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A B S T R A C T   

Establishing an accurate model to predict burst pressure is desired, which has been developed for decades. 
Although various models have been developed, errors unavoidably appear in the prediction of burst pressures 
because of the uncertainty in both input variables and nonlinear relationship of such variables to the burst 
pressure. Consequently, machine learning models, which is a data-driven approach, are potential alternatives. In 
this paper, various machine learning models such as Random Forest, Support Vector Machine, and Artificial 
Neural Network are examined to predict the burst pressure, gathering databases available in the literature. The 
applications of these models are investigated to identify the advantages and limitations of the models. The 
machine learning models showed a significant improvement in the prediction of the burst pressures compared to 
the available reference models. However, some drawbacks of the models should be carefully considered, 
including an increase of error with the unfamiliar data and the fluctuations within the overall trend in the 
parametric study.   

1. Introduction 

Pipelines are essential and valuable assets for transporting various 
materials such as water, wastewater, oil, and gas. These structures are 
exposed to various hazards in the service life. Corrosion has been 
identified as a critical hazard for metal pipelines. The corrosion causes 
metal loss, causing defects on the pipe wall. Various studies and stan-
dards are available to assess the capacity of the pipelines with wall de-
fects under the loading of internal pressure (known as the “burst 
pressure”). While the equations to predict the burst pressure of the intact 
pipe (i.e., pipe without corrosion) are explicit, based on the theoretical 
Barlow’s equation and Tresca/von Mises criteria, there are uncertainties 
in the models for the burst pressure of corroded pipes. Decades of 
research resulted in the development of a number of different models for 
the burst pressure of the corroded pipes. 

Keshtegar and Seghier [1] provided a thorough literature review of 
up to 33 burst pressure models developed since 1980. However, none of 
the models was capable of predicting the burst pressure with sufficient 
accuracy. Amaya-Gómez et al. [2] illustrated the weakness of different 
models by conducting predictions using 22 available models and 
comparing the results with databases from various sources. The means 
of the prediction-to-test ratio were as low as 0.7. Only three out of the 22 
models in this review had prediction-to-test ratios larger than 0.9. Phan 

et al. [3] provided an observation of overestimation by 2 out of 3 
existing models with their developed database. The low predictability by 
the existing models with respect to the available database implies that 
the problem with the limitations of the existing models is not fully 
developed. 

Different approaches were applied for the development of burst 
pressure models using the analytical and semi-analytical methods. The 
analytical method relies on the theory of solid mechanics based on some 
assumptions to find the relationships for the burst pressure of intact and 
corroded pipes (e.g. Refs. [4,5]). The semi-analytical methods partly 
employ the theory of solid mechanics with the incorporation of pa-
rameters based on the experimental or simulation data ([3,6–8]). 
Semi-analytical methods are widely accepted and used by many stan-
dards or codes due to the simplicity of the design equations. However, 
the major limitation of the design equations is the inaccuracy in pre-
dicting the pipeline burst pressures. To address the limitation, a machine 
learning method can be developed based on available data. Although the 
development of the machine learning method requires specialized skills 
(e.g., coding, mathematics, and statistics), the developed model, such as 
the application software (apps), would be easy-to-use by engineers 
without specialized skills. In the current digital age, apps are considered 
a viable tool for engineering design and assessment. 

The quality of data-driven models depends heavily on the database to 
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develop a regression model. The model varies from conventional sta-
tistical regression models (e.g. linear regression) to up-to-date machine 
learning models such as Random Forest, Support Vector Machine, and 
Artificial Neural Network (ANN). The fundamental of model develop-
ment is to minimize the error between the predicted values and the 
“actual” values. In this field, the machine learning techniques over-
whelm classical regression by providing much more flexible methods to 
be fitted with hundreds to millions of optimized weights. The machine 
learning methods are commonly incorporated with Finite Element 
method or experiment results to obtain the predicting model [9–12]. 
Meanwhile, this approach is not fully applied for burst pressure prob-
lems. Some applications can be named as Silva et al. [13], Ji et al. [14], 
Zolfaghari and Izadi [15], Oh et al. [16], and Phan and Duong [17]. 
Silva et al. [13] used ANN and FEM to adjust DNV model for pipes 
containing a single defect and multiple defects with 43 samples. Ji et al. 
[14] proposed a burst pressure model based on Support Vector Machine 
techniques with a dataset of 45 samples from Finite Element Analysis. 
The above machine learning models were developed using a limited 
database of fewer than 50 samples, and this can be insufficient to ac-
count for the nonlinear relationships between input and output variables 
for burst pressure models. This may lead to overfitting of the models and 
the low accuracy of the results when dealing with unfamiliar data. 

