21 mm, 0.44 mm/rev., and 98 m/min, respectively. The reductions in the

Etotal and Ttotal were 16.99% and 17.78%, respectively. Moreover, the proposed models of the Etotal and Ttotal were

significant and could be used to predict technical performances with acceptable accuracy. The optimization technique

comprising the analytical method, NSPSO, WPCA, and TOPSIS was named as a powerful approach to obtain optimal

outcomes.
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1 Introduction

The rotary turning operation using a circular insert is an

effective manufacturing solution to machine hardened

steels. The round insert is continuously rotated around its

axis, which is employed to remove the material. This

process can be divided into two kinds, including the

actively driven rotary turning (ADRT) and self-propelled

rotary tool (SPRT) turning processes. For the ADRT pro-

cess, the motion of the round insert is conducted using an

external motor, as shown in Fig. 1. The rotary turning

operation provides a rest period, which has a significant

contribution to minimizing machining temperature, longer

tool life, and higher productivity. Additionally, the

machined quality is also improved, as compared to the

fixed turning. Therefore, the rotary turning process has

great potential to replace the traditional approaches, such

as grinding, hard turning, and polishing operations [1].

The selection of optimal factors for improving

machining performances of various rotary turning opera-

tions has been considered by many researchers. The tra-

ditional objectives are the cutting temperature, tool wear,

average roughness, and turning force. Armarego et al. [2]

analyzed the influences of the cutting speed, feed rate, and

depth of cut on the turning temperature of the rotary and

fixed turnings. The results indicated that the temperature

produced by the rotary turning was evenly distributed and

decreased by 50 �C, as compared to the fixed turning.

Dessoly et al. [3] investigated the influences of the cutting

speed, depth of cut, different workpieces, and various

inserts (carbide, coated carbide, and ceramics) on the tool

wear and the formation of the chip. These authors stated

that the tool wear was only observed on the flank surface

and the range of the cutting speed could be increased with
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the rotary turning. The analytical model of the tool wear for

the rotary turning of the hardened AISI 4340 steel was

proposed by Kishawy et al. [4]. The outcomes revealed that

the designed models could be effectively employed to

forecast the tool wear. Kishawy analyzed the characteris-

tics of the tool wear, average roughness, and surface

topography of the aerospace workpieces under the varia-

tions of the machining parameters [5]. These authors

indicated that the flank wear was evenly distributed in the

rotary insert, while the average roughness and cutting force

were lower than the conventional approach. Wang et al. [6]

applied a neural network to develop the approximate

models of the three force components regarding the cutting

speed, depth of cut, feed rate, and inclined angle. The small

deviations compared with the experimental results revealed

that the proposed models are adequate. Li and Kishawy [7]

used the Oxley algorithm to construct the machining force

model for the SPRT turning, in which the characteristics of

the frictional coefficient and tool wear were analyzed with

the aid of the experiments. The findings showed that the

precision of the developed force model was satisfactory.

Ezugwu et al. [8] emphasized that the rotary turning could

provide longer tool life, lower machining forces, and

higher material removal rate for machining aero-engine

alloys. The approximate models of the average roughness

and material removal rate for the rotary turning of hardened

steel were developed by Rao et al. [9]. These authors

presented that the average roughness was decreased to

1.49 lm, while the material removal rate did not change.

Teimouri et al. [10] developed the empirical models of

the machining force and average roughness in terms of the

cutting speed, tool rotary speed, and feed rate for the

ADRT and ultrasonic vibration assisted-rotary turning

(UART) processes of the aluminum alloy. The obtained

findings indicated that the UART process could provide

lower cutting force and average roughness, as compared to

the ADRT operation. Lotfi et al. [11] proposed a simulation

model to assess the behaviors of the tool wear and cutting

temperature in traditional, rotary, and UART operations.

The machining experiments were performed to analyze the

impacts of the vibrational motion on the wear, heat gen-

eration, average roughness, and cutting force, respectively.

The findings revealed that average roughness and cutting

force were decreased around 50%, as compared to the

traditional approach. Shasahara et al. [12] emphasized that

the cutting temperature and flank wear could be decreased

with the aid of the oil mist. Moreover, these authors

emphasized that the values of the cutting temperature and

tool wear of the ADRT turning were lower than that of the

fixed tool. A self-propelled rotary face milling tool was

developed by Jegaraj et al. [13] to improve the production

rate in the rough machining. The empirical models of the

milling force components were proposed in terms of the

cutting speed, feed rate, depth of cut, and inclination angle.

The small errors between the experimental and predictive

results indicated that the regression models are significant.

