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1. Introduction 

 

Nowadays, the use of the multi-layer structures such as 

laminated composites, sandwich structures is increasing 

rapidly especially in some special fields of nuclear energy, 

aerospace and aeronautics science, defence technology, 

medical field, etc. However, the disadvantage of the 

traditional layered structures is that the material properties 

vary discontinuously through the thickness of the structures, 

so the delamination damage may occur at the contact 

surface. To overcome this phenomenon, the FGM sandwich 

structures with the material properties vary continuously 

through the thickness of the structures have been introduced 

and used widely (Bakoura et al. 2021, Hadj et al. 2019, 

Zine et al. 2020, Vinh 2021). Therefore, many scientists 

have been focused on the investigation on the mechanical, 

thermal behavior of these structures. It is obvious that the 

functionally graded sandwich plates and beams are the most 

important structures which are widely used in the 

engineering and industry (Boussoula et al. 2020, Chikr et 

al. 2020, Menasria et al. 2020, Rabhi et al. 2020). So, the 

study of the static bending, buckling and free vibration of 

the functionally graded sandwich (FGSW) beams is 

necessary. The FGSW beams can be modelling via classical 

beam theory (CBT), first-order shear deformation theory 

(FSDT), higher-order shear deformation theories (HSDTs) 

or normal deformation (quasi-3D) theories. Apetre et al. 

(2008) used a HSDT incorporation with Fourier-Galerkin 

method to modelling and analyze the behavior of FGSW 

beams. Nguyen and Nguyen (2015) developed a new HSDT   
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to analyze the bending, buckling and free vibration of 

FGSW beams with homogeneous hardcore and softcore. 

Nguyen et al. (2015) studied the vibration and buckling of 

FGSW beams using new HSDT with new hyperbolic 

distribution function. A new refined hyperbolic HSDT had 

been developed by Riadh et al. (2015) to investigate the 

vibration and buckling of FGSW beams under various 

boundary conditions. Vo et al. (2014) developed a finite 

element model based on a refined HSDT for analysis of 

FGSW beams. Li et al. (2019) developed an HSDT mixed 

beam element to investigate the bending of the FGSW 

beams. A quasi-3D theory has been introduced by Vo et al. 

(2015a, 2015b) to study the bending, free vibration and 

buckling behavior of the FGSW beams. Nguyen et al. 

(2016) used a quasi-3D theory to develop an analytical 

solution for buckling and free vibration analysis of the 

FGSW beams. Osofero et al. (2015) studied the vibration 

and buckling behavior of the FGSW beams using various 

quasi-3D theories. Karamanlı (2017) investigated the 

bending behavior of the two-directional FGSW beam by 

using a quasi-3D theory. Yarasca et al. (2016) developed a 

Hermite-Lagrangian finite element to study the FGSW 

beams. The free vibration and stability of the FGSW beams 

had been studied by Tossapanon and Wattanasakulpong 

(2016). The vibration and dynamic response of the FGSW 

beams have been investigated by Şimşek and Al-shujairi 

(2017), and Songsuwan et al. (2018). The state space 

approach had been used to analyze the free vibration of the 

FGSW beams by Trinh et al. (2016).  

Recently, micro/nanostructures have been investigated 

and applied in many fields of engineering. The behavior of 

these structures is completely different in comparison with 

the usual structures due to the small-scale effects of the 

micro and nanostructures. To investigate these structures, 
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many theories have been introduced such as dynamic of 

molecular (DOM), couple stress theory (CST) and modified 

couple stress theory (MCST), strain gradient theory (SGT), 

nonlocal elastic theory (NET), nonlocal strain gradient 

theory (NSGT). Gao and Zhang (2015) developed a new 

beam model based on third-order shear deformation theory 

and MCST. Thai and Vo (2012) developed a nonlocal 

sinusoidal shear deformation theory (SSDT) to analyze 

static bending, free vibration and buckling behavior of 

nanobeams. Zemri et al. (2015) analyzed mechanical 

behavior of the FG nanobeams using a refined nonlocal 

shear deformation beam theory. Larbi et al. (2015) studied 

the bending of the FG nanobeams using nonlocal continuum 

model based on a normal shear deformation theory. The 

effect of the neutral surface on the bending and buckling of 

the FG nanobeams had been investigated by Mama et al. 

(2016). The free vibration of the FG nanobeams had been 

investigated by Hamed et al. (2016) via Euler-Bernoulli 

beam theory and NET. Balibaid et al. (2019) and Berghouti 

et al. (2019) investigated free vibration of FG nanoplates 

and porous nanobeams using two variables integral refined 

plate theory and NET. Bellal et al. (2020) used nonlocal 

four-unknown integral model to analyze buckling behavior 

of single-layered graphene sheet. Matouk et al. (2020) used 

an integral Timoshenko beam theory in combination with 

NET to analyze hygro-thermal vibration of P-FG and S-FG 

nanobeams. Bouafia et al. (2017) developed a nonlocal 

quasi-3D theory to analyze free flexural vibration of FG 

nanobeams. Boutaleb et al. (2019) analyzed dynamic 

response of FG nanoplates using a simple nonlocal quasi-

3D theory. A nonlocal zeroth-order shear deformation 

theory had been developed by Bellifa et al. (2017) to 

analyze nonlinear post-buckling of nanobeams. Yang et al. 

(2018) analyzed nonlinear bending, buckling and vibration 

of bi-directional functionally graded nanobeams by using 

Euler-Bernoulli beam theory. Ahmed et al. (2018) studied 

buckling behavior of the FG nanobeams using a new quasi-

3D theory in combination with NSGT. In this work, the 

variation of the length scale parameter is considered. Yang 

et al. (2019) used NSGT in combination with an HSDT 

based on the physical neutral surface to analyze the 

nonlinear thermal buckling of bi-directional FG nanobeams. 