Recent research on the problem, such as Zolfaghari and Izadi [15], 
Oh et al. [16], and Phan and Duong [17] focuses on developing a proper 
ANN model without thoroughly comparing it with other machine 
learning techniques. Additionally, the boundaries of the data-driven 
models should be clearly stated because the model is only appropriate 
within the ranges of the training data. Outside of the boundaries, the 
prediction is analogous to extrapolation. This intuition has rarely been 
tested in the available machine learning applications. Even though the 
study of Phan and Duong in Ref. [17] have implemented the search for 
optimal Adaptive neuro-fuzzy inference system, ANFIS, and the 
boundary was claimed, the illustration of out-of-boundaries predicting 
using the trained models has not been provided. 

This paper attempts to use a global database with wide ranges of 
input variables from various available sources in the literature for high- 
strength steel pipe to investigate burst pressure models based on Ma-
chine Learning techniques. Along with the detailed description on 
developing machine learning models (Support Vector Regression, 
Random Forest and ANN), the capacity of the models developed using 
hundreds-size databases (e.g., 217 samples) is investigated. The grid 
search is implemented to obtain the optimal models, especially for the 
ANN, which is well known for the uncertainty in choosing the best 
configuration. These models were then validated with an unfamiliar 
database of the burst pressure for cast iron pipes provided in our pre-
vious work [18]. This evaluation was conducted to validate the model 
with out-of-boundary input variables. 

2. Existing corroded burst pressure models 

The existing models were mainly developed from the NG-18 equa-
tions and the Buckingham π theorem. The NG-18 equations, based on the 
works of Kiefner et al. [19] and Maxey et al. [20], aims to predict 
strength reduction of pipeline based on the longitudinal area of intact 
pipe (Ao), the longitudinal area of corroded pipe (Ac), Folias factor (M) 
and flow stress (σflow): 

σre = σflow ×

⎛

⎜
⎜
⎝

1 − A0
Ac

1 − A0
AcM

⎞

⎟
⎟
⎠ (1)  

where: M is the Folias factor. 
The models derived from the NG-18 equations (such as ASME B31G 

[6]; CSA [21]; DNV RPF101 [22]; Phan et al. [3] – Model 2) have the 
general format as: 

P=P0 ×

⎛

⎜
⎝

1 − k1
d
t

1 − k2
d
tM

⎞

⎟
⎠ (2a)  

where: k1 and k2 are the factors, d is the depth of the defect, t is the wall 
thickness, P0 is the burst pressure of the intact pipe. The burst pressure of 
the intact pipe can be obtained using the following equation: 

P0 =
2tσflow

D
(2b)  

where: D is the outside diameter of the pipe. 
On the other hand, the models derived from the Buckingham π the-

orem are developed from the study of Netto et al. [8] (e.g. Wang et al. 
[23]; Phan et al. [3]– Model 1) and have the general format as in Eq. (3). 

P= f
(

P0,
d
t
,
l
t
,
w
D

)

(3)  

where: w is the width of the defect. 
Another form of the equation is as in Eq. (4) from Pipe Corrosion 

Criterion – PCORRC [24]: 

P= f
(

P0,

(

1 −
d
t

)

,
l
̅̅̅̅̅
Dt

√ , 1 −
w
D

)

(4) 

Based on these formats, various models were developed with ad-
justments of parameters. Details of different models in the literature are 
available in Refs. [1,2] and not presented in this study to avoid repeti-
tion. In this paper, seven models are chosen for comparison (Table 1). 
These are Netto et al. [8], ASME B31G [6], Gajdoš and Šperl [5], 
Modified PCORRC (2004), Phan et al. [3] (Model 1, 2 and 3). All these 
models were developed for high-strength steel pipes based on various 
fundamental approaches. The Netto et al. [8] model is based on the 
Buckingham π theorem, while the model in ASME B31G [6] is 
NG-18-based. The Gajdoš and Šperl [5] model is an analytical model. 
The Modified PCORRC (2004) was developed using data generated from 
FEA simulations. Phan et al. [3] evaluated different models based on a 
database developed through FE analysis using AbaqusR software and 
proposed modifications of model parameters to minimize the summa-
tion of squared error. A potential weakness of models in Phan et al. [3] is 
that a limited-size of a database with only 28 samples was employed to 
determine the model parameters. 