Amini and Teimouri [14] executed an attempt to minimize

the machining force and average roughness of the UART

operation of the aluminum alloy. The authors stated that

the optimal values of the cutting velocity, tool speed, feed

rate, and depth of cut were 4 m/min, 220 RPM, 0.08 mm/

rev., and 0.3 mm, respectively. The impacts of the tool

rotational speed and direction on the cutting forces, tem-

perature, and chip formation for the ADRT operation of the

carbon steel were explored by Suryadiwansa et al. [15].

The findings revealed that the cutting temperature was

decreased with an increment in the tool speed, while the

force components were increased. Similarly, the influences

of the workpiece and tool speed on the cutting temperature

for the ADRT operation of the stainless steel and Inconel

were investigated by Hosokawa et al. [16]. The authors

stated that lower workpiece speed and/or higher tool speed

caused a reduction in the cutting temperature.

Recently, resolving the relations between energy con-

sumption, machined quality, and productivity has been

addressed in the published works. Nguyen applied the

adaptive neuro-fuzzy inference system (ANFIS) to render

the relations between the energy consumption, average

roughness, and machining rate in terms of the inclination

angle, depth of cut, feed rate, and cutting speed for the

SPRT turning [17]. The authors emphasized that the energy

used and average roughness were reduced by 50.29% and

19.77%, while the machining rate was improved by

33.16%, respectively, at the optimal solution. The assess-

ment of the sustainable indicators, including energy effi-

ciency, turning cost, average roughness, and operational

safety for the SPRT process were conducted by Nguyen

et al. [18], in which the neighborhood cultivation genetic

Fig. 1 Principle of the actively driven rotary turning process
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algorithm (NCGA) was applied to identify the optimal

factors. As a result, the improvement in energy efficiency

was 8.91%, while the average roughness and cost were

decreased by 20.00% and 14.75%, respectively, at the

optimal point.

As a result, optimizations of different SPRT processes

for improving the machining responses have been thor-

oughly investigated by former researchers. The conven-

tional responses are the tool wear, average roughness,

cutting force, production rate, energy consumption, and

energy efficiency. Unfortunately, enhancing the technical

performances of the ADRT process has got less attention.

The analysis of the total energy consumption and

machining time has not been performed for the ADRT

operation. Additionally, the experimental approach was

intensively employed to investigate the turning character-

istics, which requires huge efforts and expensive costs.

In this investigation, the actively driven rotary turning

(ADRT) process of the mold material namely SKD11 has

been addressed to decrease the total energy consumption

and machining time, while the average roughness is con-

sidered as a constraint. Firstly, the active driven rotary tool

is designed and fabricated. The specimen labeled SKD11 is

employed due to wide applications in the mold, marine,

and automotive industries. An analytical approach is used

instead of the experimental method to develop compre-

hensive models of the total energy consumption and

machining time. The non-dominated sorting particle swarm

optimization (NSPSO) is applied to generate feasible

solutions. The weight principle component analysis

(WPCA) is employed to select the weight values of each

turning response. The Technique for Order of Preference

by Similarity to Ideal Solution (TOPSIS) is applied to

select the best optimal point.

2 Optimization framework

2.1 Optimization issue

The literature revealed that the machining conditions

considered are the characteristics of the rotary insert (di-

ameter, normal rake angle, and materials), the process

parameters (inclination angle, tool rotational speed, work-

piece speed, depth of cut, and feed rate), lubrication

characteristics (dry machining, minimum quantity lubri-

cation-MQL, flood lubrication, and cryogenic machining),

and the workpiece materials. The affecting factors most

likely to influence energy consumed, quality, and

machining time are shown in Fig. 2 with the aid of the

Ishikawa diagram.

In the current work, the characteristics of the round

insert and workpiece are listed as stable conditions. All

tests are performed in the flood condition and the inclina-

tion angle of 0� is used. Therefore, the tool rotational

speed, workpiece speed, depth of cut, and feed rate are

considered as the optimizing inputs.

The considered factors and their levels are presented in

Table 1. The parameter ranges are selected based on the

characteristics of the machined tool employed as well as

rotary insert and verified with the literature review. The

turning trials at the highest levels are conducted to ensure

that the power consumed is less than the maximum power.

In this work, two turning responses, including the total

energy consumed and total machining time, are simulta-

neously optimized using an integrative approach with the

constraint of the average roughness. The value of the

average roughness is predefined as a constant for a specific

machining purpose.

Therefore, the optimization issue can be expressed as:

Find X = [vt, a, f, and vw].

Minimizing total energy consumption and total

machining time.

Constraints: 40 B vt B 100 (m/min); 0.20 B a B 1.00

(mm); 0.08 B f B 0.5 (mm/rev.);

80 B vw B 200.

Ra B Ra upper.

2.2 Optimization framework

The optimization approach includes the following steps.

