
Abstract— In this paper, a proof-of-concept implementation 

of hyperbolic 𝒕𝒂𝒏𝒉(𝒂𝒙)  and 𝒔𝒊𝒈𝒎𝒐𝒊𝒅(𝟐𝒂𝒙)  functions for 

high-precision as well as compact computational hardware 

based on stochastic logic is presented. Nonlinear activation 

introducing the non-linearity in the learning process is one of 

the critical building blocks of artificial neural networks. 

Hyperbolic tangent and sigmoid are the most commonly used 

nonlinear activation functions in machine-learning system such 

as neural networks. This work demonstrates the stochastic 

computation of 𝒕𝒂𝒏𝒉(𝒂𝒙) and 𝒔𝒊𝒈𝒎𝒐𝒊𝒅(𝟐𝒂𝒙) functions-based 

Bernstein polynomial using a bipolar format. The format 

conversion from bipolar to unipolar format is involved in our 

implementation. One achievement is that our proposed 

implementation is more accurate than the state-of-the-arts 

including FSM based method, JK-FF and general unipolar 

division. On average, 90% of improvement of this work in terms 

of mean square error (MAE) has been achieved while the 

hardware cost and power consumption are comparable to the 

previous approaches.  

Keywords—Stochastic logic, Unipolar format, Bipolar format, 

Bernstein polynomial, Tangent hyperbolic, Sigmoid function. 

I. INTRODUCTION  

Stochastic computing (SC), first introduced by 
Gaines [1], has recently regained significant 
attention due to its fault-tolerance and simple logic 
gates for arithmetic units [2]. Despite these 
advantages, SC still presents a trade-off for that 
hardware efficiency including long processing 
latency and degradation of accuracy.  

The basic concept of stochastic computing is the 
representation of a number based on the fraction of 
the number of 1’s in bitstreams. There are two main 
representations of a real number in SC: unipolar and 
bipolar format [3]. In unipolar format, a real 
number 𝑥 is represented by a stochastic stream X, 
where 

𝑥 = 𝑝(𝑋 = 1) = 𝑝(𝑋) (1) 

Since 𝑥 corresponds to a probability value, the 
unipolar representation must satisfy 0 ≤ 𝑥 ≤ 1. In 
the bipolar format. 

𝑥 = 𝑝(𝑋 = 1) − 1 = 2𝑝(𝑋) − 1 (2) 

The equation (1) and (2) also suggests a format 
conversion from the unipolar format and bipolar 
format and vice versa. Additionally, a stochastic 
number generator (SNG) is necessary to convert a 
real number 𝑥 to a stochastic bit stream X. A typical 
SNG consists of a comparator and a pseudo-random 
source [2]. Noticeably, this SNG structure 
generates one bit of stochastic sequence  𝑋 in every 
single clock. To recover the output in binary format 
from a stochastic bit stream, a counter is employed 
which counts the number of 1’s in the stream. 
Stochastic computational elements can be 
implemented based on simple logic gates. For 
example, multiplication which requires a high 
hardware cost in the binary format representation 
now is implemented just by an AND gate in 
unipolar format or XOR gate in bipolar format. 

Brown and Card in [4] have first proposed 
stochastic implementations of hyperbolic tangent 
𝑡𝑎𝑛ℎ(𝑎𝑥)  (where 𝑎  is a positive interger) using 
finite-state-machines (FSMs). An improvement of 
this approach used 2-D FSMs was presented in [5]. 
One problem with these mean of implementation is 
accuracy degradation when 𝑎  is decreased. An 
alternative approach was proposed in [6], in which 
hyperbolic tangent and sigmoid function were 
approximated by series expansion and JK-Flip 
Flops. However, this approach leads to even lower 
accuracy than FSM approach while requires a 
higher hardware cost due to the complexity of 
circuits. In [7], the authors proposed an 
approximated approach for those two functions 
based on a piecewise linear approximation which 
achieve good accuracy. However, this approach 
requires a stochastic to binary converter if using in 
the pipelined system as a look-up-table was used to 
store coefficients. 