3. Machine learning models 

Vapnik [25] summarised the learning process from the example of a 
learning machine as in Fig. 1, where the generator draws random in-
dependent vectors x with fixed and unknown distribution function, F(x). 
The supervisor returns output value, y, with conditional distribution 
function of F(y|x). The learning ymachine yields the predicted using the 
function f(x,α) of x vectors and α parameters. The target of the process is 
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to minimize the difference between the “actual” yy and by minimizing 
the Empirical Risk Function, Remp: 

Remp(α)=
1
n
∑n

i=1
Q(xi,α) (12)  

where: n is the number of samples, Q is the loss function (e.g., least 
squared error). 

3.1. Support vector regression (SVR) 

The support vector machine was introduced in the 1990s (Boser et al. 
[26]; Cortes and Vapnik [27]; Vapnik [28]) as a versatile model appli-
cable for both regression and classification problems. Assuming that x is 
the input variable with n samples and y is the dependent or predicted 
variable. The x and y compose the training set for the training process. 
To solve the nonlinear problem, x is mapped to high-dimensional space 
with w is the normal vector of a hyperplane to obtain the linear rela-
tionship with the predicted variable: 

y(x)=wTϕ(x) + b (13) 

The aim of the regression problem here is to fit as many data points as 
possible to the “street” in Fig. 2, which is defined by the solid line and 
the margin of ξ*

i tolerance ε. To obtain a soft margin that is not sensitive 
to outliers, the ξi and are the slack variables used to eliminate the effect 
of outliers. 

The Empirical Risk function in Eq. (12) can be written in the regu-
larized risk function format: 

min

(
1
2
‖w‖

2
+C

∑n

i=1

(
ξi + ξ*

i

)
)

(14) 

Fig. 2. The Support Vector Machine for regression problem (Adapt 
from Ref. [29]). Fig. 1. The model of learning from example (Adapt from Ref. [25]).  

Table 1 
Seven reference models available in the literature.   

Model Equation 

1 Netto et al. (2005) [8]  
P= P0 ×

[

1 − 0.9435
(
d
t

)1.6( l
D

)0.4]

(5)     

2 ASME B31G (2012)a [6]  

P= P0 ×

⎡

⎢
⎣

1 −
d
t

1 −
d
tM

⎤

⎥
⎦ (6)     

3 Gajdoš and Šperl (2012) [5]  

P= P0 ×

⎡

⎢
⎣

1 −
πd
4t

1 +
d
t

⎤

⎥
⎦ (7)     

4 Modified PCORRC (2004)  
P= P0 ×

[

1 −
d
t

(

1 − exp
(

− 0.157
l̅
̅̅̅̅
Dt

√

))]

(8)     

5 Phan et al. (2017) Model 1 [3]  
P=P0 ×

(

1 − 0.88555
(
d
t

)0.98077( l
D

)0.31053)

(9)     

6 Phan et al. (2017) Model 2 [3]  

P=P0 ×

⎛

⎜
⎜
⎝

1 − 0.92126
d
t

1 − 0.92126
d
t

(

1 + 0.06361
l2

Dt

)− 2.75485

⎞

⎟
⎟
⎠ (10)     

7 Phan et al. (2017) Model 3 [3]  

P=P0 ×

⎛

⎜
⎝1 −

1.24678
d
t

1 + 12.6739
t
l

⎞

⎟
⎠ (11)     

M = 0.032
l2

Dt
+ 3.3

l2

Dt
> 50 (for). 

a M =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 0.6275
l2

Dt
− 0.003375

l4

D2t2

√
l2

Dt
≤ 50 (for). 
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where: C is the hyper-parameter added for balancing the two objectives. 
with yi − y(xi) ≤ ε+ ξi and yi − y(xi) ≥ − ε − ξ*

i and. ξ*
i ,ξi ≥ 0 

However, it is impossible to solve this solution directly because it is 
computationally expensive, especially when the training set is large. 

This leads to the so-call duality problem of SVM with w =
∑n

i=1
αiyiϕ(xi): 

min

(
∑n

i=1
αi −

1
2
∑n

i,j=1
αiαjyiyj

(
ϕ(xi)T .ϕ

(
xj
))
)

(15) 

With: 
∑n

i=1
αiyi = 0 and 0 ≤ αi ≤ C(ϕ(xi)

T
.ϕ(xj))To avoid the compu-

tational expense of the dot product in Eq. (15), the Kernel function is 
applied where Kernel functions follow the Mercer’s Theorem, that is: 

K
(
xi, xj

)
=
(
ϕ(xi)T .ϕ

(
xj
))

(16) 

Consequently, the predicted variable can be found by: 

y(x)=
1
n

∑n

i,j=1
αiK
(
xi, xj

)
+ b (17)  

where: αi composes the well-known support vector α. 
The commonly used kernel functions are linear, polynomial, 

Gaussian radial basis, and sigmoid functions. In this study, the poly-
nomial (poly) and Gaussian radial basis (RBF) are investigated in the 
fine-tuning process, which can be found by the equations shown below: 

K
(
xi, xj

)
=
(
xTi xj + 1

)m
(poly) (18)  

K
(
xi, xj

)
= exp

(
− γ
(
xi − xj

)2)
(RBF) (19)  

where γ and m is predefined parameters, m is the order of the poly-
nomial, γ decides the shape of the bell in RBF. 

