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Abstract— The paper introduces an analysis of multiple 

rocket launcher oscillation during fire of an unguided rocket set. 

It contains built mathematic model of a launcher including 

oscillation as well as model of unguided rocket motion. The 

effect of a variable time delay between two consequent launches 

and its impact on a launcher oscillation is analysed. The BM-21 

(Russia) multiple rocket launcher system with corresponding 

9M22U unguided rockets have been used for the model 

simulation and experimental verification. The results are used 

for assessment of launcher stability and oscillation during fire.  

The model simulation results are very close to the experimental 

results. 

Keywords—multiple rocket launcher system; firing stability; 

the wheeled vehicle; multibody system dynamics; rate of fire. 

I. INTRODUCTION  

Multiple rocket launcher belongs among rocket artillery. It 
is used to fire unguided rockets. This type of artillery has a 
simple structure, fast manoeuvrability, convenience in 
exploitation, high operational reliability, and strong power. 
Therefore, it is one of the important artillery systems in the 
army of countries around the world. The recent conflicts 
between Israel and Lebanon, Russia and Georgia, etc. proved 
it. 

Along with the change of fighting form, the role of the 
multiple rocket launcher system is more and more enhanced 
in the artillery fire structure of countries. It motivated the 
researchers in the new designs of the modern multiple rocket 
launcher systems, meeting the high requirements of combat 
and technology in military and army combat. 

The time delay between two consequent rocket launches 
influences the oscillation of the launcher. The motion of 
unguided rocket is also influenced by the stirred-up gas 
exhaust from the previous rocket. These are factors that 
significantly affect the unguided rocket firing accuracy. 
Therefore, the task of the optimal time delay determination 
(rate of fire) for the launcher is essential and must be 
considered. 

In this paper, the dynamic model of the multiple rocket 
launcher system mounted on the vehicle and the model of 
unguided rocket motion in the air is developed. The models 
are arranged for the multiple rocket launcher system BM-21 
(Fig 1) using unguided rockets 9M22U. The results of 
simulation were compared with the corresponding 
experimental data to verify the reliability of the model. These 
results may be utilized in the design process that will help to 
optimize the structure of combat vehicles - combine weapons. 

 
Fig. 1. Multiple rocket launcher system BМ-21. 

1. Vehicle body Ural-375, 2. Launcher, 3. Elevation parts, 4. Traverser parts. 

II. BUILDING SYSTEM OF EQUATIONS DESCRIBING THE 

MOTION OF UNGUIDED - ROCKETS 

A. The Problem of Oscillation of the Launcher 

Based on the structure of the real body and the links 
between the parts of the combat vehicle and the simplifying 
assumptions, the model of the BM-21 combat vehicle was 
established from the viewpoint of the multi-objects’ 
mechanics, see Fig. 2. Overall system status survey: the 
elevation angle is zero, the traverser angle is zero and the 
combat vehicle is placed on horizontal flat ground. 

 

Fig. 2. The model of multiple launch rocket system BM-21. 

The combat vehicle system consists of five rigid bodies: 

• body 1 - vehicle body and the whole rear axle of mass m1, 

• body 2 - traverser parts of mass m2, 

• body 3 - elevation parts of mass m3, 

• body 4 - the rockets have not been fired of mass m4, 

• body 5 - the whole front axle of mass m5. 

The masses, the positions of the centre of gravity, and the 
moments of inertia of all bodies are determined through 
SolidWorks software. 
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For investigation of the system of rigid body dynamics, the 
bodies of the system are attached to a Cartesian coordinate 
system (Fig. 2), where: 

• R0 = (O0X0Y0Z0) represents the stationary coordinate 
system fixed to the ground. 

• Ri = (OiXiYiZi): represents the local coordinate system 
established at the i-th rigid body, for i = 1 ÷ 5.  

where the coordinate system of the body 4 coincides with 
the coordinate system of the body 3. 

From the assumptions and layout of objects, the BM-21 
multiple rocket launcher system has 6 independently 
generalized coordinates: [qj]= [ q1, q2, q3, q4, q5, q6], where: 

q1 – longitudinal displacement of body 1 along X0-axis, 

q2 – longitudinal displacement of body 1 along Z0-axis,  

q3 – angular displacement of body 1 about X0-axis,  

q4 – angular displacement of body 1 about Y0-axis,  

q5 – longitudinal displacement of body 5 along Z1-axis, 

q6 – angular displacement of body 5 about X1-axis. 