Our work aims to propose an implementation of 
hyperbolic tangent and sigmoid function-based 
stochastic logic to achieve high accuracy while 
requiring reasonable hardware cost and fit to the 

An Accurate and Compact Hyperbolic Tangent and 

Sigmoid Computation Based Stochastic Logic 

Van-Tinh Nguyen 
School of Information Science  
NARA Institue of Science and 

Technology, JAPAN 
 

Quang-Kien Trinh,  
Dept. of Microelectronics and 

Microprocessing, Le Quy Don Technical  
University, VietNam 

Tieu-Khanh Luong  
Dept. of Electrical & Electronic 

Engineering, and MCCI, University 
College Cork, Ireland 

 

Renyuan Zhang  
School of Information Science  
NARA Institue of Science and 

Technology, JAPAN 

Emanuel Popovici   
Dept. of Electrical & Electronic 

Engineering, and MCCI, University 
College Cork, Ireland  

 

Yasuhiko Nakashima  
School of Information Science  
NARA Institue of Science and 

Technology, JAPAN 
 



stochastic end-to-end system. Bernstein polynomial 
[8] has been used in this work as a kernel to 
approximate those two functions in our proposed 
implementation. Format conversion from bipolar to 
unipolar format has been used in our work. 

This paper is organized as follows. In section II, 
the Bernstein polynomial method used to 
approximate complex arithmetic function is 
reviewed. The proposed implementation of the 
hyperbolic and sigmoid function in bipolar format 
is presented in section III. The next section presents 
the simulation and experimental results of this work 
and compares it with the state-of-the-arts. The 
conclusion is given in section V. 

II. STOCHASTIC LOGIC IMPLEMENTATION 

BASED BERNSTEIN POLYNOMIALS 

The computation of polynomial functions is 
typically done by using multiplications and 
additions. These can be effectively implemented 
with the stochastic arithmetic elements described in 
the previous section. Since the computational range 
of stochastic logic is limited in [0, 1], it fails for 
polynomials outside this range, e.g., 1.2𝑥 − 1.2𝑥2 
as the coefficients cannot be represented directly 
with stochastic bitstreams.  

In [8], a method was proposed to solve this 
problem no matter how large the coefficients, the 
polynomials are synthesizable using stochastic 
logic. The procedure starts by transforming a 
power-form polynomial into a Bernstein 
polynomial [8] which has the form shown below. 

𝐵(𝑥) = ∑ 𝑏𝑖𝐵𝑖,𝑛(𝑥)

𝑛

𝑖=0

  (3) 

Where each real number 𝑏𝑖 is a coefficient, so-
called a Bernstein coefficient, and each 𝐵𝑖,𝑛(𝑥)(𝑖 =
0,1, … , 𝑛)  is a Bernstein basis polynomial of the 
form  

𝐵𝑖,𝑛(𝑥) = (
𝑛

𝑖
) 𝑥𝑖(1 − 𝑥)𝑛−𝑖  (4) 

 For approximating nonpolynomial functions via 
Bernstein polynomial, a given continuous function 
𝑓(𝑥) of degree 𝑛 as the target, a set of coefficients 
𝑏0, … , 𝑏𝑛 in the interval [0, 1]  is considered to 
minimize the objective function 

∫ (𝑓(𝑥) − ∑ 𝑏𝑖𝐵𝑖,𝑛(𝑥)

𝑛

𝑖=0

)

2

𝑑𝑥 
1

0

 (5) 

 

Expanding the equation (3), an equivalent 
objective function can be considered as below: 

𝑓(𝑏) =  
1

2
𝑏𝑇𝐻𝑏 +  𝑐𝑇𝑏 (6) 

Where  

𝑏 =  [𝑏0, … , 𝑏𝑛]𝑇 

c = [− ∫ 𝑓(𝑥)
1

0
𝐵0,𝑛(𝑥)𝑑𝑥 … − ∫ 𝑓(𝑥)

1

0
𝐵𝑛,𝑛(𝑥)𝑑𝑥]𝑇 

H = 

[

∫ 𝐵0,𝑛(𝑥)
1

0
𝐵0,𝑛(𝑥)𝑑𝑥 … ∫ 𝐵0,𝑛(𝑥)

1

0
𝐵𝑛,𝑛(𝑥)𝑑𝑥

⋮ ⋱ ⋮

∫ 𝐵𝑛,𝑛(𝑥)
1

0
𝐵0,𝑛(𝑥)𝑑𝑥 … ∫ 𝐵𝑛,𝑛(𝑥)

1

0
𝐵𝑛,𝑛(𝑥)𝑑𝑥

] 

The objective function in equation (6) is 
constrained as a quadratic programming problem 
where the solution can be obtained by standard 
techniques [8]. 