Fig. 3. Example of a) decision tree and b) Scheme of voting procedure in Random Forest (after [32]).  
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3.2. Random forest regression (RFR) 

Random Forest is an ensemble learning method [30], which is one of 
the most powerful machine learning models (Géron [31]) for the su-
pervised problem. A decision tree in a Random Forest uses the Classi-
fication And Regression Tree algorithm, CART, to predict the interested 
variable with objective or the empirical risk function for regression 
problem as in Eq. (20) [31]. 

min
(
J(k, tk)=

mleft

m
MSEleft +

mright

m
MSEright

)
(20)  

MSEleft/rightwhere: is the Mean Squared Error of the left/right subset; 
mleft/right is the sample of the left/right subset. 

MSEnode =
∑

i∈node

(

ynode − yi
)2

(21)  

ynode =
1

mnode

∑

i∈node
yi (22) 

Fig. 3a provides an illustration of the decision tree for the high- 
strength steel pipe database with all 217 samples. Starting with the 
root node, which has no children with a depth of 0, the children nodes 
have the depth of d+1 with d is the depth of their parent. The nodes 
without any children are defined as the leaf nodes. The decision tree in 
Fig. 3a has the maximum depth, dmax = 3 with 8 leaf nodes. 

The overall database is divided into various sub-databases randomly 
selected from the overall database. For each sub-database, a decision 
tree is established with the procedure shown in Fig. 3a. The random 
selection is the bootstrap aggregating with replacement. Without such 
replacement, the sampling is a pasting process. A voting process was 
then conducted to aggregate the predicted values of various decision 
trees in the random forest (Fig. 3b). 

In this study, the number of decision trees, number of leaf nodes in 
the tree, and the maximum depth are investigated to obtain the best set 
of hyper-parameters. 

3.3. Artificial Neural Networks (ANN) 

An ANN with n hidden layers for m features or inputs are provided in 
Fig. 4. Data is consumed from the input layer with the number of node 
equals to m+1 with the first m nodes corresponding to the number of 
features and a bias node. 

The jth node at the ith layer receives the signal from other nodes in 
the preceding layer by sets of signals/functions [Xi,1, Xj,2, …, Xi,ki, 1] and 
corresponding weights [wi,1, wj,2, …, wi,ki, bi] where ki is the number of 
node in the (i-1)th layer, bi is the weight of bias node in layer (i-1)th. The 
summation weighted signals of node (i,j), xi,j, can be written as: 

xi,j =
∑ki

q=1
Xi,q × wi,q + bi (23) 

This summation is then considered as the input of the activation 
function, f to obtain the signal of the node (i,j): 

Xi,j = f
(
xi,j
)

(24) 

The chosen activation function in Eq. (24) is the Rectifier function (i. 
e., Relu), which can be explicitly expressed as: 

Xi,j = fRelu
(
xi,j
)
 =  max

(
0,  xi,j

)
(25) 

The signal from the node (i,j) is then transmitted to nodes in the next 
layer. Generally, in the feedforward ANN, a data sample is taken in the 
input layer. Each node in the network received signals from the previous 
layer and transmits the signal to the next layer. In the end, the output 
layer receives the signal of the last hidden layer that yields the output 
results. 

In the training process, the found output is the predicted value of that 
sample which contains an error or the difference with the labeled value 
corresponding to such sample. A set of errors of b samples between 
predicted and the “true” value is consequently computed as the loss 
function. The b number is well-known as the batch size. The loss function 
can be chosen from various options such as Binary Cross Entropy, Mean 
Squared of Error, Mean Absolute Error, Mean Absolute Percentage Error, 
Squared Hinge, etc. In this paper, for the regression model, the Mean 
Squared Error, MSE, is commonly chosen: 

LMSE  = 
1
n
∑n

i=1
(yi− fi)

2 (26) 

Once the loss function for each batch is found, the backpropagation, 
whose function is to adjust the weights in the network to minimize the 
loss function, is implemented. The process continues until the database 
is consumed in e number of epochs. 

