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The main purpose of this paper is to present numerical results of static bending and free vibration of
functionally graded porous (FGP) variable-thickness plates by using an edge-based smoothed finite
element method (ES-FEM) associate with the mixed interpolation of tensorial components technique for
the three-node triangular element (MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to
eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the
ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the
smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the
plate are FGP with a power-law index (k) and maximum porosity distributions (U) in the forms of cosine
functions. The influences of some geometric parameters, material properties on static bending, and
natural frequency of the FGP variable-thickness plates are examined in detail.

© 2020 China Ordnance Society. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, FGP material has attracted great interest from
researchers over the world due to porosity appeared in materials
during the manufacturing process or intentionally created. Poros-
ities inside materials can be distributed with many different types.
They can be distributed uniform, non-uniform, or graded function.
Basically, porosity reduces the stiffness of the structure, however
with engineering properties such as lightweight, excellent energy-
absorbing capability, great thermal resistant properties and so on,
they still have been widely applied in various fields including
aerospace, automotive industry, and civil engineering. A lot of
analytical and numerical studies on the FGP structures have been
performed and some of typical work can be summarized as follows.
Kim et al. [1] investigated the static bending, free vibration, and
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buckling of FGP micro-plates using modified couples stress base on
the analytical method (AM). Barati and Zenkour [2] analyzed the
vibration of the FGP cylindrical shells reinforced by the graphene
platelet (GPL) using first-order shear deformation theory (FSDT)
and Galerkin’s method. Zenkour [3] developed a new Quasi-3D to
calculate the bending of the FGP plates. Zenkour and Barati [4]
considered electro-thermoelastic vibration of FGP plates integrated
with piezoelectric layers by using AM and they also investigated
post-buckling of FG beams reinforced by GPL with geometrical
imperfection [5]. Daikh and Zenkour analyzed the influence of
porosity on the bending of FG sandwich plates [6] and calculated
free vibration and buckling of FG sandwich plates in Ref. [7]. Sobhy
et al. [8] considered the effect of porosity distribution to buckling
and free vibration of FG nanoplate using quasi-3D refined theory.
Mashat and his co-workers [9] used a quasi 3-D higher-order
deformation theory (HSDT) to analyze the bending of FGP plates
resting on elastic foundations (EF) under hygro-thermo-mechanical
loads. Nguyen et al. developed the polygonal finite element method
(PFEM) combined with HSDT to calculate nonlinear static and dy-
namic responses of FGP plates [10], static bending and free vibra-
tion of FGP plates reinforced by GPL [11], and active-controlled
half of KeAi Communications Co. This is an open access article under the CC BY-NC-
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Fig. 1. The FGP plate model with varying thickness.
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vibration of FGP plate reinforced by GPL [12]. In addition, Nguyen
et al. [13] controlled of geometrically nonlinear responses of smart
FGP plates reinforced GPL based on B�ezier extraction of the Non-
Uniform Rational B-Spline (NURBS). Rezaei [14,15] based on AM
to examine the free vibration of rectangular and porous-cellular
plates. Zhao et al. [16] investigated the free vibration of FGP
shallow shells using an improved Fourier method, and then
analyzed the dynamics of the FGP doubly-curved panels and shells
[17]. Li et al. [18] analyzed nonlinear vibration and dynamic buck-
ling of the sandwich FGP plate reinforced GPL on the elastic foun-
dation (EF). With the nonlinear problem, Sahmani et al. [19] used
the nonlocal method to analyze nonlinear large-amplitude vibra-
tions of FGP micro/nano-plates with GPL reinforce. Wu et al. [20]
considered the dynamic of FGP structures by using FEM.