Aria et al. (2019) established a finite element model based 

on the FSDT and NET to analyze the thermo-elastic 

behavior of FG nanobeams with porosity. A comprehensive 

study on the static bending, free vibration and buckling 

behavior of FG nanobeams had been carried out by Şimşek 

(2019), in which he used some closed-form solution based 

on Euler-Bernoulli and NSGT. Hana et al. (2019) 

investigated the nonlocal vibration of FG nanobeams with 

porosity. Aria and Friswell (2019) developed a strain-driven 

(nonlocal) finite element model based on the FSDT to 

examine the free vibration and buckling behavior of the FG 

nanobeams. Arefi and Zenkour (2016) established a 

simplified shear and normal deformations nonlocal theory 

to study the bending behavior of FG piezomagnetic 

sandwich nanobeams in the magnetic-thermo-electric 

environment. Zhang and Gao (2020) developed a new 

Bernoulli-Euler beam model based on a reformulated SGT. 

Liu et al. (2019) examined the nonlinear free vibration of 

geometrically imperfect FGSW nanobeams via NSGT. 

Bensaid et al. (2020) investigated the size-dependent free 

vibration and buckling behavior of sigmoid and power-law 

FGSW nanobeams via an HSDT and NET.  

It can be seen that there is no study in the past working 

on the mechanical behavior of a bi-functionally graded 

sandwich (bi-FGSW) nanobeams which are made of two 

different FGM face sheets. These structures can be applied 

in many fields of engineering and industry where the 

structures always contact to the different environment on 

two surfaces. The rapid development of artificial 

intelligence and three-dimension printing technology can 

make the process of creating the bi-FGSW nanobeams 

easier. So, a comprehensive study on the mechanical 

behavior of the bi-FGSW nanobeams is very necessary, and 

it is the main aim of this study. In this study, the NET will 

be used to take into account the small-scale effects on the 

mechanical behavior of bi-FGSW nanobeams. The outlines 

of this study are as follows: section 2 gives the geometry 

and construction of bi-FGSW nanobeams and the 

theoretical formulation. The comparison study and main 

numerical results of the mechanical behavior of the bi-

FGSW nanobeams are given in section 3. Section 4 gives 

some remarkable summaries, main distribution of the 

present work and some suggestions for future works. 
 

 

2. Theoretical formulation 
 

2.1 Bi-functionally graded sandwich nanobeams 
 

In this study, a novel functionally graded sandwich 

nanobeam as shown in Fig. 1, which is called bi-

functionally graded sandwich (bi-FGSW) nanobeam, is 

considered. The novel sandwich nanobeam consists of one 

homogeneous ceramic core and two different FGM face 

sheets which have similar ceramic component and have 

different metal components. 

The volume fraction of the ceramic component of the bi-

FGSW nanobeam is 

 
(1) 

It can see clearly that the core layer of the sandwich 

beam is made of homogeneous ceramic, while the volume 

fraction of the ceramic component varies continuously 

through the thickness of two face sheets. The effective 

material properties through the thickness of the beam are 

obtained by the following formulae 
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Fig. 1 The model of the bi-FGSW nanobeams 

 

Table 1 The material properties of individual materials 

Materials 
Young’s 

modulus (GPa) 

Mass density 

(kg/m3) 
Poison’s ratio 

Ti-6Al-4V 66.2 4420 1/3 

SUS304 207 8166 0.3 

3 4Si N  323 3170 0.3 

 

 
(a) 

 
(b) 

Fig. 2 The variation of effective Young’s modulus and 

mass density through the thickness of (Ti-6AI-4v/Si3N4/ 

SUS304) bi-FGSW nanobeam 

density and Poison’s ratio of the ceramic component, 
1 1 1, ,m m mE    denote Young’s modulus, the mass density and 

Poison’s ratio of the metal component at the bottom surface 
of the nanobeams, while 2 2 2, ,m m mE    denote Young’s 
modulus, the mass density and Poison’s ratio of the metal 
component at the top surface of the nanobeams. Table 1 
gives the material properties of three individual materials 
which are used in this study.  

The effective Young’s modulus (Eeff) and mass density 

(peff) of the material through the thickness of a (Ti-6AI-

4v/Si3N4/SUS304) bi-FGSW nanobeam with the skin-core-

skin thicknesses of (1-1-1) are presented in Fig. 2. It can be 

seen that when the power-law index k = 0, the bi-FGSW 

beam becomes the isotropic ceramic one. When the power-

law index k > 0, the sandwich beam consists of one core 

layer of Si3N4, one bottom FGM layer of Ti-6AI-4v/Si3N4 

and one top FGM layer of Si3N4/SUS304. The effective 

material properties of the bi-FGSW nanobeams are 

asymmetric although the skin-core-skin thicknesses of the 

beams are symmetric.  
 

2.2 A refined simple shear deformation theory 
 

The basic assumption used in the proposed theory is that 

the transverse displacement is separated into two parts 

including bending part wb and shear part ws. Thus, the 

displacement field of the proposed theory can be written as 

(Nguyen and Nguyen 2015, Nguyen et al. 2015) 

( , ) ( ) ( )
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(3) 

where ( ) ( )f z z r z= − . Numerous shape functions ( )r z  

have been announced in the past by researchers. In this 

study, a novel fractional shape function is introduced as 

follows 

4
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The current shape fractional shape function satisfies the 

parabolic distribution of the transverse shear stress/strain 

through the thickness of the beams and equals to zero on the 

bottom and top surfaces of the beams. The strains fields of 

the beam are written as 

2 2

2 2
,b s s
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z f r
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(5) 

The constitutive equation of the beam is 

( ) , ( )x x xz xzE z G z   = =

 

(6) 

where ( )( ) ( ) 2(1 ( ))G z E z z= + . 

The Hamilton’s principle is employed to obtained the 

equations of motion 
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0

0
T
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(7) 
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where   is the variation of the strain energy, V  is 

the variation of the work done by external forces and T  

is the variation of the kinematic energy. The variation of the 

strain energy is obtained as the following expression 

( )
0

L

x x xz xz

A

dAdx     = + 
 

(8) 

After integrating through the thickness of the beam, one 

gets 
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where ( ) ( ) ( ), ,l l lN M P  and ( )lQ  are the local stress 

resultants which are calculated by 
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Inserting Eq. (6) into Eq. (10), one gets 
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 The variation of the work done by external transverse 

distributed and axial force is calculated by (Thai et al. 