3.4. Hyper-parameter tuning with grid search 

There are various hyper-parameters in the machine learning models, 
which are selected within the training and predicting processes. For 
instance, the SVR critical hyper-parameters are C in Eq. (15) or type of 
kernel (e.g. polynomial or RBF). The parameters of interest for RFR 
model are maximum depth, dmax, maximum leaf nodes, or the number of 
decision trees to satisfy the large number theorem. The number of nodes 
in a layer and the number of layers in the ANN are the common 
concerns. 

Unfortunately, there is no strict rule to obtain the optimized hyper- 
parameter of the machine learning models because of its dependence 
on the training data. The practical approach to find the appropriate 
parameters of a Machine Learning model is conducting the grid search. 

Fig. 4. a) A feedforward ANN and b) a given node in the hidden layer with corresponding weights.  
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In the grid search, lists of potential hyper-parameters are predefined to 
obtain the list of a set of hyper-parameter via combination for searching. 
For instance, there are 2 hyper-parameter of interest in RFR: maximum 
depth and maximum leaf nodes, each of them has a list of candidates, 
such as maximum depths = [2–4] and maximum leaf nodes = [10,20, 
30]. Combinations of the element in these lists are used for establishing 
the model. For example, RFR model 1 has maximum depth = 2 and 
maximum leaf nodes = 10; RFR model 2 has maximum depth = 1 and 
maximum leaf nodes = 20. The chosen model (selected from 3 × 3 = 9 
models) is the one with the minimum Empirical Risk Function in Eq. 
(12) (MSE for this paper). For ANN, multiple hidden layers are assumed 
to have the same number of nodes, and the total number of nodes and 
number of weights for both single and multiple hidden layers are of 
interest. For the ANN with a single hidden layer, different batch sizes are 
also investigated. 

4. Analysis and results 

4.1. Databases and feature space 

Two sets of database are used for the development and validation of 
the machine learning models. The first database is for high strength steel 
pipes that are collected from Ma et al. [33] (79 samples), Shuai et al. 
[34] (53 samples), Phan et al. [3] (28 samples), Freire et al. [35] (17 
samples), Cronin [36] (40 samples) with a total of 217 samples. It in-
cludes a mixture of experimental and simulation data. The second 

dataset contains 50 samples for cast iron pipes obtained from Phan [18]. 
The database for the cast iron pipes was generated using FE simulations. 
The multiple histograms in Fig. 5 show the ranges of diameter and wall 
thickness as [76.2 mm, 1320 mm] and [2 mm, 25.4 mm], respectively, 
in the overall database. The range of the ratio of d/t is [0, 0.8] with a 
mean value of 4.796. The L/D ratio ranges from 0 to 2.34, with a mean 
value of 0.671. High strength steel includes API grade X42, X46, X52, 
X56, X60, X65, X80 and X100, with the Ultimate Tensile Strength (UTS) 
ranging from 309 MPa to 886 MPa. The experimental/simulated burst 
pressures range from 3.57 MPa to 35.97 MPa. These ranges of input 
variables provides the boundaries of valid inputs for a data-driven 
models. A summary of the ranges of parameters is provided in Table 2. 

Fig. 5. Histograms of the High strength steel and Cast-Iron pipe database.  

Table 2 
Ranges of input parameters of the database.  

Variable Unit Min Mean Max 

D mm 76.20 482.90 1320.00 
t mm 2.00 9.40 25.40 
d mm 0.00 4.42 15.41 
L mm 0.00 314.02 1432.56 
σu MPa 554.13 309.00 886.00  

Table 3 
Grids searches for machine learning models.  

Model Parameter Grid “Best” 
parameter 

“Best” 
MSE 

SVR C kernel type 
gamma (for 
rbf) 
degree (for 
poly) 

[0.001, 0.1, 1, 10, 100, 
1000] poly, rbf [0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9] 
[1–6] 

100 rbf 
0.1 
– 

1.9656 

RFR Number of 
decision 
trees 
Max leaf 
nodes 
Max depth 

[100, 1000, 10000] 
[4, 8, 16, 32, 64, 128, 
256] 
[2–10] 

100 
64 
10 

4.3265 

Single 
hidden 
layer ANN 

Batch size 
Nodes in 
hidden layer 

[10, 15, 20, 25, 30, 35, 
40, 45, 50] 
[8, 16, 32, 64, 128, 
256, 512, 1024, 2048, 
4096] 

20 
2048 

2.1519 

Multiple 
hidden 
layers 
ANN 

Total layers 
Nodes in 
hidden layers 

[2–6] 
[4, 8, 16, 32, 64, 128, 
256, 512, 1024] 

3 
32 

2.2611  
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Fig. 6. Scatter plots of MSE versus a) Number of nodes in layer; b) Number of weights for single and multiple hidden layers ANN and c) batch size for single 
layer ANN. 