Step 1: The comprehensive models of the total energy

consumed and total machining time are then developed

with respect to process parameters using the analytical

method [19, 20].

The total machining time (Ttotal) is expressed as:

Ttotal ¼ to þ tsb þ tair þ tc þ ttc ð1Þ

where to the start-up time; tsb the standby time; tair the air-

turning; tc the turning time; ttc the tool change time.

Practically, the start-up, standby, and tool change times

can be considered as constants.

The air-turning time (tair) is calculated as:

tair ¼ h1Lþ h2 ð2Þ

where h1 tool travel time; h2 tool depart time; L total

machining length.

The turning time (tc) is calculated as [21]:

tc ¼
MRV

MRR
1þ ttc

T

� �
ð3Þ

where MRV the material removal volume; MRR the

material removal rate; T the tool life.

The values of the MRV and MRR are computed as:
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MRV ¼ pDLa
1000

ð4Þ

MRR ¼ vfa

60
ð5Þ

where D the turning diameter; L the turning length; v the

resulting cutting speed.

The value of the resulting cutting speed is computed as:

v ¼ ½ðvw cos bÞ2 þ ðVt þ vw sin bÞ2�1=2 ð6Þ

The tool life equation can be extended to include pro-

cess parameters for the turning operation, which is com-

puted as [22]:

T ¼ 60
Aa

vaf bac
ð7Þ

where A the coefficient related to the cutting conditions; a,
b, and c positive constant parameters depending on the tool

material and workpiece.

Fortunately, the tool life was enhanced by 300% with

the aid of the 5% water-based cutting fluid, as compared to

the dry cutting environment [23]. Additionally, the positive

impacts of the cutting fluid on the tool wear and average

roughness were recognized [24]. Therefore, the coefficient

related to the reduction in the tool wear (kT) using the

cutting fluid is taken into account the calculated value of

the tool wear, which is shown as:

T ¼ 60
Aa

kTvaf bac
ð8Þ

Thus, the total machining time (ttotal) is calculated as:

ttotal ¼ to þ tsb þ h1Lþ h2 þ
MRV

MRR
1þ ttc

T

� �
þ ttc ð9Þ

The total energy consumed in the turning process can be

divided into two primary components, including the direct

energy consumption and indirect energy consumption. The

direct energy consumption is the electrical energy con-

sumed by the machine tool during the turning process,

which is used to operate the machine components such as

the spindle, feed system, and auxiliary parts.

As shown in Fig. 3, the direct energy consumed (Edirect)

in the ADRT process can be divided into the start-up

energy (Eo), the standby energy (Esb), transition energy for

the spindle acceleration/deceleration state (Ets), air-turning

energy (Eair), turning energy (Ec), and tool change energy

(Etc). The indirect energy consumption (Edirect) includes

the energy footprint of the rotary turning tool (Eft) and

cutting fluid (Eff).

Thus, the total energy model can be expressed as:

Etotal ¼ Eo þ Esb þ Ets þ Eair þ Ec þþEtc þ Eft þ Eff

ð10Þ

Fig. 2 The affecting parameters on the turning responses

Table 1 Process parameters and their ranges

Parameters Symbol Unit Ranges

Tool speed vt m/min 40–100

Depth of cut a Mm 0.20–1.00

Feed rate f mm/rev 0.08–0.50

Workpiece speed vw m/min 80–200
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Practically, the energy consumed in the start-up and

standby states a can be directly measured by experiments.

Therefore, the start-up energy is considered as a constant.

The energy consumed in the standby state (Esb) is cal-

culated as:

Esb ¼ Psb � tsb ð11Þ

where Psb denotes the power consumed in the standby

state.

The energy consumed in the transition state (Ets) is

expressed as:

Ets ¼ x1v
2 þ x2vþ x3 ð12Þ

where xi presents the experimental coefficients related to

the characteristics of the machine tools.

The energy consumed in the air-cutting state (Eair) is

calculated as:

Eair ¼ Pair � tair ¼ ðPsb þ PoperationalÞ � tair
¼ ðPsb þ k1vþ k2Þ � tair ð13Þ

where Pair the power consumed in the air-turning state; k1
and k2-the coefficients of the linear model.

The energy consumed in the turning state (Ec) is cal-

culated as:

Ec ¼ ðMRV� SECÞ ð14Þ

SEC ¼ ðC0 þ
C1

MRR)
Þ ð15Þ

where C0 and C1 present the experimental coefficients to be

determined.

The energy consumed of the tool change (Etc) is com-

puted as:

Etc ¼ Psb � ttc
tc
T

� �
ð16Þ

The energy footprint of the turning tool (Eft) is calcu-

lated as:

Efp ¼ Pt

tc
T

� �
ð17Þ

where Pt is the tool energy per insert.