2012) 
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The variation kinematic energy of the beam is expressed 

as 
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After integrating through the thickness of the beam, one 

gets 
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where 

( ) ( )2 2
0 1 2 3 4 5, , , , , ( ) 1, , , , ,

A

I I I I I I z z f z fz f dA= − −
 
(16) 

Substituting Eqs. (9), (13) and Eq. (15) into Eq. (7) and 

integrating by parts, the equilibrium equations of the beams 

are obtained as the following 
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(17) 

 
2.3 Nonlocal theory 

 

To take into account for the small-scale effects on the 

behavior of the nanobeams, the Eringen’s nonlocal 

theory (Eringen, 1983) is adopted herein. In the 

Eringen’s nonlocal theory, the stress at a point depends 

on the strains at all neighbor points of the body, hence 

the nonlocal stress tensor ij  at a point x  is obtained 

via the local stress tensor ijt  as the following formula 

(Aria and Friswell 2019) 

2
ij ij ijt  −  =

 

(18) 

where 
2

0( )e a =  is the nonlocal parameter which 

incorporates the small-scale effect, 0e  is a constant 
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appropriate to each material which can be obtained either 

from experimental measurements or molecular dynamics, 
a  is the internal characteristic length. For a beam type 

structure, by considering the nonlocal behavior in the 

thickness direction, the softening effect will depend on the 

span to depth ratio, in addition to the nonlocal parameter. In 

this study, the nonlocal effect in the thickness direction is 

ignored, and so the softening behavior is only dependent on 

the nonlocal parameter. Besides, by letting 0 = , the 

constitutive relation for the local theory is derived. The 

nonlocal constitutive relation of the nanobeams can be 

written as (Hamed et al. 2016) 
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As a consequence, the stress resultants are calculated as 

the following formula 
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2.4 Equations of motion 

 

By substituting Eq. (20) into Eq. (17), the following 

equations of motion of the nanobeams are achieved as the 

following formulae 
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(21) 

2.5 Navier’s solution 

 

In this study, a simply-simply supported bi-FGSW 

nanobeam subjected to a distributed transverse load is 

considered. The simply supported boundary conditions of 

the beams are 

 at 

 

(22) 

The Navier’s solution technique is employed to solve 

the equations of motion. The unknown displacement 

functions of the beams are assumed as the following 

formulae 

 
(23) 

where /m m L = , 
2 1,i = −    is the natural 

frequency of the nanobeams, , ,m m mU Wb Ws  are the 

unknown coefficients. The distributed load acting on the 

beam is expanded as follows 

 
(24) 

where m  depends on the load types. In the case of 

uniform load, m  are calculated by 

 

(25) 

Substituting Eq. (23) and Eq. (24) into Eq. (21), one gets 
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(26) 

where ( )2α μ 1m = +  and 

( )
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The numerical results of the bending behavior, 

frequencies and critical buckling load of the bi-FGSW 

nanobeams are obtained by solving Eq. (26) using a 

common manner. The static deflection is obtained from Eq. 

(26) by setting N0 and   equal to zero. The natural 

frequency is obtained from Eq. (26) by setting q and N0 

equal to zero. By setting q and   in Eq. (26) equal to 

zero, the critical buckling load is obtained.  

 

 

3. Numerical results and discussions 
 

3.1 Verification study 
 

3.1.1 Comparison the bending, free vibration 
and buckling of FGSW beams 

The FGSW beams are made of one homogeneous 

2 3Al O  core and two FGM faces of 2 3Al O /Al . The 

material properties of Aluminum (Al)  as metal are 

70 GPa,mE =  0.3,m =  32702 kg/mm =  and those 

of Alumina 2 3(Al O )  as ceramic are 380 GPa,cE =  

0.3,c =  33960 kg/mc = . The dimensionless center 

deflections, normal stress and transverse shear stress of 

simply-simply supported FGSW beams subjected to 

uniform load 0q  are compared in Tables 2-4. In which the 

numerical results of the proposed theory are compared to 

those of Nguyen and Nguyen (2015). Furthermore, the 

comparison of the dimensionless fundamental frequencies 

and critical buckling loads between the present numerical 

results and those of Nguyen and Nguyen (2015) are 

presented in Tables 5 and 6. According to these 

comparisons, it can be concluded that the present numerical 

results are identical to those of Nguyen and Nguyen (2015). 

In these tables, the dimensionless parameters are calculated 

via following formulae 

 

(28) 

 
3.1.2 Comparison the bending, free vibration and 

buckling of isotropic nanobeams 

To verify the accuracy of the proposed theory on 

predicting the bending, free vibration and buckling behavior 

of nanostructures, the comparisons of the deflections, 

fundamental frequencies and critical buckling loads of a 

simply supports isotropic nanobeams are considered herein. 

The length of the beam is 10 nmL =  and it is subjected to 

a uniform load. The present numerical results are compared 

with those of Thai and Vo (2012) for several cases of the 

slender ratios and the nonlocal parameters. It can be seen 

from Table 7 that the errors between the present results and 

those of Thai and Vo (2012) are very small. It is noticed 

that the dimensionless center deflections, natural 

frequencies and critical buckling loads are computed as the 

following formulae 

 

(29) 

 

3.2. Parameter study 
 

In this section, the bending behavior, free vibration and 

buckling behavior of the (Ti-6AI-4v/Si3N4/SUS304) bi-

FGSW nanobeams are investigated. The length of 

nanobeam is , the depth of the nanobeam is 

, the beam is simply supported at two end sides. 