Fig. 7. Experiment/FEA versus predicted burst pressure with, a) SVR model; b) RFR model; c) ANN model.  
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Fig. 5 also shows that while all other parameters of the cast iron pipe 
database lie within the ranges of the high-strength steel pipe database, 
the UTS (or σu) of the cast iron is far below the UTS of the high-strength 
steel. Thus, the cast iron database is outside the boundary of high 
strength steel database in terms of UTS. The machine learning models 
were developed using the high-strength steel pipe database and were 
compared with the cast iron pipe database to examine the performance 
at the out-of-boundary. 

4.2. Model development 

Table 3 provides a summary of the grid search employed for the 
development of the Machine learning models. For the SVR model, the C 
hyper-parameter, the RBF and the Polynomial Kernel functions and 
corresponding hyper-parameters (gamma and degree, respectively) are 
investigated. The “best” or chosen set of parameters are obtained as C =
100, kernel type = RBF with gamma = 0.1 with the MSE of 1.9656. For 
the RFR model, the number of decision trees, maximum leaf nodes and 
maximum depth are investigated, and the “best” parameters are ob-
tained as: number of decision trees = 100, maximum leaf nodes = 64, 
and maximum depth of tree = 10. The RFR model has MSE of 4.3265, 
which is much higher than the SVR model. 

For the ANN model development, all trials were conducted with 
1000 epochs. For the simple ANN model with a single hidden layer, the 
best performing model is not necessarily the one with the highest layer 
dimension. Instead, a model with the batch size and layer dimension of 
20 and 2048, respectively, has the lowest MSE. The scatter plot of the 
layer dimension versus MSE in Fig. 6a shows a reduction of MSE with the 
increase of the number of nodes in the hidden layer until the layer 
dimension of 256 nodes. No further improvement is observed with the 
addition of nodes beyond 256 nodes. 

Fig. 6c shows no correlation between the batch size and MSE, indi-
cating that the batch size has no effect on improving the model. How-
ever, ANN models with the same configuration but different training 
processes may yield significantly different errors with the same test set, 
especially for the small networks with less than 100 nodes. This varia-
tion is narrowed with larger networks. The MSE of the best single hidden 
layer ANN model is 2.1519 on the test set, resulted from 2048 nodes and 
20 samples of batch size. 

As seen in Table 3, the ANN model with multiple hidden layers is not 
better than the single hidden layer ANN model. The MSE of the best 
model with multiple hidden layers is 2.2611 (occurred with 3 hidden 
layers, each containing 32 nodes), which is comparable to the MSE of 
2.1519 for the best model with a single hidden layer. Fig. 6 (a and b) 
shows that the MSEs are the lowest for the number of nodes higher than 
about 100 and the number of weights higher than 1000, which are 
consistent for both multiple hidden layers ANN and single hidden layer 
ANN. For a higher number of nodes or weights, multiple hidden layers 
networks yield a wider range of MSE. In general, for a medium-small size 
database with hundreds of samples, as in this paper, the MSE of both 
ANN-based models are better than the RFR model but worse than the 

Table 4 
Validating models on testing data set of High strength steel database.  

Group Model MSE R2 MAE 

Machine Learning 
models 

SVR 1.9656 0.9629 0.9263 
RFR 4.2127 0.9205 1.4775 
ANN 2.1519 0.9594 1.2311 

Reference models Netto et al. (2005) 6.2010 0.8829 2.0863 
Gajdoš and ̌Sperl (2012) 7.5261 0.8579 2.1563 
ASME (2012) 4.2090 0.9205 1.5797 
Modified PCORRC 
(2004) 

4.1398 0.9218 1.6026 

Phan et al. 1 (2017) 4.3153 0.9185 1.6927 
Phan et al. 2 (2017) 3.2820 0.9380 1.4444 
Phan et al. 3 (2017) 4.3949 0.9170 1.7515  

Fig. 8. Comparison of various burst pressure prediction models.  

Table 5 
Comparison of the models with Cast Iron pipe database.  

Group Model MSE R2 MAE 

Machine Learning 
models 

SVR 54.8388 0.2477 4.8410 
RFR 87.6980 − 0.2031 8.6329 
ANN 22.1662 0.6959 3.2486 

Reference models Netto et al. (2005) 3.8784 0.9468 1.6518 
Gajdoš and Šperl 
(2012) 

5.7706 0.9208 1.5848 

ASME (2012) 3.5066 0.9519 1.2997 
Modified PCORRC 
(2004) 

3.9479 0.9458 1.3423 

Phan et al. 1 (2017) 7.5026 0.8971 1.8922 
Phan et al. 2 (2017) 3.6147 0.9504 1.1755 
Phan et al. 3 (2017) 12.6398 0.8266 2.1540  

Fig. 9. Comparison of the model predictions with the cast iron pipe database.  
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SVR model. A single hidden layer ANN with 2048 nodes and 20 batch 
sizes is selected for the ANN model for further investigation. 