The energy footprint of the cutting fluid (Eff) is calcu-

lated as:

Eff ¼
tcVAgqXc

Tfl
ð18Þ

where VA is the consumption velocity of the cutting fluid; g
the concentration of the cutting fluid; q the density of the

cutting fluid; Vc the energy used to fabricate the cutting

fluid; Tfl the cycle time of the cutting fluid used.

Step 2: The turning trials are performed to obtain the

necessary data and identify the experimental coefficients

[25].

Step 3: Generation of feasible solutions using non-

dominated sorting particle swarm optimization (NSPSO)

[26].

NSPSO is a powerful optimization technique to solve

the trade-off analysis between the conflicting responses. It

combines the advantages of the non-dominated sorting

genetic algorithm (NSGA-II) and the particle swarm opti-

mization (PSO), including the fast non-dominated sorting

approach, crowding distance ranking, elitist strategy,

mutation, selection operations, and the particle swarm

searching. The hybrid algorithm includes the following

steps, as shown in Fig. 4:

• Generating an initial population P (Population size = N)

and velocity for each individual (agent or particle) in a

feasible space. Setting the maximum speed vi
max for a

variable.

• Sorting the population based on the non-domination and

crowding distance ranking.

• Performing the selection of the rank.

• Assigning the calculated rank of each individual to its

non-domination level.

• Randomly choose one individual as gbest for N times

from the non-dominated solutions, and modify each

searching point using the following formula:

vkþ1
i ¼ K vki þ c1 � r1 � pbesti � ski Þ þ c2 � r2 � ðgbest� ski Þ

� �

ð19Þ

skþ1
i ¼ ski þ vkþ1

i ð20Þ

where vi
k and si

k present the velocity and position at the

k generation, respectively. vi
k?1 and si

k?1 denote the

velocity and position at the k ? 1 generation, respectively.

r1 and r2 present a random number between (0, 1). c1 and c2
are two constant coefficients balancing the influence of the

Fig. 3 The power profile of the turning operation
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best personal position of the particle pbesti and the best

global position gbest.

• Performing mutation operation.

• Generating an extended population of size 2 N using a

combination of the offspring and parent population.

• Sorting the extended population based on the non-

domination operation. Filling the new population of

size N with individuals from the sorting fronts.

• If the current rank of the new individual Pi
k?1 is smaller

than or equal to the parent in R, replacing the pbesti

with the current individual. Otherwise keep the current

pbesti.

• Perform step (2) to (9) until the convergence is

obtained.

Step 4: Determination of the weight of each turning

response using the weightage principal component

analysis (WPCA).

The normalization of the experimental data is conducted

based on the optimization requirement.

Fig. 4 Operating Principle of the NSPSO
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For lower the better approach, the normalized data is

computed as:

I�ðkÞ ¼ min IiðmÞ
IiðmÞ

ð21Þ

For higher the better approach, the normalized data is

computed as:

I�ðkÞ ¼ IiðmÞ
max IiðmÞ

ð22Þ

In the current work, the weight value is directly calcu-

lated from the experimental data and it does not depend on

the operator’s choice. The important role of the weight

value is to objectively reflect the importance of each

response. The weight calculated is assigned to each

response when the optimization process performs.

The correlation coefficient is calculated as [27]:

Sjl ¼
CovðIiðjÞ; IiðlÞÞ
rIiðjÞ � rIiðlÞ

� �
ð23Þ

where is Cov(Ii(j), Ii(l)) the covariance of sequences Ii(-

j) and Ii(l); rIi(j) the standard deviation of sequences Ii(j);

rIi(l) the standard deviation of sequences Ii(l).

The eigenvalues and consequent eigenvectors are cal-

culated as:

ðS� kkJmÞVik ¼ 0 ð24Þ

where kk is the eigenvalues; Vik the eigenvectors; Jm the

identity matrix, respectively.

The major principal coefficient is calculated as:

PCm ¼
Xn
i¼1

ImðiÞ � Vik ð25Þ

Step 5: Determination of the best solution using the

TOPSIS [28].

The weighted value of each response is calculated as:

Vij ¼ Iiwi ð26Þ

where wi is the weight value calculated; Vij the weighted

response.