For the bending problems, the nanobeam is subjected to a 

uniform load, for the free vibration problems, the nanobeam 

is free of force action, and for the buckling problems, the 

nanobeam is subjected to axial load only. The following 

dimensionless quantities are used for convenience 
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(30) 

 

3.2.1 The bending analysis of bi-FGSW nanobeams 

Firstly, the bending behavior of the (Ti-6AI-4v/Si3N4/ 

SUS304) bi-FGSW nanobeam is investigated in this 

subsection. The nondimensional center deflection, the axial 

normal stress and the transverse shear stress of the bi- FGSW 

nanobeam subjected to a uniform distribution load  are 

presented in Tables 8-10. It can be seen that the deflections 

of the bi-FGSW nanobeams increase as the growth of the 

length-to-high ratio , the power-law index  as 

well as the nonlocal parameter . When the power-law 

index , the deflections and stresses of six schemes of 

the sandwich nanobeams are identical because they become 

the full-ceramic ones.  

Continuously, the effects of some parameters such as 

slender ratio /L h , the power-law index ,k  and the 

nonlocal parameter   on the bending behavior of the bi-

FGSW nanobeams are investigated herein for details. A bi-

FGSW nanobeam with two simply supported end sides is 

considered. The deflection of the (1-2-1) bi-FGSW 

nanobeams with different values of the power-law index k  

and the nonlocal parameter   are presented in Fig. 3(a). 

The dependence of the center deflections of the (1-1-1) bi-

FGSW nanobeams on the variation of the slender ratio 

/L h  are given in Fig. 3(b). It is obvious that the center 

deflections of the beams are increased as the growth of the 

slender ratio. The rate of increase of the beams with 
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Table 2 The comparison of the center deflection  of the FGSW beams 

L/h k Method 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 

0 Nguyen and Nguyen (2015) 0.2026 0.2026 0.2026 0.2026 0.2026 0.2026 

 Present 0.2024 0.2024 0.2024 0.2024 0.2024 0.2024 

1 Nguyen and Nguyen (2015) 0.5014 0.4437 0.4189 0.4012 0.3738 0.3464 

 Present 0.5007 0.4431 0.4185 0.4009 0.3736 0.3463 

5 Nguyen and Nguyen (2015) 0.9714 0.8450 0.7568 0.7185 0.6267 0.5449 

 Present 0.9680 0.8429 0.7556 0.7174 0.6260 0.5447 

10 Nguyen and Nguyen (2015) 1.0425 0.9359 0.8329 0.8042 0.6943 0.6019 

 Present 1.0380 0.9330 0.8314 0.8026 0.6934 0.6016 

20 

0 Nguyen and Nguyen (2015) 0.1854 0.1854 0.1854 0.1854 0.1854 0.1854 

 Present 0.1853 0.1853 0.1853 0.1853 0.1853 0.1853 

1 Nguyen and Nguyen (2015) 0.4763 0.4214 0.3967 0.3802 0.3530 0.3264 

 Present 0.4762 0.4213 0.3966 0.3801 0.3530 0.3264 

5 Nguyen and Nguyen (2015) 0.9295 0.8164 0.7282 0.6936 0.6024 0.5225 

 Present 0.9293 0.8163 0.7282 0.6935 0.6023 0.5225 

10 Nguyen and Nguyen (2015) 0.9884 0.9048 0.8018 0.7782 0.6690 0.5790 

 Present 0.9881 0.9046 0.8017 0.7781 0.6689 0.5790 

Table 3 The comparison of the normal stress  of the FGSW beams 

L/h k Method 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 

0 Nguyen and Nguyen (2015) 3.8022 3.8022 3.8022 3.8022 3.8022 3.8022 

 Present 3.7517 3.7517 3.7517 3.7517 3.7517 3.7517 

1 Nguyen and Nguyen (2015) 1.7967 1.5898 1.3885 1.4349 1.2475 1.2330 

 Present 1.7846 1.5793 1.3780 1.4251 1.2377 1.2236 

5 Nguyen and Nguyen (2015) 3.5001 3.0730 2.4070 2.6124 2.0195 1.9706 

 Present 3.4785 3.0591 2.3938 2.6010 2.0085 1.9610 

10 Nguyen and Nguyen (2015) 3.7235 3.4044 2.6296 2.9294 2.2200 2.1827 

 Present 3.6946 3.3886 2.6151 2.9172 2.2085 2.1729 

20 

0 Nguyen and Nguyen (2015) 15.0130 15.0130 15.0130 15.0130 15.0130 15.0130 

 Present 15.0232 15.0232 15.0232 15.0232 15.0232 15.0232 

1 Nguyen and Nguyen (2015) 7.1229 6.3018 5.4960 5.6850 4.9364 4.8801 

 Present 7.1256 6.3042 5.4985 5.6873 4.9387 4.8823 

5 Nguyen and Nguyen (2015) 13.9065 12.2220 9.5507 10.3835 8.0109 7.8194 

 Present 13.9108 12.2248 9.5539 10.3862 8.0136 7.8220 

10 Nguyen and Nguyen (2015) 14.7788 13.5456 10.4356 11.6513 8.8104 8.6665 

 Present 14.7839 13.5483 10.4390 11.6539 8.8132 8.6692 

Table 4 The comparison of the transverse shear stress  of the FGSW beams 

L/h k Method 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 

0 Nguyen and Nguyen (2015) 0.7350 0.7350 0.7350 0.7350 0.7350 0.7350 

 Present 0.7924 0.7924 0.7924 0.7924 0.7924 0.7924 

1 Nguyen and Nguyen (2015) 1.0349 0.9139 0.9106 0.8602 0.8496 0.8141 

 Present 1.0845 0.9623 0.9672 0.9131 0.9067 0.8744 

5 Nguyen and Nguyen (2015) 1.7725 1.1854 1.1755 1.0133 0.9873 0.8940 

 Present 1.7791 1.1918 1.2187 1.0403 1.0316 0.9467 

10 Nguyen and Nguyen (2015) 2.3128 1.3065 1.2888 1.0670 1.0347 0.9165 

w

( / 2)x z h =

( 0)xz z =
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Table 4 Continued 

L/h k Method 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 10 Present 2.3312 1.2942 1.3306 1.0808 1.0735 0.9635 

