
Abstract— In this paper, a proof-of-concept implementation

of hyperbolic 𝒕𝒂𝒏𝒉(𝒂𝒙) and 𝒔𝒊𝒈𝒎𝒐𝒊𝒅(𝟐𝒂𝒙) functions for

high-precision as well as compact computational hardware

based on stochastic logic is presented. Nonlinear activation

introducing the non-linearity in the learning process is one of

the critical building blocks of artificial neural networks.

Hyperbolic tangent and sigmoid are the most commonly used

nonlinear activation functions in machine-learning system such

as neural networks. This work demonstrates the stochastic

computation of 𝒕𝒂𝒏𝒉(𝒂𝒙) and 𝒔𝒊𝒈𝒎𝒐𝒊𝒅(𝟐𝒂𝒙) functions-based

Bernstein polynomial using a bipolar format. The format

conversion from bipolar to unipolar format is involved in our

implementation. One achievement is that our proposed

implementation is more accurate than the state-of-the-arts

including FSM based method, JK-FF and general unipolar

division. On average, 90% of improvement of this work in terms

of mean square error (MAE) has been achieved while the

hardware cost and power consumption are comparable to the

previous approaches.

Keywords—Stochastic logic, Unipolar format, Bipolar format,

Bernstein polynomial, Tangent hyperbolic, Sigmoid function.

I. INTRODUCTION

Stochastic computing (SC), first introduced by
Gaines [1], has recently regained significant
attention due to its fault-tolerance and simple logic
gates for arithmetic units [2]. Despite these
advantages, SC still presents a trade-off for that
hardware efficiency including long processing
latency and degradation of accuracy.

The basic concept of stochastic computing is the
representation of a number based on the fraction of
the number of 1’s in bitstreams. There are two main
representations of a real number in SC: unipolar and
bipolar format [3]. In unipolar format, a real
number 𝑥 is represented by a stochastic stream X,
where

𝑥 = 𝑝(𝑋 = 1) = 𝑝(𝑋) (1)

Since 𝑥 corresponds to a probability value, the
unipolar representation must satisfy 0 ≤ 𝑥 ≤ 1. In
the bipolar format.

𝑥 = 𝑝(𝑋 = 1) − 1 = 2𝑝(𝑋) − 1 (2)

The equation (1) and (2) also suggests a format
conversion from the unipolar format and bipolar
format and vice versa. Additionally, a stochastic
number generator (SNG) is necessary to convert a
real number 𝑥 to a stochastic bit stream X. A typical
SNG consists of a comparator and a pseudo-random
source [2]. Noticeably, this SNG structure
generates one bit of stochastic sequence 𝑋 in every
single clock. To recover the output in binary format
from a stochastic bit stream, a counter is employed
which counts the number of 1’s in the stream.
Stochastic computational elements can be
implemented based on simple logic gates. For
example, multiplication which requires a high
hardware cost in the binary format representation
now is implemented just by an AND gate in
unipolar format or XOR gate in bipolar format.

Brown and Card in [4] have first proposed
stochastic implementations of hyperbolic tangent
𝑡𝑎𝑛ℎ(𝑎𝑥) (where 𝑎 is a positive interger) using
finite-state-machines (FSMs). An improvement of
this approach used 2-D FSMs was presented in [5].
One problem with these mean of implementation is
accuracy degradation when 𝑎 is decreased. An
alternative approach was proposed in [6], in which
hyperbolic tangent and sigmoid function were
approximated by series expansion and JK-Flip
Flops. However, this approach leads to even lower
accuracy than FSM approach while requires a
higher hardware cost due to the complexity of
circuits. In [7], the authors proposed an
approximated approach for those two functions
based on a piecewise linear approximation which
achieve good accuracy. However, this approach
requires a stochastic to binary converter if using in
the pipelined system as a look-up-table was used to
store coefficients.

Our work aims to propose an implementation of
hyperbolic tangent and sigmoid function-based
stochastic logic to achieve high accuracy while
requiring reasonable hardware cost and fit to the

An Accurate and Compact Hyperbolic Tangent and

Sigmoid Computation Based Stochastic Logic

Van-Tinh Nguyen
School of Information Science
NARA Institue of Science and

Technology, JAPAN

Quang-Kien Trinh,
Dept. of Microelectronics and

Microprocessing, Le Quy Don Technical
University, VietNam

Tieu-Khanh Luong
Dept. of Electrical & Electronic

Engineering, and MCCI, University
College Cork, Ireland

Renyuan Zhang
School of Information Science
NARA Institue of Science and

Technology, JAPAN

Emanuel Popovici
Dept. of Electrical & Electronic

Engineering, and MCCI, University
College Cork, Ireland

Yasuhiko Nakashima
School of Information Science
NARA Institue of Science and

Technology, JAPAN

stochastic end-to-end system. Bernstein polynomial
[8] has been used in this work as a kernel to
approximate those two functions in our proposed
implementation. Format conversion from bipolar to
unipolar format has been used in our work.