The positive ideal solution (S?) and the negative ideal

solution (S-) are determined as:

Vþ ¼ ðvþ1 ; vþ2 ; vþ3 ; . . .; vþn Þ maximum values ð27Þ

V� ¼ ðv�1 ; v�2 ; v�3 ; . . .; v�n Þ minimum values ð28Þ

Sþi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm
j¼1

ðvij � vþj Þ
2

vuut ð29Þ

S�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm
j¼1

ðvij � v�j Þ
2

vuut ð30Þ

The best solution is determined based on the highest

desirability (D) value. The desirability value is calculated

as:

D ¼ S�i
Sþi þ S�i

ð31Þ

3 Experiment and modeling

3.1 Experimental detail

The steel bar labeled SKD11 is selected as the workpiece in

the current work due to widely applications in the mold,

automotive, and marine industries. The characteristics of

each workpiece for the turning experiment are depicted in

Table 2. The chemical compositions of the SKD11 are

shown in Table 3. The machining length of 75 mm is

applied to three machining segments (Fig. 5).

The carbide inserts having 15� rake angle produced by

MISUBISHI are used in all turning trials. The outside

diameter, inside diameter, and thickness of the round insert

are 16 mm, 5.6 mm, and 6.4 mm, respectively. The hard-

ness of the employed insert is around 91 HRC. The tool

shank is fabricated using a mold steel labeled SKD61. The

hardness of the tool shank is around 80 HRC.

All the turning trials are performed on a CNC lathe

labeled EMCO MAXXTURN 45, which has four axes to

perform the turning and milling functions. The maximum

power and speed of the main spindle are 12 kW and 6300

RPM, respectively. The maximum power and speed of the

tool spindle are 6 kW and 4000 RPM, respectively. The

Table 2 The characteristics of each workpiece

Total length of each workpiece Mm 250

Diameter Mm 40

Number of segments 3

The length of each segment Mm 25

Hardness HRC 50
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specimen is clamped by the chuck. The live center is used

to ensure machining rigidity. The power consumed of the

actively driven rotary turning is recorded using a power

sensor.

3.2 Development of regression models
for the energy consumed in the transition
state, power in the air cutting state,
and energy consumed in the cutting state

In the current work, the design of experiment entitled the

full factorial is employed to generate the matrix table with

the parameter combination. Three levels of three process

parameters (i.e. v, f, and a) are used and total twenty-seven

tests are needed for this experiment, as shown in Table 4.

The response surface method is applied to develop the

regression models of the technical performances.

The regression models for the energy consumed in the

transition state, power in the air cutting state, and energy

consumed in the cutting state were developed using the

regression method (Table 5). The values of the coefficient

determinations, including the R2, adjusted R2, and pre-

dicted R2 indicated that the fidelity of the proposed models

is acceptable.

The average roughness mainly depends on the feed rate

and nose radius. As mentioned in the previous section, the

cutting fluid helps to minimize the average roughness [24].

Therefore, the coefficient related to the reduction in the

average roughness (kAR) using the cutting fluid is taken into

account the calculated value of the feed rate, which is

shown as:

fmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ramax � re
32:1� kAR

r
ð32Þ

where Ramax is the maximum average roughness; re the

nose radius of the insert; kAR the coefficient related to the

reduction in the average roughness using the cutting fluid.

The coefficients for the ADRT process are shown in

Table 6.

In this work, the water-based soluble oil is utilized as the

cutting fluid. The coefficients for the water-based soluble

oil are presented in Table 7 [29].

In the current work, an average roughness of 6.3 lm is

employed. Therefore, the maximum feed rate of 0.44 mm/

rev. is applied in the optimization process.

4 Results and discussions

The developed models of the total energy consumption and

machining time are used to identify optimal parameters

with the aid of the NSPSO. The operating parameters of the

NSPSO are shown in Table 8.

The Pareto fronts showing the global relationship

between the total energy consumed and total machining

time generated by NSPSO are shown in Fig. 6. It can be

stated that the trends of the target functions are contra-

dictory. The minimization of the total energy leads to an

increment in the total machining time and versus. There-

fore, it is tough to select the optimal point, which can

satisfy all objectives.

Two typical solutions, including points 1 and 2, are

chosen to evaluate the turning performances in comparison

with the initial values (Table 9). For the first point, the total

energy consumption increases, as compared to the initial

values, this cannot consider as a technical solution. For the

second solution, the total energy consumed and machining

time simultaneously decrease.

The similar relationships between the machining

responses considered (the average roughness, energy effi-

ciency, cost, and material removal rate) can be found in the

works of [9, 18]. All technological performances tend to

conflict with each other. For the work of [9], the material

removal rate has conflict with the average roughness.

Similarly, the average roughness has contradictory impact

with the energy efficiency and cost in the work of [18].

The feasible solutions produced by NSPSO are shown in

Table 10.