20 

0 Nguyen and Nguyen (2015) 0.7470 0.7470 0.7470 0.7470 0.7470 0.7470 

 Present 0.8102 0.8102 0.8102 0.8102 0.8102 0.8102 

1 Nguyen and Nguyen (2015) 1.0466 0.9241 0.9209 0.8699 0.8594 0.8235 

 Present 1.1023 0.9780 0.9833 0.9282 0.9220 0.8893 

5 Nguyen and Nguyen (2015) 1.7927 1.1976 1.1877 1.0237 0.9972 0.9030 

 Present 1.8075 1.2095 1.2370 1.0560 1.0469 0.9609 

10 Nguyen and Nguyen (2015) 2.3411 1.3196 1.3023 1.0779 1.0450 0.9258 

 Present 2.3705 1.3130 1.3507 1.0970 1.0892 0.9780 

Table 5 The comparison of the natural frequency  of the FGSW beams 

L/h k Method 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 

0 Nguyen and Nguyen (2015) 5.1528 5.1528 5.1528 5.1528 5.1528 5.1528 

 Present 5.1556 5.1556 5.1556 5.1556 5.1556 5.1556 

1 Nguyen and Nguyen (2015) 3.5735 3.7298 3.8206 3.8756 3.9911 4.1105 

 Present 3.5762 3.7320 3.8221 3.8770 3.9922 4.1108 

5 Nguyen and Nguyen (2015) 2.7448 2.8440 2.9789 3.0181 3.1965 3.3771 

 Present 2.7495 2.8473 2.9811 3.0204 3.1982 3.3775 

10 Nguyen and Nguyen (2015) 2.6934 2.7356 2.8715 2.8809 3.0629 3.2357 

 Present 2.6990 2.7396 2.8740 2.8836 3.0649 3.2365 

20 

0 Nguyen and Nguyen (2015) 5.4603 5.4603 5.4603 5.4603 5.4603 5.4603 

 Present 5.4605 5.4605 5.4605 5.4605 5.4605 5.4605 

1 Nguyen and Nguyen (2015) 3.7147 3.8768 3.9775 4.0328 4.1603 4.2889 

 Present 3.7149 3.8769 3.9776 4.0329 4.1603 4.2889 

5 Nguyen and Nguyen (2015) 2.8440 2.9311 3.0776 3.1111 3.3030 3.4921 

 Present 2.8443 2.9313 3.0777 3.1112 3.3031 3.4922 

10 Nguyen and Nguyen (2015) 2.8042 2.8188 2.9665 2.9662 3.1616 3.3406 

 Present 2.8046 2.8191 2.9666 2.9664 3.1617 3.3407 

Table 6 The comparison of the critical buckling load  of the FGSW beams 

L/h k Method 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 

0 Nguyen and Nguyen (2015) 48.5960 48.5960 48.5960 48.5960 48.5960 48.5960 

 Present 48.6534 48.6534 48.6534 48.6534 48.6534 48.6534 

1 Nguyen and Nguyen (2015) 19.6531 22.2113 23.5246 24.5598 26.3609 28.4444 

 Present 19.6841 22.2391 23.5451 24.5798 26.3774 28.4497 

5 Nguyen and Nguyen (2015) 10.1473 11.6685 13.0272 13.7218 15.7307 18.0914 

 Present 10.1841 11.6979 13.0477 13.7435 15.7483 18.0975 

10 Nguyen and Nguyen (2015) 9.4526 10.5356 11.8372 12.2611 14.1995 16.3787 

 Present 9.4943 10.5689 11.8588 12.2858 14.2192 16.3879 

20 

0 Nguyen and Nguyen (2015) 53.2364 53.2364 53.2364 53.2364 53.2364 53.2364 

 Present 53.2405 53.2405 53.2405 53.2405 53.2405 53.2405 

1 Nguyen and Nguyen (2015) 20.7213 23.4212 24.8793 25.9588 27.9537 30.2307 

 Present 20.7234 23.4231 24.8807 25.9602 27.9549 30.2310 

5 Nguyen and Nguyen (2015) 10.6175 12.0885 13.5519 14.2285 16.3829 18.8874 

 Present 10.6197 12.0904 13.5532 14.2299 16.3841 18.8878 



crN
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Table 6 Continued 

L/h k Method 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

20 
10 Nguyen and Nguyen (2015) 9.9849 10.9074 12.3080 12.6819 14.7520 17.0445 

 Present 9.9877 10.9098 12.3094 12.6836 14.7532 17.0449 

Table 7 The comparison of the center deflection w , frequency   and critical buckling load crN  of the isotropic 
nanobeams 