Variable-thickness structures are extensively used in many
types of high-performance surfaces like aircraft, civil engineering,
and other engineering fields. Using these structures will help adjust
the weight of structural, and hence help maximize the capacity of
the material. Gagnon and Gosselin [21] studied the static bending
of variable thickness homogeneous plates using the finite strip
method (FSM). Sakiyama et al. [22] analyzed the free vibration
homogeneous plates using the function approximation method
(FAM). Singh and Saxena [23] considered a rectangular variable-
thickness plate using the Rayleigh-Ritz method based on basis
functions satisfying essential boundary conditions (BC). Nerantzaki
and Katsikades [24] used an analog equation solution to analyze the
free vibration and dynamic behaviors of the variable-thickness
plates. Mikami and Yoshimura [25] have applied the collocation
method with orthogonal polynomials to calculate the natural fre-
quencies for linear variable-thickness plates based on
ReissnereMindlin plate theory. Al-Kaabi and his colleagues have
shown a method based on a variational principle in conjunction
with finite difference technique for analysis of the Reissner-
Mindlin plate of linearly [26] and parabolically [27] varying thick-
ness. Based on the FSDT, Mizusawa et al. [28] have developed the
spline strip method to study the natural frequencies for the tapered
rectangular plates. All of these papers only investigate plates with
two opposite simply supported (SS) edges perpendicular to the
direction of thickness variation. Cheung et al. [29] calculated the
free vibration of Reissner-Mindlin variable-thickness plates using
the Rayleigh-Ritz method with different BC. Manh and Nguyen [30]
combined FSDT with isogeometric analysis (IGA) to study the static
bending and buckling of the composite variable-thickness plates.
Lieu et al. [31] based on the IGA to compute static bending and free
vibration of bi-directional FGM variable-thickness plates. Gupta
et al. [32] examined the influence of crack location on the vibration
of non-uniform thickness FGMmicro-plate and in Ref. [33] Dhurvey
simulated the buckling of the composite variable-thickness plates
using ANSYS software. Thang et al. [34] investigated the effects of
variable thickness on buckling and post-buckling of imperfect sig-
moid FGM plates on elastic medium (EM) subjected to compressive
loading. Thien et al. [35] developed the IGA to analyze buckling
analysis of non-uniform thickness nanoplates in an EM. In addition,
Zenkour [36] presented hygrothermal mechanical bending of
variable-thickness plates using AM. In Ref. [37], Allam and his
colleagues investigated thermoelastic stresses in FG variable-
thickness rotating annular disks using infinitesimal theory.

To improve the convergence and accuracy of the plate and shell
structural analyses, the origin MITC3 element [38] is combined
with the ES-FEM [39] to give the so-called ES-MITC3 element
[40e45]. In the formulation of the ES-MITC3, the system stiffness
matrix is employed using strains smoothed over the smoothing
domains associated with the edges of the triangular elements. The
numerical results of the present study demonstrated that the ES-
MITC3 has the following superior properties [40]: (1) the ES-
Please cite this article as: Tran TT et al., Static and free vibration analyses o
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MITC3 can avoid transverse shear locking phenomenon even with
the ratio of the thickness to the length of the structures reach 10�8;
(2) the ES-MITC3 has higher accuracy than the existing triangular
elements such as MITC3 [38], DSG3 [46] and CS-DSG3 [47]; and is a
good competitor with the quadrilateral element MITC4 element
[48].

According to the best of authors’ knowledge, static bending and
free vibration analyses of FGP variable-thickness plates using ES-
MITC3 have not yet been published, especially with the variable
thickness of FGP plates in both directions with any BC. Therefore,
this paper aims to fill in this gap by developing the ES-MITC3
method for static bending and free vibration analyses of the FGP
variable-thickness plates. The formulation is based on the FSDT due
to its simplicity and computational efficiency. The accuracy and
reliability of the present approach are verified by comparing with
those of other available numerical results. Moreover, the numerical
and graphical results illustrate the effect of maximum porosity
value, power-law index, and the law of variable thickness on the
static bending and free vibration of FGP plates.

2. The FGP variable-thickness plates

Consider an FGP variable-thickness plate as depicted in Fig. 1
which has laws of variable thickness are shown in Fig. 2. Type 1:
the plate has a constant thickness as shown in Fig. 2(a); Type 2: the
thickness varies linearly in the x-axis as shown in Fig. 2(b); Type 3:
the thickness varies linearly in the x-axis and y-axis as shown in
Fig. 2(c).

The FGP with the variation of two constituents and three
different distributions of porosity through thickness are presented
as [1]:

Case 1 : FðzÞ ¼ Ucos
�pz
h

�

Case 2 : FðzÞ ¼ Ucos
hp
2

�z
h
þ 0:5

� i

Case 3 : FðzÞ ¼ Ucos
hp
2

�z
h
� 0:5

� i
(1)

in which U is the maximum porosity value. The typical material
properties of FGP in the thickness direction of the plate are given by
the rule:

PðzÞ ¼
�
ðPt � PbÞ

�z
h
þ 0:5

�k
þ Pb

�
ð1�FðzÞÞ (2)
f functionally graded porous variable-thickness plates using an edge-
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Fig. 2. The laws of variable thickness of FGP plates.
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where Pt and Pb are the typical material properties at the top and
the bottom surfaces, respectively and k is the power-law index.
Fig. 3(a) shows the normalized distribution of porosity through-
thickness. Fig. 3(b), (c), (d) show the normalized distributions of
three different cases of porosity inwhichU ¼ 0:5, k¼ 0.5, 1, 10, and
Pt/Pb¼10. The porosity distribution of Case 1 is symmetric with
respect to the mid-plane of plates and a center enhanced distri-
bution. Case 2 and Case 3 are bottom and top surface-enhanced
distributions, respectively. From Fig. 3(aec), we can see that all
cases of distribution porosity increase the hardness of the upper
surface of the plate, however, case 3 increases the stiffness of the
plate through thickness as not strongly as the other two cases.