Table 3 Chemical compositions

of the SKD11
C (%) Si (%) Mn (%) P (%) S (%) Cr (%) Mo (%) V (%)

1.40 0.40 0.60 0.03 0.03 11.0 0.80 0.30

Fig. 5 Experiments of the rotary turning
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In this work, the eigenvalues, proportions, and eigen-

vectors of the machining responses were calculated with

the aid of the Minitab software. The weight value of each

response is computed based on the eigenvectors. Table 11

lists eigenvalues and proportion for each principal com-

ponent. The first and second components account for

94.28% and 0.41%, respectively. Therefore, the contribu-

tion is calculated using the squares of the first eigenvector.

As a result, the weight values of the total energy

Table 4 Experimental data

during the transition state, air-

turning state, and turning state

No. v (m/min) f (mm/rev.) a (mm) MRR (cm3/s) ECts (kJ) Poperational (kW) SEC (kJ/cm3)

1 0.2 0.08 89.44 0.0239 0.6126 0.28448 30.4997

2 0.2 0.08 152.32 0.0406 0.9031 0.45008 18.4877

3 0.2 0.08 223.61 0.0596 1.4806 0.63829 13.0406

4 0.2 0.29 89.44 0.0865 0.6022 0.28512 9.4290

5 0.2 0.29 152.32 0.1472 0.9013 0.45181 6.1153

6 0.2 0.29 223.61 0.2162 1.4828 0.63892 4.6126

7 0.2 0.50 89.44 0.1491 0.6047 0.28542 6.0576

8 0.2 0.50 152.32 0.2539 0.9034 0.45028 4.1357

9 0.2 0.50 223.61 0.3727 1.4821 0.63906 3.2642

10 0.6 0.08 89.44 0.0716 0.6039 0.28478 11.1012

11 0.6 0.08 152.32 0.1219 0.9046 0.45080 7.0972

12 0.6 0.08 223.61 0.1789 1.4818 0.63952 5.2815

13 0.6 0.29 89.44 0.2594 0.6142 0.28402 4.0777

14 0.6 0.29 152.32 0.4417 0.9051 0.45124 2.9731

15 0.6 0.29 223.61 0.6485 1.4809 0.63846 2.4722

16 0.6 0.50 89.44 0.4472 0.6064 0.28462 2.9539

17 0.6 0.50 152.32 0.7616 0.9048 0.45142 2.3132

18 0.6 0.50 223.61 1.1181 1.4838 0.63907 2.0227

19 1.0 0.08 89.44 0.1193 0.6132 0.28525 7.2215

20 1.0 0.08 152.32 0.2031 0.9038 0.45192 4.8191

21 1.0 0.08 223.61 0.2981 1.4854 0.63884 3.7297

22 1.0 0.29 89.44 0.4323 0.6128 0.28468 3.0074

23 1.0 0.29 152.32 0.7362 0.9129 0.45132 2.3447

24 1.0 0.29 223.61 1.0808 1.4812 0.63846 2.0441

25 1.0 0.50 89.44 0.7453 0.6048 0.28558 2.3331

26 1.0 0.50 152.32 1.2693 0.9025 0.45042 1.9487

27 1.0 0.50 223.61 1.8634 1.4826 0.63784 1.7744

Table 5 Regression models of

the energy consumed in the

transition state, the power in the

air cutting state, and the energy

consumed in the cutting state

No. Regression model R2 Adjusted R2 Predicted R2

1 ECts = 0.00002588v2 - 0.001543v ? 0.5346 0.9865 0.9848 0.9386

2 Poperational = 0.00264v ? 0.04896 0.9906 0.9872 0.9685

2 SEC = 1.402 ? 0.694/MRR 0.9873 0.9764 0.9586

Table 6 Coefficients for the

ADRT process
Po Psb to tsb h1 h2 L ttc A a b c kT kSR

kW kW s s s/mm S mm S

0.52 0.78 2 6 42 9 10–3 6 78 12 900 2.13 1 0.3 3 0.8

Table 7 Coefficients for the cutting fluid

Vc

J/g

Q
g/cm3

Va

l/s

Tfl
s

g
%

42,287 0.92 0.02 2.88 9 105 5
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consumption and machining time are 0.59 and 0.41,

respectively (Table 12).

The positive, negative, and desirability values are shown

in Table 13. The highest desirability value is obtained at

the experimental number 30. As a result, the optimum

values of the tool speed, depth of cut, feed rate, and

workpiece speed are 78 m/min, 0.21 mm, 0.44 mm/rev.,

and 999 m/min, respectively. The reductions of the total

energy consumption and machining time are 16.99% and

17.78%, respectively, as compared to the initial values

(Table 14).

To confirm the correctness of the optimization result, a

confirmatory experiment is executed at the optimal solu-

tion. The deviations of the total energy consumed and total

machining time are 1.5% and 1.4%, respectively

(Table 15). The errors of less than 5.0% are acceptable in

optimization engineering, which indicates the truth of the

selected solution.