L/h  
   

Thai and Vo 

(2012) 
Present 

Thai and Vo 

(2012) 
Present 

Thai and Vo 

(2012) 
Present 

5 

0 1.4317 1.4303 9.2752 9.2797 8.9533 8.9625 

1 1.5671 1.5656 8.8488 8.8531 8.1490 8.1574 

2 1.7025 1.7009 8.4763 8.4804 7.4773 7.4850 

4 1.9733 1.9714 7.8536 7.8574 6.4191 6.4257 

10 

0 1.3345 1.3342 9.7077 9.7090 9.6231 9.6257 

1 1.4621 1.4617 9.2614 9.2626 8.7587 8.7610 

2 1.5897 1.5893 8.8715 8.8727 8.0367 8.0389 

4 1.8449 1.8445 8.2198 8.2209 6.8994 6.9012 

100 

0 1.3024 1.3024 9.8679 9.8680 9.8671 9.8671 

1 1.4274 1.4274 9.4143 9.4143 8.9807 8.9808 

2 1.5525 1.5525 9.0180 9.0180 8.2405 8.2405 

4 1.8025 1.8025 8.3555 8.3555 7.0743 7.0743 

Table 8 The dimensionless center deflection 
*w  of the bi-FGSW nanobeams 

L/h k 2(nm )  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 

0 0 0.1107 0.1107 0.1107 0.1107 0.1107 0.1107 

 1 0.1212 0.1212 0.1212 0.1212 0.1212 0.1212 

 2 0.1316 0.1316 0.1316 0.1316 0.1316 0.1316 

 3 0.1421 0.1421 0.1421 0.1421 0.1421 0.1421 

 4 0.1526 0.1526 0.1526 0.1526 0.1526 0.1526 

1 0 0.1974 0.1833 0.1886 0.1725 0.1746 0.1578 

 1 0.2162 0.2007 0.2065 0.1889 0.1912 0.1728 

 2 0.2350 0.2181 0.2244 0.2053 0.2077 0.1878 

 3 0.2537 0.2355 0.2423 0.2217 0.2243 0.2027 

 4 0.2725 0.2529 0.2602 0.2381 0.2409 0.2177 

10 0 0.3044 0.2754 0.2958 0.2513 0.2640 0.2154 

 1 0.3333 0.3017 0.3239 0.2753 0.2891 0.2359 

 2 0.3623 0.3279 0.3521 0.2992 0.3142 0.2564 

 3 0.3912 0.3541 0.3802 0.3231 0.3394 0.2769 

 4 0.4201 0.3803 0.4084 0.3471 0.3645 0.2974 

10 

0 0 0.8261 0.8261 0.8261 0.8261 0.8261 0.8261 

 1 0.9051 0.9051 0.9051 0.9051 0.9051 0.9051 

 2 0.9841 0.9841 0.9841 0.9841 0.9841 0.9841 

 3 1.0631 1.0631 1.0631 1.0631 1.0631 1.0631 

 4 1.1421 1.1421 1.1421 1.1421 1.1421 1.1421 

1 0 1.5046 1.3967 1.4369 1.3129 1.3286 1.1969 

 1 1.6486 1.5304 1.5745 1.4386 1.4558 1.3114 

 2 1.7927 1.6641 1.7121 1.5643 1.5830 1.4260 

 3 1.9367 1.7978 1.8496 1.6900 1.7101 1.5405 

 4 2.0807 1.9315 1.9872 1.8156 1.8373 1.6550 

2(nm )

w  crN
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Table 8 Continued 

L/h k 2(nm )  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

10 

10 0 2.3256 2.1221 2.2762 1.9369 2.0359 1.6535 

 1 2.5482 2.3254 2.4942 2.1225 2.2310 1.8119 

 2 2.7709 2.5287 2.7123 2.3080 2.4260 1.9703 

 3 2.9936 2.7320 2.9303 2.4936 2.6211 2.1287 

 4 3.2162 2.9353 3.1484 2.6791 2.8161 2.2870 

Table 9 The dimensionless normal stress *( / 2, / 2)x L h  of the bi-FGSW nanobeams 

L/h k 2(nm )  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 

0 0 1.9230 1.9230 1.9230 1.9230 1.9230 1.9230 

 1 2.0655 2.0655 2.0655 2.0655 2.0655 2.0655 

 2 2.2079 2.2079 2.2079 2.2079 2.2079 2.2079 

 3 2.3503 2.3503 2.3503 2.3503 2.3503 2.3503 

 4 2.4928 2.4928 2.4928 2.4928 2.4928 2.4928 

1 0 2.0208 1.9149 1.8807 1.8257 1.7771 1.6944 

 1 2.1705 2.0568 2.0197 1.9609 1.9083 1.8194 

 2 2.3202 2.1987 2.1587 2.0960 2.0396 1.9445 

 3 2.4700 2.3407 2.2976 2.2312 2.1708 2.0696 

 4 2.6197 2.4826 2.4366 2.3663 2.3020 2.1946 

10 0 2.6994 2.6255 2.5989 2.4879 2.4363 2.2170 

 1 2.8992 2.8218 2.7922 2.6744 2.6181 2.3825 

 2 3.0990 3.0181 2.9855 2.8609 2.7999 2.5480 

 3 3.2989 3.2144 3.1788 3.0474 2.9817 2.7135 

 4 3.4987 3.4107 3.3721 3.2339 3.1636 2.8790 

10 

0 0 7.5480 7.5480 7.5480 7.5480 7.5480 7.5480 

 1 8.1187 8.1187 8.1187 8.1187 8.1187 8.1187 

 2 8.6894 8.6894 8.6894 8.6894 8.6894 8.6894 

 3 9.2601 9.2601 9.2601 9.2601 9.2601 9.2601 

 4 9.8308 9.8308 9.8308 9.8308 9.8308 9.8308 

1 0 7.9606 7.5454 7.4041 7.1918 6.9960 6.6690 

 1 8.5610 8.1145 7.9614 7.7338 7.5223 7.1706 

 2 9.1614 8.6836 8.5188 8.2758 8.0485 7.6722 

 3 9.7618 9.2527 9.0761 8.8178 8.5747 8.1737 

 4 10.3622 9.8218 9.6334 9.3598 9.1009 8.6753 

10 0 10.6230 10.3719 10.2471 9.8321 9.6191 8.7518 

 1 11.4242 11.1590 11.0221 10.5798 10.3482 9.4154 

 2 12.2253 11.9461 11.7971 11.3275 11.0773 10.0789 

 3 13.0265 12.7332 12.5722 12.0753 11.8064 10.7425 

 4 13.8277 13.5203 13.3472 12.8230 12.5355 11.4061 

Table 10 The dimensionless transverse shear stress 
* (0,0)xz  of the bi-FGSW nanobeams 

L/h k 2(nm )  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 

0 0 0.3962 0.3962 0.3962 0.3962 0.3962 0.3962 

 1 0.9167 0.9167 0.9167 0.9167 0.9167 0.9167 

 2 1.4372 1.4372 1.4372 1.4372 1.4372 1.4372 

 3 1.9577 1.9577 1.9577 1.9577 1.9577 1.9577 
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0k = , and the rate of increase is increased as k  

increases. In Fig. 3(c), when the power-law index k  

increases, the center deflections of the nanobeams 

increases. The reason is that when the power-law index 

increases, two FGM face sheets of the bi-FGSWnanobeams 

become metal-rich face sheets, it leads to the decrease of 

the stiffness of the beams. Besides, the effects of the 

nonlocal parameter   on the center deflections of the bi-

FGSW nanobeams are demonstrated in Fig. 3(d). It is 

obvious that the inclusion of the nonlocal parameter leads to 

an increase in the center deflection of the bi-FGSW 

nanobeams. 