3. The weak form and FEM formulation for FGP plates

3.1. The first order shear deformation theory for FGP plates

The displacement fields of FGP plate in present work based on
FSDT model can be expressed as [49]:8<
:

uðx; y; zÞ ¼ u0ðx; yÞ þ zqxðx; yÞ
vðx; y; zÞ ¼ v0ðx; yÞ þ zqyðx; yÞ

�
w ðx; y; zÞ ¼ w0ðx; yÞ

(3)

in which u0, v0, w0 denotes displacement variables of mid-surface
of the plate ðz¼ 0Þ and qx, qy are the rotations of a transverse
Please cite this article as: Tran TT et al., Static and free vibration analyses o
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normal about the y-axis and x-axis, respectively.
For the bending plate, the strain components can be expressed

as follows:

ε ¼ εm þ zk (4)

with the membrane strain

εm ¼
8<
:

u0;x
v0;y

u0;y þ v0;x

9=
; (5)

and the bending strain

k¼
8<
:

qx;x
qy;y

qx;y þ qy;x

9=
; (6)

and the transverse shear strain is expressed by:

g¼
�
w0;x þ qx
w0;y þ qy

�
(7)

From Hooke’s law, the linear stress-strain relations of the FGP
plates can be expressed as:
f functionally graded porous variable-thickness plates using an edge-
.org/10.1016/j.dt.2020.06.001



Fig. 3. Distribution of porosity and typical material property.
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8>>>><
>>>>:

sx
sy
txy
txz
tyz

9>>>>=
>>>>;

¼

2
66664
Q11 Q12 0 0 0
Q21 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q55 0
0 0 0 0 Q44

3
77775

8>>>><
>>>>:

εx
εy
gxy
gxz
gyz

9>>>>=
>>>>;

(8)

where

Q11 ¼ Q22 ¼ EðzÞ
1� yðzÞ2

; Q12 ¼ Q21 ¼ yðzÞEðzÞ
1� yðzÞ2

;

Q44 ¼ Q55 ¼ Q66 ¼ EðzÞ
2ð1þ yðzÞÞ

(9)

inwhich EðzÞ, yðzÞ are the effective Young’s modulus, Poisson’s ratio
which is calculated by Eq. (2), respectively.
3.2. Weak form equations

To obtain the governing equations of the FGP plates, the Ham-
ilton’s principle is applied in the following form [49]:
Please cite this article as: Tran TT et al., Static and free vibration analyses o
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ðt2
t1

ðdU þ dV � dK Þdt¼0 (10)

where U , V and K are the strain energy, the work done by
external loads and the kinetic energy of plate, respectively.

The strain energy is expressed as:

U ¼ 1
2

ð
J

�
ε
TDbεþ gTDsg

�
dJ (11)

in which ε ¼ ½εmk�T and

Db ¼
�
A B
B D

�
(12)

with A, B, D, and Ds can be given by

ðA;B; DÞ¼
ðhðx;yÞ=2

�hðx;yÞ=2

�
1; z; z2

�24Q11 Q12 0
Q21 Q22 0
0 0 Q66

3
5dz (13)
f functionally graded porous variable-thickness plates using an edge-
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Ds ¼
ðhðx;yÞ=2

�hðx;yÞ=2

�
Q55 0
0 Q44

�
dz (14)

The work done by external transverse loads are expressed by

V ¼
ð
J

qwdJ (15)

The kinetic energy is given by

K ¼ 1
2

ð
J

_uTm _udJ (16)

in which uT ¼ 	u0v0w0qxqy


, and m is the mass matrix defined by:

m ¼

2
66664
I1 0 0 I2 0

I1 0 0 I2
I1 0 0

I3 0
I3

3
77775 (17)

with ðI1; I2; I3Þ ¼ R hðx;yÞ=2�hðx;yÞ=2 rðzÞð1; z;z2Þdz.
As this plate structure has variation thickness, all matrices in Eq.

(13), Eq. (14) and Eq. (17) depend on the law of varying thickness.
The limits of integration depend on the position of the point on the
plate.