In this article, we choose the Lagrange’s method. The 
Lagrange’s differential equations system describes the motion 
of the mechanical system as follows, [1].  

 
d

d
j

j j

T T
Q

t q q

 ∂ ∂
− = 

∂ ∂  &
, (1) 

where: T - total kinetic energy of the whole mechanical 
system; qj - independent generalized coordinate; Qj - 
generalized force corresponding to the generalized 
coordinates qj. 

In terms of structure, it can be completely determined: the 
centre of mass vector, transfer matrix, the moment of inertia 
of solid objects. Then, we can determine the total kinetic 
energy T from equation:  

 ( )0 0

1

2

T T k kT

k k k k k k kT R M R A I Aω ω= +& & , (2) 

where, Rk is the centre of mass vector of body k in the fixed 

coordinate system O0; Mk is mass matrix of body k; ω
k  is the 

angular velocity vector of the body k represented on the fixed 

coordinate O0; 0

kA  is transfer matrix from system Ok to system 

O0; Ik is matrix of the inertia tensor of the body k to the axis 
system Ok. A detailed explanation of these values can be found 
in [2], [3], [4]. 

The components of the generalized force vector Qj is 
determined from equation, as follows: 

 
(δ )

(δ )
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Where Ft is the firing force – the force of the rocket action 
on the combat vehicle system. This force can be divided into 
three phases: the braking phase, the phase of rocket motion in 
a launcher tube, and the exhaust phase, [2], [3], [4]. 

The value of the firing force is a function of time. It 
depends on rocket function only and does not depend on the 

vibrating state of the system. The firing force is determined as 
follows: 

1) Phase of braking 
When the braking force reaches the limit value Fk (about 

6 kN to 8 kN) the rocket will be released. This phase is very 
fast in the range from 0 to tk = 0.025s. Therefore, we assume 
that the braking force increases linearly from 0 to Fk in the 

time interval ( )k0 t t≤ ≤ : 

 t k k
k

t
F F  - Qsinφ (0 t t )

t
= ≤ ≤  (4) 

where: Q – is the weight of the rocket, Fk – is the limit 
value of the braking force.

 
2) Phase of rocket motion in launcher tube 
This phase lasts about 0.095 s, i.e., from 0.026 s till the 

moment tc = 0.121s. The actual Ft value is not large compared 
to other phases; it is derived linearly from the value Fc1 to Fc2. 
The value of Ft force is determined by the formula, see [2]. 
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where: P' - the thrust of the engine that includes friction 
losses, md - mass of rocket, M0 - initial drag torque, dc - 
diameter of the rocket, Idx - moment of inertia of rocket around 
the longitudinal axis, f - friction coefficient, γ - slope of the 
rifle. 

3) Phase of exhaust gas acting on the launcher 
When the rocket engine works, the exhaust gas flow is 

formed and acts on the front of the launcher. This phase lasts 
from the time the rocket comes out of the muzzle of launching 
tube until the exhaust gas flow stops an acting on the launcher 
(Fig. 7). The exhaust force is determined by the following 
formula, see [3]. 

 

( )

. (ρ, τ) dt

S

F p sξ= −   (6) 

where: S - the surface area of the launcher; ds - differential 
of area; p(ρ, τ) - gas pressure at the review point and ξ - 
coefficient of surface coverage. 

The diagram of the firing force acting on the launcher 
surface with respect to time is shown in Fig. 3. 

 

Fig. 3. Time course of of firing force. 
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After determination of the kinetic energy, the potential 
work, and the generalized force of the mechanical system and 
substituting it into Lagrange’s Equation (1) we have a system 
of 6 second-order differential equations. This is the system of 
equations that describes the oscillation of the multiple rocket 
launcher system in space when firing. 

B. Mathematical Model of Unguided Rocket Motion in the Air  

To study the rocket motion in the air, the article uses the 
following coordinate systems, see [4], [5]: 

• normal earth coordinate system, OgXgYgZg is a 
coordinate system fixed to the ground. Where: Og 
coincides with the rocket’s centre of gravity at a 
moment the rocket leaves the launcher; the axis, OgXg 
is the intersection of the firing plane with the 
horizontal plane across the origin, the direction of the 
launch is positive; the axis, OgZg, is perpendicular to 
OgXg, and downward; the axis, OgYg, is determined 
according to right rotation rule. 