The distribution of normal stress and transverse shear 

stress through the thickness of the bi-FGSW nanobeams are 

presented in Figs. 4 and 5. The distribution of the normal 

stress and transverse shear stress of the bi-FGSW 

nanobeams with six schemes of sandwich beams are 

illustrated in Figs. 4(a) and 5(a). The scheme of the 

sandwich beams affects strongly on the distribution of the 

stresses through the thickness of the sandwich nanobeams. 

Furthermore, the distribution of the stresses through the 

thickness of the bi-FGSW nanobeams are still asymmetric 

although the schemes of the beams are symmetric. These  

 

 

are due to the fact that the bi-FGSW nanobeams consist of 

two different FGM face sheets with different ingredients. 

The influence of the slender ratio on the distribution of the 

stresses is presented in Figs. 4(b) and 5(b). The effects of 

the power-law index on the distribution of the tresses are 

presented in Figs. 4(c) and 5(c). Figs. 4(d) and 5(d) present 

the effect of the nonlocal parameter on the distribution of 

the normal and transverse shear stress. It can be seen that 

the slender ratio, the power-law index and the nonlocal 

parameter have strong effects on the distribution of the 

normal and transverse shear stresses in the thickness 

direction of the bi-FGSW nanobeams. Especially, the 

distribution of the normal stress at two surfaces of the bi-

FGSW nanobeams are always asymmetric, hence the use of 

the bi-FGSW nanobeams can avoid the phenomenon of 

stresses concentration at the surfaces of the beams. 

 
3.2.2 Free vibration analysis of bi-FGSW nanobeams 

In this subsection, the free vibration analysis of the simply 

supported bi-FGSW nanobeams is considered. The 

dimensionless fundamental frequencies of the bi-FGSW 

nanobeams are given in Table 11. The dimensionless first 

six frequencies of the (1-0-1) and (2-2-1) bi-FGSW  

Table 10 Continued 

L/h k 2(nm )  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 

0 4 2.4782 2.4782 2.4782 2.4782 2.4782 2.4782 

1 0 0.4867 0.4494 0.4644 0.4338 0.4390 0.4217 

 1 1.2198 1.1325 1.1615 1.0908 1.1011 1.0550 

 2 1.9529 1.8155 1.8587 1.7477 1.7633 1.6882 

 3 2.6860 2.4985 2.5559 2.4046 2.4254 2.3215 

 4 3.4192 3.1815 3.2530 3.0616 3.0876 2.9547 

10 0 0.7390 0.5407 0.6022 0.4807 0.4984 0.4443 

 1 1.8159 1.3948 1.5141 1.2347 1.2778 1.1316 

 2 2.8928 2.2488 2.4260 1.9886 2.0572 1.8190 

 3 3.9697 3.1029 3.3379 2.7426 2.8367 2.5063 

 4 5.0466 3.9570 4.2499 3.4966 3.6161 3.1936 

10 

0 0 0.8043 0.8043 0.8043 0.8043 0.8043 0.8043 

 1 2.7352 2.7352 2.7352 2.7352 2.7352 2.7352 

 2 4.6661 4.6661 4.6661 4.6661 4.6661 4.6661 

 3 6.5970 6.5970 6.5970 6.5970 6.5970 6.5970 

 4 8.5279 8.5279 8.5279 8.5279 8.5279 8.5279 

1 0 0.9859 0.9103 0.9407 0.8787 0.8892 0.8543 

 1 3.6697 3.4083 3.4937 3.2823 3.3128 3.1732 

 2 6.3534 5.9063 6.0468 5.6858 5.7364 5.4922 

 3 9.0372 8.4043 8.5998 8.0894 8.1601 7.8111 

 4 11.7209 10.9024 11.1529 10.4929 10.5837 10.1301 

10 0 1.4976 1.0945 1.2197 0.9731 1.0090 0.8996 

 1 5.4535 4.2049 4.5561 3.7211 3.8507 3.4085 

 2 9.4094 7.3152 7.8926 6.4691 6.6924 5.9175 

 3 13.3653 10.4256 11.2290 9.2172 9.5341 8.4264 

 4 17.3212 13.5360 14.5654 11.9652 12.3758 10.9354 
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(a) / 10L h = , (1-2-1) scheme 

 
(b) 1 = , (1-1-1) scheme 

 
(c) / 10L h = , (1-1-1) scheme 

 
(d) / 10L h = , (1-1-1) scheme 

Fig. 3 The variation of the dimensionless deflection of 

the bi-FGSW nanobeams 
 

 
(a) / 10, 10, 1L h k = = =  

 
(b) 1, 2,k = =  (1-0-1) scheme 

 
(c) / 10, 3,L h = =  (1-1-1) scheme 

 
(d) / 10, 1,L h k= =  (2-2-1) scheme 

Fig. 4 The distribution of the normal stress through the 

thickness of the bi-FGSW nanobeams 
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(a) / 10, 10, 1L h k = = =  (b) 1, 2,k = =  (1-0-1) scheme 

  
(c) / 10, 3,L h = =  (1-1-1) scheme (d) / 10, 1,L h k= =  (2-2-1) scheme 

Fig. 5 The distribution of the transverse shear stress through the thickness of the bi-FGSW nanobeams 

Table 12 The dimensionless first six frequencies of the bi-FGSW nanobeams ( / 10)L h =  

Scheme k 
2(nm )  

Mode 

(1) (2) (3) (4) (5) (6) 