4.3. Model comparison and validation 

Fig. 7 shows the scatter plot of the predicted values against the data 
(results from simulations or experiments). The dashed lines present the 
perfect results when the predicted values are equal to the actual values 
(i.e., line 1:1). All three selected Machine Learning models successfully 
predict the burst pressures as all data points are closely concentrated 
around the 1:1 line. Overfittings of the models are not anticipated since 
data points from the testing data set (red triangles) narrowly scatter 
around the 1:1 lines while larger distances of data points from the 1:1 
lines are also observed at some burst pressures. The scatter of the data 
from the 1:1 line is the highest for the RFR model, which is consistent 
with the higher MSE for the model (Table 3). 

The machine learning models, along with other existing models, are 
validated with the data using three performance measures in Table 4. 
The performance measures are: the Mean Squared Error (Empirical Risk 
Function for all developed models), R square (R2), and Mean of Absolute 

Error (MAE). Table 4 provides the performance measures of three ma-
chine learning models and seven existing models (discussed earlier) 
calculated using the testing dataset. As seen in the table, all machine 
learning models have relatively low MSE, R2 and MAE values compare to 
the other models (called herein as the “reference model”). R2 values of 
the machine learning models are consistently higher than 0.9205, with 
the maximum mean absolute error for the RFR model (i.e., 1.4775 MPa). 
The scatter plots for all ten models are presented in Fig. 8. As expected, 
the machine learning models are less scattered from the 1:1 line in the 
figure compared to the other models (reference models). 

The database for cast iron pipe (Phan [18]) is compared against the 
predictions using different models in Table 5 and Fig. 9. Table 5 shows 
that the MSE and MAE are the highest for the machine learning models, 
identifying the drawbacks of the models in predicting the burst pressures 
for cast iron pipes. The lowest errors among the machine learning 
models were for the ANN model that has MSE and MAE of 3.2486 MPa 
and 22.1662 MPa, respectively, with R2 = 0.6959. The MSE, MAE, and 
R2 for the high-strength steel pipe database were 1.2311, 2.4728, and 
0.9533, respectively, with the ANN model. The coefficients of determi-
nation with the SVR and RFR models were 0.2477 and negative 0.2031, 

Fig. 10. Parametric study of the burst pressure problem with machine learning models.  
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respectively, which are very low and unacceptable. Fig. 9 illustrates the 
low accuracy of machine learning models where the data points are 
highly scattered around the 1:1 line. It implies that the data-driven 
models may not work outside the boundaries of data within which the 
models are developed. The developed models thus should clearly state 
the boundaries of their applicability to have proper predictions. 

The other models (reference models) show stable R2 values, consis-
tently larger than 0.8266 (model 3 of Phan et al. [3]). Among these 
models, there are even some improvements in the performance mea-
sures. For example, the R2 of the ASME [6] model increase from 0.9205 
for the high-strength steel pipe database to 0.9519 for the cast iron 
database. Higher accuracy with these models is because the models are 
based on the theory of solid mechanics that is applicable regardless of 
materials. 

4.4. A parametric study 

A parametric study is conducted to examine the burst pressures 
calculated using various models for a range of parameters. For the 
parametric study, a control case with D = 550 mm, t = 9 mm, d = 4.7 
mm, L = 500 mm, and σu = 415 MPa, is randomly chosen. The input 
variables of models are changed one-by-one, and their effects on the 
burst pressure are revealed, as shown in Fig. 10. The burst pressure 
predicted using SVM, RFR, and ANN models for an intact pipe (d = 0) 
are 18.1 MPa, 21.2 MPa, and 11.8 MPa, respectively. The burst pressure 
calculated using the analytical model (i.e., Eq. (2a)) is 13.6 MPa. 

In Fig. 10, the burst pressures calculated using the reference models 
(dashed lines in the figure) show smooth changes with the parameters. 
The smooth input-output relationships are expected because the explicit 
equations are used in these models. However, the burst pressure calcu-
lated using the machine learning models shows fluctuations. In general, 
negative correlations of the burst pressures with the diameter, defect 
depth, and defect length are seen. The wall thickness and ultimate stress 
have a positive relationship with the burst pressure. 