• earth coordinate system attached to the rocket, 
Oxgygzg, where: O is in the rocket’s centre of gravity; 
its axes are always parallel with the axes of the normal 
earth coordinate system. 

• aerodynamic coordinate system, OXaYaZa is the 
coordinate system attached to the velocity vector of 
the rocket’s centre of gravity, OXa coincides with 
rocket velocity vector V; OZa is perpendicular to OX 
in a vertical plane passing through V and downward; 
OYa is perpendicular to the plane OXaZa in a right 
rotation rule. The position angles between the 
aerodynamic coordinate system and normal earth 
coordinates system are: χa – aerodynamic azimuth, γa 
– aerodynamic pitch. 

• body coordinate system, OXYZ determines the 
position of the rocket axes. Where: O coincides with 
the rocket’s centre of gravity; OX is parallel to the 
rocket’s symmetry axis; OZ is in the vertical plane 
and downward; OY is determined according to the 
right rotation rule. The rocket’s spin motion is 
determined by the spin angle, ν around the axis, OX. 
The position angles between the body coordinate 
system and the velocity coordinate system: α – the 
angle of attack, β – sideslip angle. 

Fig. 4. shows the geometrical relationship between 
coordinate systems Oxgygzg; OXaYaZa and OXYZ. 

 

Fig. 4. Geometric relationship between coordinate systems. 

Transformation matrices between the coordinate systems: 
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 (7) 

The set of equations of the unguided rocket motion is 
derived from the momentum theorem and moment of 
momentum theorem combined with the transformations (7). 
After arrangement we get the following set of differential 
equations [4], [5]:  
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 (8) 

where: ∑F is the sum of all the forces acting on the rocket 
in flight. It includes: The thrust of the rocket engine P, weight 
Q, aerodynamic force R, Coriolis force Fcl and Magnus force 
Fmag. For unguided jet bullet, Coriolis force and Magnus force 
have a very small value compared to the other forces. 

 
cl mag

F P Q R F F P Q R= + + + + + +å
r r r r r r r r r

;  (9) 

Mx, My, Mz are the total projections of the aerodynamic and 
external moments acting on the rocket in flight on the 
coordinate axes OXYZ, respectively. 

Ix, Iy, Iz are the rocket’s principal moments of inertia for the 
axes of the coordinate system OXYZ, respectively. 

ω ,ω ,ω ,ω ,ω ,ωx y z x y z
& & & are the angular velocities and 

angular accelerations of the rocket's absolute rotation on the 
coordinate system OXYZ, respectively. 
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The system of equations (8) includes 12 variables: V, γa, 
χa, α, β, ν, ωx, ωy, ωz, Xg, Yg, Zg. The system is often solved by 
numerical methods. The initial condition for system solution 
is the set of the motion parameters at the time the rocket leaves 
the launching tube. 

Combining the system of equations (1) and (8), we obtain 
a general system of equations of unguided rocket launch and 
flight. The input parameters were determined from the 
multiple rocket launcher system BM-21 construction 
parameters, structural parameters, and parameters of internal 
ballistics of 9M22U unguided rocket, see [2], [3] and [4]. 

III. EFFECT OF TIME DELAY BETWEEN CONSEQUENT ROCKET 

LAUNCHES ON THE FIRING ACCURACY 

A. Calculation according to Theoretical Model 

The effect of the time delay between consequent unguided 
rocket launches on accuracy has been investigated. The time 
delay has been changed and the displacement of the tip of the 
launcher in the vertical plane, the bounce angle in the vertical 
plane at the time the rocket leaves the launcher tube muzzle 
were evaluated. The change of the time delay affects the firing 
range and lateral deviation of the rockets. 

Based on the models and initial conditions, input 
parameters were defined. The authors build a calculation 
program on MATLAB software and proceed to solve. In this 
article, the authors only evaluate the case of fire series of 5 
rockets with time delay, Tb, changing from 0.46s to 0.6s (step 
equals 0.02s). The elevation angle is φ = 250 and the traverser 
angle is β = 300. In this paper, the mean square deviation as 
the judgment is used to reflect the quality of the series shot, 
see [6]: 
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where: xi  – is sample data set (the bounce angle values θ 
in the vertical plane or displacement of the tip of the launcher 
Z0 in the vertical plane); n - sample size. 