Substituting Eqs. (11), (15) and (16) into Eq. (10), the weak
formulation for static and free vibration of FGP plates, respectively,
is finally obtained as

ð
J

dεTDbεdJþ
ð
J

dgTDsgdJ ¼
ð
J

qdwdJ (18)

and

ð
J

dεTDbεdJþ
ð
J

dgTDsgdJ ¼
ð
J

_uTm _udJ (19)
4. Formulation of an ES-MITC3 method for FGP plates

4.1. Formulation of finite element based on the MITC3

The bounded domain J is discretized into ne MITC3 elements

with nn nodes such thatJz
Pne

e¼1Je andJi∩Jj ¼∅ ;is j. Then the

generalized displacements at any point ue ¼
h
uej ; v

e
j ;w

e
j ; q

e
xj; q

e
yj

iT
for

elements of the FGP plate can be approximated as:
Please cite this article as: Tran TT et al., Static and free vibration analyses o
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ue ¼
Xnne

j¼1

2
66664
NIðxÞ 0 0 0 0
0 NIðxÞ 0 0 0
0 0 NIðxÞ 0 0
0 0 0 NIðxÞ 0
0 0 0 0 NIðxÞ

3
77775dej ¼

Xnne

j¼1

NðxÞdej

(20)

where nne is the number of nodes of the plate element; NðxÞ and
dej ¼

h
uej ; v

e
j ;w

e
j ; q

e
xj; q

e
yj

iT
is the shape function and the nodal de-

grees of freedom (DOF) of ue associated with the jth node of the
element, respectively.

The linear membrane and the bending strains of the MICT3
element can be expressed in matrix forms as follows

ε
e
m ¼ 	Be

m1B
e
m2B

e
m3


de ¼Be

m de (21)

ke ¼ 	Be
b1B

e
b2B

e
b3


de ¼Be

b d
e (22)

where

Be
m1 ¼

1
2Ae

2
4 b� c 0 0 0 0

0 d� a 0 0 0
d� a b� c 0 0 0

3
5; (23)

Be
m2 ¼

1
2Ae

2
4 c 0 0 0 0

0 �d 0 0 0
�d c 0 0 0

3
5; (24)

Be
m3 ¼

1
2Ae

2
4�b 0 0 0 0

0 a 0 0 0
a �b 0 0 0

3
5; (25)

Be
b1 ¼

1
2Ae

2
40 0 0 b� c 0
0 0 0 0 d� a
0 0 0 d� a b� c

3
5; (26)

Be
b2 ¼

1
2Ae

2
40 0 0 c 0
0 0 0 0 �d
0 0 0 �d c

3
5; (27)

Be
b3 ¼ 1

2Ae

2
40 0 0 �b 0
0 0 0 0 a
0 0 0 a �b

3
5; (28)

To eliminate the shear locking phenomenon as the thickness of
the plate becomes very small, the MITC3 element based on FSDT is
proposed by Lee et al. [38]. In their study, the transverse shear
strains of the classical triangular element are independent inter-
polated by computing at the middle of triangular element edges,
named typing points. The transverse shear strain field associated to
typing points with 5 DOFs per node can be written as:

ge ¼ Be
s d

e (29)

in which
f functionally graded porous variable-thickness plates using an edge-
.org/10.1016/j.dt.2020.06.001



Fig. 4. Three-node triangular element in the local coordinates.

Fig. 5. The smoothing domain Jk is formed by triangular elements.
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Be
s ¼ 	Be

s1B
e
s2B

e
s3



(30)

with

Be
s1 ¼ J�1

2
664
0 0 �1

a
3
þ d
6

b
3
þ c
6

0 0 �1
d
3
þ a
6

c
3
þ b
6

3
775 (31)

Be
s2 ¼ J�1

2
664
0 0 1

a
2
� d
6

b
2
� c
6

0 0 0
d
6

c
6

3
775 (32)

Beð0Þ
s3 ¼ J�1

2
664
0 0 0

a
6

b
6

0 0

0 0 1
d
2
� a
6

c
2
� b
6

0 0

3
775 (33)

where

J�1 ¼ 1
2Ae

½c� b� da� (34)

in which a ¼ x2 � x1, b ¼ y2 � y1, c ¼ y3 � y1 and d ¼ x3� x1 are
pointed out in and Ae is the area of the three-node triangular
element shown in Fig. 4.

Substituting the discrete displacement field into Eqs. (18) and
(19), we obtained the discrete system equations for static and
free vibration analysis of the FGP plate using MITC3 based on FSDT
formulation, respectively as

Ku¼ F (35)

where K is the stiffness matrix of FGP plate and F represents the
load vector.