As mentioned in the former section, the actively driven

turning operation provides various advantages, including

lower machining temperature as well as average roughness,

longer tool life, and higher productivity, as compared to the

fix turning. This process has great potential to replace the

traditional approaches, such as grinding, hard turning, and

polishing operations for machining hardened steels.

Therefore, the selection of optimal parameters for the

actively driven turning operation in terms of the energy-

saving, production rate, and machining quality is in urgent

demand. In this investigation, a multi-response optimiza-

tion of the actively driven rotary turning process has been

addressed to decrease the total energy consumed and total

machining time with the constraint value of the average

roughness. The current work did consider not only the

social impact (average roughness) but also the economic

Table 8 Setting parameters of the NSPSO

Parameter Value

The number of particles 100

Maximum iterations 100

Weighting factor c1 2

Weighting factor c2 2

Mutation rate 0.5

Crossover probability 0.9

Fig. 6 Total machining time

and total energy consumed

Table 9 Comparisons among

feasible solutions
Method vt (m/min) ap (mm) f (mm/rev.) vw (m/min) Etotal (kJ) Ttotal (s)

Common values used 60 0.50 0.26 100 34.36 49.42

Point 1 98 0.44 0.21 197 36.55 36.12

Point 2 78 0.21 0.44 99 28.52 40.63
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indicator (machining time) and environmental dimension

(energy consumption). A specific case study of the actively

driven rotary turning of SKD 11 steel was successfully

executed to decrease the total energy consumed and total

machining time. The scientific outcomes of the current

work can be listed as follows:

The trade-off relation between the total energy con-

sumed and total machining time with the constraint of the

average roughness is solved by means of the optimization

of process parameters. Minimizing energy consumed and

Table 10 Feasible solutions

generated by NSPSO
No. vt (m/min) a (mm) f (mm/rev.) vw (m/min) Etotal (kJ) Ttotal (s)

1 83 0.21 0.44 195 35.71 36.41

2 96 0.21 0.44 165 33.95 37.09

3 81 0.21 0.44 100 28.83 40.40

4 95 0.21 0.44 103 29.66 39.58

5 81 0.21 0.44 148 32.10 37.96

6 79 0.21 0.44 176 34.10 36.98

7 81 0.21 0.44 165 33.28 37.34

8 72 0.21 0.43 101 28.40 41.01

9 98 0.21 0.44 131 31.62 38.20

10 83 0.21 0.44 106 29.28 39.99

11 68 0.21 0.44 83 27.24 42.42

12 81 0.21 0.44 183 34.71 36.77

13 88 0.21 0.44 164 33.50 37.22

14 95 0.22 0.44 129 31.53 38.38

15 91 0.20 0.44 200 36.25 36.13

16 81 0.21 0.44 150 32.29 37.85

17 95 0.20 0.44 110 29.96 39.27

18 76 0.21 0.44 84 27.51 41.87

19 78 0.21 0.44 178 34.33 36.93

20 81 0.20 0.44 147 31.84 37.99

21 68 0.20 0.44 162 32.52 37.63

22 84 0.20 0.44 190 35.21 36.47

23 81 0.21 0.44 86 27.92 41.34

24 78 0.21 0.44 106 28.99 40.25

25 80 0.20 0.44 126 30.35 38.99

26 79 0.20 0.44 162 32.96 37.44

27 92 0.21 0.44 105 29.58 39.63

28 76 0.21 0.44 83 27.49 41.89

29 88 0.21 0.44 129 30.99 38.59

30 78 0.21 0.44 99 28.52 40.63

31 78 0.21 0.44 182 34.48 36.79

32 90 0.20 0.44 106 29.40 39.74

33 78 0.21 0.44 86 27.84 41.57

34 68 0.21 0.44 83 27.12 42.46

Table 11 Eigenvalues and proportions of the principal components

Principal component Eigenvalues Proportion (%)

First 1.8856 94.28

Second 0.1144 5.72

Table 12 Eigenvectors and contributions for the principal

components

Characteristics Eigenvectors Weight value

PC1 PC2

Etotal -0.847 -0.787 0.59

Ttotal 0.707 -0.767 0.41
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machining time with the constraint of the average rough-

ness is a reliable approach, as compared to the simultane-

ous optimization of three turning responses.

The analytical models presenting the relationships

between the process parameters and the total energy con-

sumption and total machining time can be applied to

forecast the machining responses in industrial applications

with acceptable precision. These developed models are

effectively employed to reduce experimental costs and

human efforts.

The Pareto front could significantly help machine

operators to determine proper parameters for saving energy

consumed and machining time with the predefined con-

straint of the average roughness. The appropriate selection

of process parameters can decrease machining costs, time,

operator skills, and efforts.