1-0-1 

0 0 12.0030 45.8894 96.7550 159.4610 229.9964 305.6285 

 2 10.9691 34.3034 58.0660 78.1984 94.4100 107.3464 

 4 10.1633 28.5742 45.3442 58.9524 69.7612 78.3605 

1 0 7.2770 28.0656 59.8499 99.7958 145.5022 195.1951 

 2 6.6502 20.9797 35.9180 48.9391 59.7264 68.5587 

 4 6.1617 17.4758 28.0486 36.8943 44.1329 50.0464 

10 0 5.1965 20.0932 43.0002 71.9804 105.3601 141.8796 

 2 4.7489 15.0202 25.8059 35.2986 43.2487 49.8326 

 4 4.4000 12.5116 20.1520 26.6110 31.9572 36.3767 

2-2-1 

0.5 0 9.5949 36.8500 78.1504 129.5616 187.8768 250.8134 

 2 8.7684 27.5463 46.9008 63.5360 77.1205 88.0936 

 4 8.1243 22.9457 36.6252 47.8986 56.9857 64.3064 

1 0 8.5053 32.7526 69.7021 115.9711 168.7314 225.9198 

 2 7.7727 24.4834 41.8307 56.8713 69.2616 79.3502 

 4 7.2017 20.3943 32.6659 42.8743 51.1787 57.9239 

10 0 6.3882 24.7469 53.0905 89.1042 130.7478 176.4554 

 2 5.8379 18.4989 31.8615 43.6960 53.6699 61.9767 

 4 5.4091 15.4093 24.8809 32.9416 39.6577 45.2416 
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(a) (b) 

Fig. 6 The variation of the dimensionless fundamental frequencies of the (1-1-1)  bi-FGSW nanobeams with L/h = 10 

  
(a) (b) 

Fig. 7 The variation of the dimensionless critical buckling load of the (1-1-1)  bi-FGSW nanobeams with L/h = 10 

Table 13 The dimensionless critical buckling load *
crN  of the bi-FGSW nanobeams 

L/h k 
2(nm )  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 

0 0 115.7952 115.7952 115.7952 115.7952 115.7952 115.7952 

 1 105.3933 105.3933 105.3933 105.3933 105.3933 105.3933 

 2 96.7062 96.7062 96.7062 96.7062 96.7062 96.7062 

 3 89.3421 89.3421 89.3421 89.3421 89.3421 89.3421 

 4 83.0202 83.0202 83.0202 83.0202 83.0202 83.0202 

1 0 64.9717 69.9929 68.0249 74.3476 73.4773 81.2766 

 1 59.1352 63.7055 61.9142 67.6690 66.8768 73.9755 

 2 54.2610 58.4545 56.8109 62.0913 61.3645 67.8780 

 3 50.1290 54.0032 52.4848 57.3631 56.6916 62.7092 

 4 46.5819 50.1819 48.7709 53.3040 52.6801 58.2718 

10 0 42.1462 46.5922 43.3909 51.0635 48.6194 59.5729 

 1 38.3602 42.4068 39.4931 46.4765 44.2519 54.2214 

 2 35.1984 38.9114 36.2378 42.6456 40.6044 49.7522 

 3 32.5180 35.9483 33.4784 39.3982 37.5124 45.9636 

 4 30.2170 33.4046 31.1094 36.6104 34.8580 42.7112 

10 
0 0 15.5455 15.5455 15.5455 15.5455 15.5455 15.5455 

 1 14.1490 14.1490 14.1490 14.1490 14.1490 14.1490 
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nanobeams are presented in Table 12. It can see clearly 

that the frequencies of the bi-FGSW nanobeams decrease 

as the growth of the slender ratio, the power-law index as 

well as the nonlocal parameter. The effects the power-law 

index and nonlocal parameters on the dimensionless 

fundamental frequency of the bi-FGSW nanobeams are 

present in Fig. 6. In which the slender ratio of the beam is 

 It is obvious that when the power-law index 

rises, the frequency of the bi-FGSW nanobeams decreases 

at a high speed if , and it decreases at a lower 

speed if k > 2. The inclusion of the nonlocal parameter 

leads to the decrease of the frequency of the bi-FGSW 

nanobeams as presented in Fig. 6(b). 

 

3.2.3 Buckling analysis of bi-FGSW nanobeams 

The buckling behavior of the simply supported bi-

FGSW nanobeams is investigated in this subsection. Table 13 

gives the dimensionless critical buckling load of the bi-

FGSW nanobeams with different values of the slender ratio, 

the power-law index and the nonlocal parameter. According 

to this table, the slender ratio has strong effects on the 

buckling behavior of the bi-FGSW nanobeams. When the 

slender ratio, the power-law index and the nonlocal 

parameter increase, the critical buckling load of the bi-

FGSW nanobeams decreases. Fig. 7 demonstrates the 

influence of the power-law index and the nonlocal 

parameters on the critical buckling load of the bi-FGSW 

nanobeams with the slender ratio of  

According to Fig. 7, the critical buckling load is decreased 

when the power-law index k increase. Besides, the critical 

buckling load decreases when the nonlocal parameter is 

included in the computation. 

 

 

5. Conclusions 

 
A refined simple shear deformation theory in 

combination with nonlocal elastic theory has been 

established in this work to analyze the bending, free 

 

 

vibration and buckling of novel bi-functionally graded 

sandwich nanobeams. The proposed theory takes into 

account the transverse shear strain and stress through the 

thickness of the beam without demanding a shear correction 

factor. The comparison study has shown that the proposed 

theory is accuracy and efficiency in calculating the 

deflections, stresses, free vibration and buckling behavior of 

the nanobeams. According to the numerical results of the 

parameter study, some following remarkable points can be 

presented as 

• The bending, free vibration and buckling behavior of 

the bi-FGSW nanobeams are completely different to usual 

ones, especially the distribution of the stresses through the 

thickness direction. 

• The use of bi-FGSW nanobeams can avoid the 

phenomenon of the stress concentration at the top and 

bottom surfaces of the beams. 

• The small-scale effects play a considerable role on the 

mechanical behavior of the bi-FGSW nanobeams. The 

inclusion of the nonlocal parameter leads to an increase in 

the deflection of bi-FGSW nanobeams. On the other hand, 

the inclusion of the small-scale effects leads to a reduction 

of the natural frequencies and critical buckling loads of bi-

FGSW nanobeams. 

The results of this study can serve as benchmarks for the 

future works on the bending, free vibration and buckling 

response of the bi-FGSW beams, plates and shells which 

may have a huge potential application in engineering and 

industry. 
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