Results of the calculation of the launch oscillation at the 
time the rocket leaves the launcher tube muzzle (at t = 0.121s) 
are presented in Fig. 5, Fig. 6, the firing range, and lateral 
deviation of rockets are presented in Tab. I. 

Some comments: 

- The first launch has a bounce angle (θ) and oscillating 
the tip of the launcher (Z0) unchanged with every time delay. 
Therefore, the firing range and lateral deviation of rockets are 
the same for every time delay. 

- The value of the bounce angle is a random quantity. For 
its assessment, the whole series of fire must be evaluated. 

Minimum average deviation in time delay Tb = 0,46 s (θ = 
0,318×10-3 rad), but minimum mean square deviation in time 

delay Tb = 0,50 s (σθ = 0,4571×10-3 rad) and Tb = 0,52 s (σθ = 
0,4158×10-3 rad). 

- The deviation in firing range and lateral deviation is the 
smallest in case of time delay Tb = 0,50 s. The mean square 
deviation of the firing range is 5,85 m, the average lateral 
deviation is 95,56 m, the mean square deviation of lateral 
deviation is 6,42 m (Tab. I).  

- Bounce angle is stable at the time delay Tb = 0.50 s and 
converges according to with period t = 0.1 s, which means that 
they will stabilize at the time delay Tb = 0.60 s, Tb = 0.70 s, 
etc. But to ensure firepower focus, need to increase the firing 
rate of the launcher, so Tb = 0.5 s is the best time delay. This 
explains why the multiple rocket launcher system BM-21 has 
the time delay Tb = 0.5s (rate of fire = 2 rounds/s).  

 

Fig. 5. The bounce angle values θ in the vertical plane corresponding to 
different time delay of the first 5 launches. 

 

Fig. 6. Displacement of the tip of the launcher Z0 in the vertical plane 
corresponding to different time delays of the first 5 shots. 

TABLE I.  FIRING RANGE AND LATERAL DEVIATION OF ROCKETS 

Shot 
duration 

Tb [s] 
 

First 
firing 

Second 
firing 

Third 
firing 

Fourth 
firing 

Fifth 
firing 

Average MSD 

0,46 

FR 
[m] 

15338 15258 15267 15373 15372 
15317,5 55,09 

LD 
[m] 

-86,78 -92,07 -98,84 -123,64 -116,80 
-107,84 12,84 

0,48 

FR 
[m] 

15338 15255 15259 15329 15368 
15302,75 47,80 

LD 
[m] 

-86,78 -94,13 -103,73 -122,95 -122,29 
-110,78 12,32 

0,50 

FR 
[m] 

15338 15308 15303 15312 15319 
15310,5 5,85 

LD 
[m] 

-86,78 -92,98 -103,55 -99,18 -86,55 
-95,56 6,42 

0,52 
FR 
[m] 

15338 15306 15293 15186 15290 
15268,75 48,15 
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LD 
[m] 

-86,78 -94,41 -102,83 -127,70 -101,04 
-106,49 12,64 

0,54 

FR 
[m] 

15338 15310 15289 15113 15110 
15205,5 94,30 

LD 
[m] 

-86,78 -96,46 -110,18 -126,06 -82,25 
-103,74 16,24 

0,56 

FR 
[m] 

15338 15311 15289 15110 15097 
15201,75 98,67 

LD 
[m] 

-86,78 -99,40 -110,03 -128,14 -80,75 
-104,58 17,17 

0,58 

FR 
[m] 

15338 15314 15291 15116 15098 
15204,75 98,29 

LD 
[m] 

-86,78 -106,77 -117,36 -113,73 -82,06 
-104,98 13,77 

0,60 

FR 
[m] 

15338 15319 15303 15262 15261 
15286,25 25,39 

LD 
[m] 

-86,78 -105,34 -109,67 -112,05 -89,00 
-104,015 8,99 

(FR - firing range; LD - lateral deviation; “-” represents 
left deflection; MSD – the mean square deviation). 