This paper is organized as follows. In section II,
the Bernstein polynomial method used to
approximate complex arithmetic function is
reviewed. The proposed implementation of the
hyperbolic and sigmoid function in bipolar format
is presented in section III. The next section presents
the simulation and experimental results of this work
and compares it with the state-of-the-arts. The
conclusion is given in section V.

II. STOCHASTIC LOGIC IMPLEMENTATION

BASED BERNSTEIN POLYNOMIALS

The computation of polynomial functions is
typically done by using multiplications and
additions. These can be effectively implemented
with the stochastic arithmetic elements described in
the previous section. Since the computational range
of stochastic logic is limited in [0, 1], it fails for
polynomials outside this range, e.g., 1.2𝑥 − 1.2𝑥2
as the coefficients cannot be represented directly
with stochastic bitstreams.

In [8], a method was proposed to solve this
problem no matter how large the coefficients, the
polynomials are synthesizable using stochastic
logic. The procedure starts by transforming a
power-form polynomial into a Bernstein
polynomial [8] which has the form shown below.

𝐵(𝑥) = ∑ 𝑏𝑖𝐵𝑖,𝑛(𝑥)

𝑛

𝑖=0

 (3)

Where each real number 𝑏𝑖 is a coefficient, so-
called a Bernstein coefficient, and each 𝐵𝑖,𝑛(𝑥)(𝑖 =
0,1, … , 𝑛) is a Bernstein basis polynomial of the
form

𝐵𝑖,𝑛(𝑥) = (
𝑛

𝑖
) 𝑥𝑖(1 − 𝑥)𝑛−𝑖 (4)

 For approximating nonpolynomial functions via
Bernstein polynomial, a given continuous function
𝑓(𝑥) of degree 𝑛 as the target, a set of coefficients
𝑏0, … , 𝑏𝑛 in the interval [0, 1] is considered to
minimize the objective function

∫ (𝑓(𝑥) − ∑ 𝑏𝑖𝐵𝑖,𝑛(𝑥)

𝑛

𝑖=0

)

2

𝑑𝑥
1

0

 (5)

Expanding the equation (3), an equivalent
objective function can be considered as below:

𝑓(𝑏) =
1

2
𝑏𝑇𝐻𝑏 + 𝑐𝑇𝑏 (6)

Where

𝑏 = [𝑏0, … , 𝑏𝑛]𝑇

c = [− ∫ 𝑓(𝑥)
1

0
𝐵0,𝑛(𝑥)𝑑𝑥 … − ∫ 𝑓(𝑥)

1

0
𝐵𝑛,𝑛(𝑥)𝑑𝑥]𝑇

H =

[

∫ 𝐵0,𝑛(𝑥)
1

0
𝐵0,𝑛(𝑥)𝑑𝑥 … ∫ 𝐵0,𝑛(𝑥)

1

0
𝐵𝑛,𝑛(𝑥)𝑑𝑥

⋮ ⋱ ⋮

∫ 𝐵𝑛,𝑛(𝑥)
1

0
𝐵0,𝑛(𝑥)𝑑𝑥 … ∫ 𝐵𝑛,𝑛(𝑥)

1

0
𝐵𝑛,𝑛(𝑥)𝑑𝑥

]

The objective function in equation (6) is
constrained as a quadratic programming problem
where the solution can be obtained by standard
techniques [8].

III. THE PROPOSED STOCHASTIC

IMPLEMENTATION OF HYPERBOLIC TANGENT AND

SIGMOID FUNCTIONS

In this section, an approach to implementing
hyperbolic tangent and sigmoid function in the
bipolar format are presented. The input lies in the
range [−1, 1]. The format conversion is embedded
in our approach.