III. THE PROPOSED STOCHASTIC 

IMPLEMENTATION OF HYPERBOLIC TANGENT AND 

SIGMOID FUNCTIONS 

In this section, an approach to implementing 
hyperbolic tangent and sigmoid function in the 
bipolar format are presented. The input lies in the 
range [−1, 1]. The format conversion is embedded 
in our approach. 

The mathematical equation of 𝑡𝑎𝑛ℎ(𝑎𝑥) (𝑎 >
0) is described as follows: 

tanh(𝑎𝑥) =  
1 − 𝑒−2𝑎𝑥

1 + 𝑒−2𝑎𝑥
 (7) 

Additionally, the sigmoid function is given by: 

 

 

Fig. 1. Stochastic implementation of 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥) via Bernstein 
computation. 

 



sigmoid(2𝑎𝑥) =  
1

1 + 𝑒−2𝑎𝑥
 (8) 

From the two equations above, a relation 
between tanh (𝑎𝑥)  and sigmoid (2𝑎𝑥)  is 
illustrated as equation below: 

tanh(𝑎𝑥) =  2
1

1 + 𝑒−2𝑎𝑥
− 1 = 

(9) 

2𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥) − 1 

The bipolar format defines 𝑥 = 2𝑃𝑥 − 1  in 
which 𝑥  represents a bipolar value while 𝑃𝑥 
represent the number of ones in the corresponding 
bitstream. Clearly, 𝑥 is in the range [−1, 1] and 𝑃𝑥 
is in the range [0, 1] . The definition of bipolar 
format also suggests that a format conversion 
between unipolar and bipolar format is possible. 

Given the input in the range [−1, 1], the output 
of 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥)  [0, 1] . Hence, the output of 
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥)  can be represented in unipolar 
format. By using the same bitstream of 
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥), and applying to equation (9) which 
can be considered as format conversion, then the 
bipolar output is 𝑡𝑎𝑛ℎ(𝑎𝑥). This analysis means 
that the same circuit can be used to implement bot 
functions, by considering the output bitstreams in 
unipolar format for  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥) while the same 
output in bipolar format for 𝑡𝑎𝑛ℎ(𝑎𝑥). 

The implementation of 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥) can be 
done by using bipolar stochastic logic elements. 
However, with some simple mathematical 
transformations below,  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥)  can be 
implemented by using unipolar stochastic logic 
elements. 

sigmoid(2𝑎𝑥) =  
1

1 + 𝑒−2𝑎𝑥
 (10) 

=  
1

1 + 𝑒−2𝑎(2𝑃𝑥−1)
 (11) 

=  
1

1 + 𝑒−4𝑎𝑃𝑥𝑒−2𝑎
 (12) 

=
𝑒−2𝑎

𝑒−2𝑎 + 𝑒−4𝑎𝑃𝑥
 (13) 

From (10) to (11) 𝑥 is substituted by 2𝑃𝑥 − 1, 
where 𝑃𝑥 is the unipolar value of the input bitstream 
𝑋. Therefore, sigmoid(2𝑎𝑥) can be implemented 
by unipolar stochastic logic while the input is still 
original bitstream as equation (13).   

The approximation of equation (13) can be made 
by using Bernstein computation. The circuit 
diagram approximating sigmoid(2𝑎𝑥) is shown in 

Fig. 1. In the circuit, the set of Bernstein 
coefficients and input 𝑥  are represented in unipolar 
format. Binary addition is used whose output is fed 
to the input of the multiplexer to select which input 
is connected to the output. To reduce the 
complexity of the circuit, only one LFSR is used to 
generate the pseudo-random number. The 
uncorrelated requirement of bitstreams is solved by 
inserting a set of delays showed in Fig. 1.   

IV. EXPERIMENTAL RESULTS 

This section gives the experimental results of the 
performance of our proposed implementation 
comparing to the state-of-the-arts.  