Note that the differences between the burst pressures predicted by 
the machine learning model and those from the reference models are 
larger near the boundary of the parameters considered. For example, the 
differences are more significant at the pipe diameter of 150 mm and 
1400 mm, while the differences are less for the diameters of 300 
mm–600 mm. At D = 150 mm, the differences in the predicted burst 
pressures are about 16 MPa. For diameters from 300 mm to 600 mm, 
differences are about 3–4 MPa. 

In Fig. 10, the ANN model yields burst pressures that show smooth 
changes with the least fluctuations. The burst pressured predicted using 
the ANN model is also the closest to those calculated using the reference 
models except for larger wall thickness (Fig. 10b). Thus, the ANN model 
is more suitable for the prediction outside the boundaries of data. The 
burst pressures predicted using the RFR model show the highest fluc-
tuations and often highest differences from those calculated using the 
other models. Unexpectedly, the σu versus burst pressure line in Fig. 10e 
calculated using the RFR model is parallel to the x-axis. 

5. Conclusion 

The paper focuses on investigating the applicability of data-driven 
models for burst pressure prediction with machine learning tech-
niques. Models have been developed for the high-strength steel pipes 
with various inputs obtained from 5 databases available in the published 
literature. Three machine learning models, such as SVR, RFR, and ANN, 
are successfully developed, showing promising performance indicators. 
The SVR is found as the “best” model, followed by ANN and RFR models. 
The RFR model has the lowest R2 value (0.9205) among the Machine 
Learning models developed. However, the performance of the machine 
learning models is found to be limited by the boundaries of input vari-
ables with which the models are developed. Consequently, the models 
developed with high-strength steel pipes data are not applicable for cast 

iron pipes. 
The reference models developed based on the theory of solid me-

chanics showed lower predictability (higher MSE) than the machine 
learning models. However, these models performed better with the 
unfamiliar database (outside the data boundary used for the develop-
ment of the model). As a result, these models yielded a better prediction 
of the burst pressure for cast iron pipes. Among the machine learning 
models, the ANN is found to perform better with the unfamiliar data-
base, while SVR and RFR models performed poorly with the unfamiliar 
data. Therefore, the input boundaries should be carefully followed when 
applying the Machine Learning models in predicting the burst pressures. 

The study reveals that even though the machine learning models can 
provide the general trend of the output variables, fluctuation can occur, 
particularly at the boundaries of the input variables. A database with 
wide ranges of input variables can be used to develop more compre-
hensive machine learning models. Future work can also focus on 
extending the machine learning models through interaction with other 
advanced techniques such as optimization or reliability analysis. 
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[31] A. Géron, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: 

Concepts, Tools, and Techniques to Build Intelligent Systems, O’Reilly Media, 
2019. 

[32] T.D. Pham, et al., Predicting the reduction of embankment pressure on the surface 
of the soft ground reinforced by sand drain with random forest regression, in: IOP 
Conference Series: Materials Science and Engineering, IOP Publishing, 2020. 

[33] B. Ma, et al., Assessment on failure pressure of high strength pipeline with 
corrosion defects, Eng. Fail. Anal. 32 (2013) 209–219. 

[34] Y. Shuai, J. Shuai, K. Xu, Probabilistic analysis of corroded pipelines based on a 
new failure pressure model, Eng. Fail. Anal. 81 (2017) 216–233. 

[35] J. Freire, et al., Part 3: burst tests of pipeline with extensive longitudinal metal loss, 
Exp. Tech. 30 (6) (2006) 60–65. 

[36] D.S. Cronin, Assessment of Corrosion Defects in Pipelines, 2000. 

H.C. Phan and A.S. Dhar                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0308-0161(21)00082-X/sref18
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref18
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref18
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref19
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref19
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref20
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref20
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref22
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref22
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref23
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref23
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref24
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref24
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref24
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref24
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref25
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref25
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref26
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref26
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref26
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref27
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref27
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref28
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref29
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref29
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref30
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref30
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref31
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref31
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref31
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref32
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref32
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref32
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref33
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref33
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref34
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref34
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref35
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref35
http://refhub.elsevier.com/S0308-0161(21)00082-X/sref36

	Predicting pipeline burst pressures with machine learning models
	1 Introduction
	2 Existing corroded burst pressure models
	3 Machine learning models
	3.1 Support vector regression (SVR)
	3.2 Random forest regression (RFR)
	3.3 Artificial Neural Networks (ANN)
	3.4 Hyper-parameter tuning with grid search

	4 Analysis and results
	4.1 Databases and feature space
	4.2 Model development
	4.3 Model comparison and validation
	4.4 A parametric study

	5 Conclusion
	Funding
	Data availability
	Declaration of competing interest
	References