The mathematical equation of 𝑡𝑎𝑛ℎ(𝑎𝑥) (𝑎 >
0) is described as follows:

tanh(𝑎𝑥) =
1 − 𝑒−2𝑎𝑥

1 + 𝑒−2𝑎𝑥
 (7)

Additionally, the sigmoid function is given by:

Fig. 1. Stochastic implementation of 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥) via Bernstein
computation.

sigmoid(2𝑎𝑥) =
1

1 + 𝑒−2𝑎𝑥
 (8)

From the two equations above, a relation
between tanh (𝑎𝑥) and sigmoid (2𝑎𝑥) is
illustrated as equation below:

tanh(𝑎𝑥) = 2
1

1 + 𝑒−2𝑎𝑥
− 1 =

(9)

2𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥) − 1

The bipolar format defines 𝑥 = 2𝑃𝑥 − 1 in
which 𝑥 represents a bipolar value while 𝑃𝑥
represent the number of ones in the corresponding
bitstream. Clearly, 𝑥 is in the range [−1, 1] and 𝑃𝑥
is in the range [0, 1] . The definition of bipolar
format also suggests that a format conversion
between unipolar and bipolar format is possible.

Given the input in the range [−1, 1], the output
of 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥) [0, 1] . Hence, the output of
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥) can be represented in unipolar
format. By using the same bitstream of
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥), and applying to equation (9) which
can be considered as format conversion, then the
bipolar output is 𝑡𝑎𝑛ℎ(𝑎𝑥). This analysis means
that the same circuit can be used to implement bot
functions, by considering the output bitstreams in
unipolar format for 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥) while the same
output in bipolar format for 𝑡𝑎𝑛ℎ(𝑎𝑥).

The implementation of 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥) can be
done by using bipolar stochastic logic elements.
However, with some simple mathematical
transformations below, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥) can be
implemented by using unipolar stochastic logic
elements.

sigmoid(2𝑎𝑥) =
1

1 + 𝑒−2𝑎𝑥
 (10)

=
1

1 + 𝑒−2𝑎(2𝑃𝑥−1)
 (11)

=
1

1 + 𝑒−4𝑎𝑃𝑥𝑒−2𝑎
 (12)

=
𝑒−2𝑎

𝑒−2𝑎 + 𝑒−4𝑎𝑃𝑥
 (13)

From (10) to (11) 𝑥 is substituted by 2𝑃𝑥 − 1,
where 𝑃𝑥 is the unipolar value of the input bitstream
𝑋. Therefore, sigmoid(2𝑎𝑥) can be implemented
by unipolar stochastic logic while the input is still
original bitstream as equation (13).

The approximation of equation (13) can be made
by using Bernstein computation. The circuit
diagram approximating sigmoid(2𝑎𝑥) is shown in

Fig. 1. In the circuit, the set of Bernstein
coefficients and input 𝑥 are represented in unipolar
format. Binary addition is used whose output is fed
to the input of the multiplexer to select which input
is connected to the output. To reduce the
complexity of the circuit, only one LFSR is used to
generate the pseudo-random number. The
uncorrelated requirement of bitstreams is solved by
inserting a set of delays showed in Fig. 1.

IV. EXPERIMENTAL RESULTS

This section gives the experimental results of the
performance of our proposed implementation
comparing to the state-of-the-arts.

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(4𝑥), 𝑡𝑎𝑛ℎ(𝑥) and
𝑡𝑎𝑛ℎ(2𝑥) were respectively simulated to evaluate
the accuracy. Solving the quadratic programming
problem in equation (6) for 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥) applied

equation (13), a set of Bernstein coefficients of 5𝑡ℎ
order Bernstein polynomial is obtained as being
shown in Table I.

TABLE I. THE BERNSTEIN COEFFICIENTS 𝑏𝑖(0 ≤ 𝑖 ≤ 5)

SYNTHESIZING 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) AND 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(4𝑥)

Coefficients 𝑏0 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) 0.12 0.2 0.34 0.66 0.8 0.87

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(4𝑥) 0.03 0.02 0 1 0.98 0.96

The length pf stochastic bitstream is 1024, which
means that 10-bit LFSR is used for SNG. In our
simulation, the inputs of target functions are given
by 0:0.03:1. The output results are collected
through Monte Carlo experiments. The accuracy is
evaluated via Mean Absolute Error (MAE). Fig. 2
shows the simulation results of approximated
functions in different approaches and target
functions.

Synthesize results of the proposed function and
state-of-the-arts for 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) and
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(4𝑥) , 𝑡𝑎𝑛ℎ(𝑥) and 𝑡𝑎𝑛ℎ(2𝑥) are
considered. All architectures are implemented
using 180nm CMOS technology node and
synthesized Synopsys Design Compiler. A
summarized table of power consumption, area,
delay and MAE is shown in Table II. It is noted that
the same circuit can be used to implement both
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥) and 𝑡𝑎𝑛ℎ(𝑎𝑥) , then the same
hardware cost, power consumption and MAE are
achieved. In terms of accuracy, our proposed
implementation is roughly 60 times and 20 times
more accurate than FSM-based method and JK-FF
based method, respectively, for 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) and
𝑡𝑎𝑛ℎ(𝑥). Additionally, 10 and 16 times of