B. Experimental Assessment of the Model's reliability 

To evaluate the reliability of the established model and the 
results of the calculation, the authors have carried out 
experimental measurements on the multiple rocket launcher 
system BM-21. A diagram depicting the experimental 
equipment system is shown in Fig. 7. 

 
Fig. 7. Diagram depicts the experimental system. 

Test plan: 

• 5 rockets are installed onto the vehicle in the launcher 
positions: 1, 2, 3, 4, 5. 

• Series with time delay: Tb = 0.5 s are launched. 

• five rounds with the elevation angle φ = 25° and 
traverse angle α = 30° are fired in burst. 

• Because the bounce angle of the launcher is very 
difficult to guarantee during the test, the authors 
measured the displacement of the tip of launcher No.1 
and measured the falling point of rockets to determine 
the firing range and lateral deviation. 

• Device for determining the displacement of the tip of 
the launcher is used: Displacement measuring Sensor 
H7. 

Experimental results are obtained as follows: 

Maximum amplitudes of oscillation at the tip of the 
launching tube No. 1 in the vertical direction are shown in Tab. 
II. Firing range and lateral deviation are shown in Tab. III. 

Some comments: 

The comparisons show a very good agreement between 
the results of calculation and experimental results: amplitude 
of oscillation at the tip of the launcher vertically has the 
greatest error 5,5% (Tab. II). 

The theoretical calculation results are close to the results 
of the firing table and with direct experimental measurements: 

The firing range error between computation and measurement 
is 0,3%; between computation and lookup firing table is 0,6%. 
The error of lateral deviation between calculation and 
measurement is 6,4 %; between computation and lookup 
firing table is 8,6 % (Tab. III). 

The results of analysis show that the mathematical model 
ensures the required accuracy. This model can be used for 
evaluation of the structural parameters of the launchers to 
firing accuracy as well as for evaluation of the quality of the 
launchers after repairs and improvements. 

TABLE II.  MAXIMUM AMPLITUDE OF VARIATION (MM) 

 
Measurement 

results 
Calculated value Error (%) 

First 
firing 

-2,10 
+2,21 

-2,17 
+2,28 

3,23 
3,07 

Second 
firing 

-1,55 
+2,16 

-1,64 
+2,18 

5,50 
0,92 

Third 
firing 

-1,29 
+2,73 

-1,28 
+2,88 

0,78 
5,21 

Fourth 
firing 

-1,38 
+2,60 

-1,39 
+2,75 

0,72 
5,45 

Fifth 
firing 

-1,35 
+2,41 

-1,37 
+2,55 

0,72 
5,45 

TABLE III.  FIRING RANGE AND LATERAL DEVIATION OF ROCKETS 

 
 

First 
firing 

Second 
firing 

Third 
firing 

Fourth 
firing 

Fifth 
firing 

Average Error  

 
C 

FR 
[m] 

15338 15308 15303 15312 15319 15310,5  

LD 
[m] 

-86,78 -92,98 -103,55 -99,18 -86,55 -95,56  

 
V 

FR 
[m] 

15400 15400 15400 15400 15400 15400 0,6% 

LD 
[m] 

88 88 88 88 88 88 8,6% 

 
M 

FR 
[m] 

15242 15272 15295 15285 15270 15272,8 0,3% 

LD 
[m] 

-96,28 -99,89 -116,5 -102,5 -95,1 -102,06 6,4% 

(C - calculated value; V - value in firing table; M - 
measurement result; FR - firing range; LD - lateral deviation; 
“-” represents left deflection). 

IV. CONCLUSION 

The paper presents a method to establish the oscillation 
model of multiple rocket launcher systems mounted on the 
wheeled vehicle and the mathematical model of unguided-
rockets’ motion in the air. The model is built for multiple 
rocket launcher system BМ-21 (of Russia) with 6 degrees of 
freedom and motion of 9M22U unguided-rocket in the air 
with 12 degrees of freedom. The comparison of theoretical 
with experimental results and values in the firing table shows 
very good accuracy and reasonableness of the model. The 
dependence of the firing accuracy on the rate of fire was 
investigated, has determined the optimal rate of fire for each 
launcher. This model is applicable to all guns, artillery as well 
as launchers mounted on the wheeled vehicle. These results 
may be utilized in the design process to help optimize the 
structure of combat vehicles - combine weapons. 
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