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(4𝑥), 𝑡𝑎𝑛ℎ(𝑥) and 
𝑡𝑎𝑛ℎ(2𝑥) were respectively simulated to evaluate 
the accuracy. Solving the quadratic programming 
problem in equation (6) for 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥) applied 

equation (13), a set of Bernstein coefficients of 5𝑡ℎ 
order Bernstein polynomial is obtained as being 
shown in Table I. 

TABLE I.  THE BERNSTEIN COEFFICIENTS 𝑏𝑖(0 ≤ 𝑖 ≤ 5) 

SYNTHESIZING 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) AND 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(4𝑥) 

Coefficients 𝑏0 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) 0.12 0.2 0.34 0.66 0.8 0.87 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(4𝑥) 0.03 0.02 0 1 0.98 0.96 

The length pf stochastic bitstream is 1024, which 
means that 10-bit LFSR is used for SNG. In our 
simulation, the inputs of target functions are given 
by 0:0.03:1. The output results are collected 
through Monte Carlo experiments. The accuracy is 
evaluated via Mean Absolute Error (MAE). Fig. 2 
shows the simulation results of approximated 
functions in different approaches and target 
functions. 

Synthesize results of the proposed function and 
state-of-the-arts for 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥)  and 
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(4𝑥) , 𝑡𝑎𝑛ℎ(𝑥)  and 𝑡𝑎𝑛ℎ(2𝑥)  are 
considered. All architectures are implemented 
using 180nm CMOS technology node and 
synthesized Synopsys Design Compiler. A 
summarized table of power consumption, area, 
delay and MAE is shown in Table II. It is noted that 
the same circuit can be used to implement both 
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥)  and 𝑡𝑎𝑛ℎ(𝑎𝑥) , then the same 
hardware cost, power consumption and MAE are 
achieved. In terms of accuracy, our proposed 
implementation is roughly 60 times and 20 times 
more accurate than FSM-based method and JK-FF 
based method, respectively, for 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) and 
𝑡𝑎𝑛ℎ(𝑥). Additionally, 10 and 16 times of  



 

TABLE II . MAE EVALUATION AND HARDWARE SYNTHESIZE FOR HYPERBOLIC TANGENT AND SIMOIG FUCNTION 

BASED STOCHASTIC LOGIC 

Function tanh(𝑥) and sigmoid(2𝑥) tanh(2𝑥) and sigmoid(4𝑥) 

Method Proposed FSM [4] JK-FF [6] Proposed FSM [4] JK-FF [6] 

n=3 n=5 2 states - n=3 n=5 2 states - 

Area ((𝜇𝑚) 2) 1554 1777 1345 10121 1777 2106 1551 10476 

Latency (𝑛𝑠) 2.25 2.33 2.38 3.42 2.33 3.3 3.07 3.07 

Power (𝑚𝑊) 0.07 0.08 0.06 0.4 0.11 0.11 0.08 0.08 

MAE 0.003 0.001 0.06 0.02 0.007 0.003 0.03 0.05 

 

 

(a) 

 

 

(b) 

 

(c)  

 

(d) 

 

Fig. 2. Simulation results compared different approaches with target functions: (a) 𝐭𝐚𝐧𝐡 (𝒙), (b)  𝐭𝐚𝐧𝐡 (𝟐𝒙), (c) 𝐬𝐢𝐠𝐦𝐨𝐢𝐝(𝟐𝒙), (d) 𝐬𝐢𝐠𝐦𝐨𝐢𝐝(𝟒𝒙) 

 



improvement of accuracy, on average, are achieved 
by our proposed method in comparison to FSM and 
JK-FF based method, respectively, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(4𝑥) 
and 𝑡𝑎𝑛ℎ(2𝑥). 

Our proposed implementations are 80% and 
85% less area and power consumption that JK-FF 

approach. The proposed circuit employing 3𝑡ℎ and 

5𝑡ℎ  order Bernstein polynomial reduced roughly 
20% of critical path delay in comparison with FSM 
and JK-FF-based implementation. 

V. CONCLUSIONS 

In this paper, an approached computation of 
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥) and 𝑡𝑎𝑛ℎ(𝑎𝑥) in a bipolar format 
based Bernstein polynomial has been proposed. 
The results showed that an improvement of 
accuracy had been achieved while maintained a 
comparable hardware cost in comparing to state-of-
the-art.  
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