TABLE II . MAE EVALUATION AND HARDWARE SYNTHESIZE FOR HYPERBOLIC TANGENT AND SIMOIG FUCNTION

BASED STOCHASTIC LOGIC

Function tanh(𝑥) and sigmoid(2𝑥) tanh(2𝑥) and sigmoid(4𝑥)

Method Proposed FSM [4] JK-FF [6] Proposed FSM [4] JK-FF [6]

n=3 n=5 2 states - n=3 n=5 2 states -

Area ((𝜇𝑚) 2) 1554 1777 1345 10121 1777 2106 1551 10476

Latency (𝑛𝑠) 2.25 2.33 2.38 3.42 2.33 3.3 3.07 3.07

Power (𝑚𝑊) 0.07 0.08 0.06 0.4 0.11 0.11 0.08 0.08

MAE 0.003 0.001 0.06 0.02 0.007 0.003 0.03 0.05

(a)

(b)

(c)

(d)

Fig. 2. Simulation results compared different approaches with target functions: (a) 𝐭𝐚𝐧𝐡 (𝒙), (b) 𝐭𝐚𝐧𝐡 (𝟐𝒙), (c) 𝐬𝐢𝐠𝐦𝐨𝐢𝐝(𝟐𝒙), (d) 𝐬𝐢𝐠𝐦𝐨𝐢𝐝(𝟒𝒙)

improvement of accuracy, on average, are achieved
by our proposed method in comparison to FSM and
JK-FF based method, respectively, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(4𝑥)
and 𝑡𝑎𝑛ℎ(2𝑥).

Our proposed implementations are 80% and
85% less area and power consumption that JK-FF

approach. The proposed circuit employing 3𝑡ℎ and

5𝑡ℎ order Bernstein polynomial reduced roughly
20% of critical path delay in comparison with FSM
and JK-FF-based implementation.

V. CONCLUSIONS

In this paper, an approached computation of
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑎𝑥) and 𝑡𝑎𝑛ℎ(𝑎𝑥) in a bipolar format
based Bernstein polynomial has been proposed.
The results showed that an improvement of
accuracy had been achieved while maintained a
comparable hardware cost in comparing to state-of-
the-art.

ACKNOWLEDGEMENT

This work supported by JST, PRESTO Grant
Number JPMJPR18M7, Japan, and the Vietnam
National Foundation for Science and Technology
Development (NAFOSTED) under grant number
102.01-2018.310. The authors would like to thank
the VLSI Design and Education Center (VDEC) of
the University of Tokyo in collaboration with Rohm

Corporation, Toppan Printing Corporation,
Synopsys, Inc., Cadence Design Systems, Inc., and
Mentor Graphics, Inc.comparable hardware cost in
comparing to state-of-the-art.

REFERENCES

[1] B. R. Gaines, “Stochastic computing,” in Proceedings of AFIPS spring

joint computer conference, pp. 149–156, ACM, 1967.

[2] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM

Transactions on Embedded computing systems (TECS), vol. 12, no. 2s,

p. 92, 2013

[3] K. K. Parhi, “Analysis of stochastic logic circuits in unipolar, bipolar
and hybrid formats,” 2017 IEEE International Symposium on Circuits

and Systems (ISCAS), Baltimore, MD, 2017, pp. 1-4.

[4] B. D. Brown and H. C. Card, “Stochastic neural computation. I.
computational elements,” IEEE Transactions on Computers, vol. 50,

no. 9, pp. 891–905, 2001.

[5] P. Li, D. J. Lilja, K. Bazargan and M. Riedel, "The synthesis of
complex arithmetic computation on stochastic bit streams using

sequential logic," in IEEE/ACM (ICCAD), San Jose, CA, USA, pp.

480-487, Dec. 2012.

[6] Y. Liu and K. K. Parhi, ”Computing hyperbolic tangent and sigmoid

functions using stochastic logic,” 2016 50th Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, CA, 2016, pp. 1580-

1585.
[7] K. T. Luong, V. Nguyen, A. Nguyen and E. Popovici, "Efficient

Architectures and Implementation of Arithmetic Functions

Approximation Based Stochastic Computing," 2019 IEEE 30th
International Conference on Application-specific Systems,

Architectures and Processors (ASAP), New York, 2019, pp. 281-287.

[8] W. Qian, X. Li, M. D. Riedel, K. Bazargan and D. J. Lilja, ”An
Architecture for Fault-Tolerant Computation with Stochastic Logic,”

in IEEE Transactions on Computers, vol. 60, no. 1, pp. 93-105, Jan.

2011