The proposed approach using the analytical method,

NSPSO, WPCA, TOPSIS can be used to develop com-

prehensive correlation models of turning performances and

to effectively select the optimal solution, as compared to

the trial method and operator experience. This optimizing

technique is powerful and can be applied to different rotary

turning operations.

The findings and outcomes in this investigation can be

effectively employed in future studies for sustainable

design as well as manufacturing. The obtained data can be

directly applied in expert systems for the rotary turning

operation in industrial applications.

5 Conclusions

In the current work, an attempt has been made to optimize

machining conditions of the actively driven rotary turning

for a mold material for reducing total energy consumption

and machining time. The average roughness is predefined

as the constraint. The analytical approach was employed to

develop comprehensive models of total energy

Table 13 Desirability values
No. S ? S - D

1 5.0693 2.5017 0.3304

2 4.0496 2.5904 0.3901

3 2.0247 4.4602 0.6878

4 2.0647 4.0649 0.6632

5 3.0318 3.0709 0.5032

6 4.1312 2.5842 0.3848

7 3.6720 2.7365 0.4270

8 2.1415 4.6719 0.6857

9 2.7860 3.2485 0.5383

10 2.0350 4.2375 0.6756

11 2.5833 5.3178 0.6730

12 4.4847 2.5080 0.3587

13 3.7890 2.6978 0.4159

14 2.7627 3.2511 0.5406

15 5.3868 2.5959 0.3252

16 3.1311 3.0084 0.4900

17 2.1160 3.9367 0.6504

18 2.3680 5.1676 0.6858

19 4.2675 2.5372 0.3729

20 2.8866 3.1881 0.5248

21 3.2445 2.9645 0.4775

22 4.7783 2.5335 0.3465

23 2.1925 4.9395 0.6926

24 2.0187 4.3833 0.6847

25 2.2407 3.7626 0.6268

26 3.4862 2.8342 0.4484

27 2.0433 4.1061 0.6677

28 2.3768 5.1775 0.6854

29 2.4975 3.4890 0.5828

30 2.0250 4.6239 0.6954

31 4.3520 2.5507 0.3695

32 2.0044 4.1943 0.6766

33 2.2760 4.9755 0.6861

34 2.5997 5.3889 0.6746

Table 14 The optimal values of

the process parameters and

responses

Method vt (m/min) ap (mm) f (mm/rev.) vw (m/min) Etotal (kJ) Ttotal (s)

Common values 60 0.50 0.26 100 34.36 49.42

Optimal values 78 0.21 0.44 99 28.52 40.63

Improvement (%) -16.99 -17.78

Table 15 The confirmatory

results at the optimal solution
Method vt (m/min) ap (mm) f (mm/rev.) vw (m/min) Etotal (kJ) Ttotal (s)

Optimal values 78 0.21 0.44 99 28.52 40.63

Experiment 78 0.21 0.44 99 28.96 40.06

Improvement (%) -1.52 1.40
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consumption and machining time. The NSPSO was used to

yield feasible points. The WPCA and TOPSIS were

employed to select the weight value of each turning

response and determine the best optimal point. The finding

can be listed as bellows:

1. The analytical models of total energy consumption and

machining time are adequate and significant. The

proposed models can be employed to predict the values

of the technical performances with sufficient accuracy.

2. As shown in the optimal setting generated by NSPSO-

WPCA-TOPSIS, the optimal parameters of the tool

rotational speed, depth of cut, feed rate, and workpiece

speed are 78 m/min, 0.21 mm, 0.44 mm/rev., and

99 m/min, respectively. The total energy consumption

and machining time are decreased by 16.99% and

17.78%, respectively, as compared to common values

used.

3. The optimization investigation of the actively driven

rotary turning, in which the energy consumed and

machining time are responses and average roughness is

predefined, is practical and reliable, as compared to the

single objective and simultaneously optimizing three

responses.

4. The proposed optimization technique can be consid-

ered as a powerful approach to select the optimal

values of process parameters and technological perfor-

mances in the rotary turning process and save operator

efforts as well as experimental costs. The optimization

outcomes are efficiently determined with the support of

the optimization method instead of employing the

human experience and/or manual handbook.

5. The development of an actively driven rotary turning,

including the fabrication of the rotary tool and

selection of optimal factors could be considered as a

technical solution to enhance the machining efficiency

and decrease environmental impacts for turning pro-

cesses of hardened steels.

6. In this work, the average roughness value is primarily

affected by the feed rate and nose radius. Practically,

other factors, such as the depth of cut, tool rotational

speed, and work speed have a significant influence on

the formation of the average roughness. A compre-

hensive optimization considering more process param-

eters will be addressed in future works.
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