K ¼
Xne

e¼1

Ke; F ¼
Xne

e¼1

Fe (36)

with
Please cite this article as: Tran TT et al., Static and free vibration analyses o
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Ke ¼
ð
Je

BTDbBdJe þ
ð
Je

BT
sDsBsdJe (37)

where

Be ¼ 	Be
m Be

b



(38)

Fe ¼
ð
Je

pNdJe (39)

and

�
K �u2M

�
u¼0 (40)

where u is the natural frequency and M is the mass matrix

�
K �u2M

�
u¼0 (41)

M ¼
Xne

e¼1

Me (42)

Me ¼
ð
Ue

NTmNdJe (43)
4.2. Formulation of an ES-MITC3 method for FGP plates

In the ES-FEM, a domain J is divided into nk smoothing do-

mains Jk based on edges of elements, such as J ¼ ∪nk

k¼1 Jk and

Jk
i ∩J

k
j ¼ ∅ for isj. An edge-based smoothing domain Jk asso-

ciated with the inner edge k is formed by connecting two end-
nodes of the edge to centroids of adjacent MITC3 elements as
shown in Fig. 5.

Now, by applying the ES-FEM [39], the smoothed strain ~εk, a

smoothed shear strain ~gk over the smoothing domain Jk can be
created by computing the integration of the compatible strains, the
strain ε and the shear strain g; respectively, in Eqs. (18) and (19)
such as:
f functionally graded porous variable-thickness plates using an edge-
.org/10.1016/j.dt.2020.06.001
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~εk ¼
ð
Jk

εFkðxÞdJ; (44)

~gk ¼
ð
Jk

gFkðxÞdJ; (45)

where FkðxÞ is a given smoothing function that satisfies at least

unity property
R
JkFkðxÞdJ ¼ 1. In this study, we use the constant

smoothing function.

FkðxÞ¼

8><
>:

1

Ak
x2Jk

0 x;Jk

(46)

in which Ak is the area of the smoothing domainJk and is given by

Ak ¼
ð
Uk

dJ ¼ 1
3

Xnek

i¼1

Ai (47)

where nek is the number of the adjacent MITC3 elements in the
smoothing domain Jk; and Ai is the area of the ith MITC3 element
attached to the edge k:

By substituting Eqs. (21), (22) and (29) into Eqs. (44) and (45)
then, the approximation of the smoothed strains on the smooth-

ing domain Jk can be expressed by:

~εkm¼
Xnnk

j¼1

~B
k
mjd

k
j ; ~kk ¼

Xnnk
sh

j¼1

~B
k
bjd

k
j ; ~gk ¼

Xnnk
sh

j¼1

~B
k
sjd

k
j ; (48)

where nnksh is the total number of nodes of the MITC3 elements

attached to edge k (i.e. nnksh ¼ 3 for boundary edges and nnksh ¼ 4 for

inner edges as given in Fig. 5; dkj is the nodal DOFs associated with

the smoothing domain Jk; ~B
k
mj, ~B

k
bj, and ~B

k
sj are the smoothed

membrane, the smoothed bending, the smoothed shear strain
gradient matrices, respectively, at the jth node of the elements
attached to edge k and computed by

~B
k
mj ¼

1
Ak

Xnek

i¼1

1
3
AiBe

mj (49)
Table 1
Maximum displacements of the plate with different meshes.

Mesh 4 � 4 6 � 6 8 � 8 10 � 10 1

SSSS 0.5998 0.7935 0.8304 0.8434 0
0.6235 0.8343 0.8766 0.8913 0
0.7519 1.0291 1.0798 1.0968 1

CCCC 0.1036 0.2581 0.3053 0.3174 0
0.1031 0.2862 0.3481 0.3645 0
0.1177 0.2950 0.3495 0.3635 0

Please cite this article as: Tran TT et al., Static and free vibration analyses o
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~B
k
bj ¼

1
Ak

Xnek

i¼1

1
3
AiBe

bj (50)

~B
k
sj ¼

1
Ak

Xnek

i¼1

1
3
AiBe

sj (51)

The global stiffness matrix of FGP plate using the ES-MITC3 is
assembled by

~K ¼
Xnk

sh

k¼1

~Kk (52)

where ~Kk is the ES-MITC3 stiffness matrix of the smoothing domain

Jk and given by

~Kk ¼
ð
Jk

 
~BkTDb

~Bk þ ~B
kT
s Ds~B

k
s

!
dJ ¼ ~BkTDb

~BkAk þ ~B
kT
s Ds~B

k
sA

k

(53)

in which

~BkT ¼
"
~B
k
mj
~B
k
bj

#
(54)

The advantage of the present ES-MITC3 as follows:
Using three-node triangular elements that are much easily

generated automatically even for complicated geometry domains.
The ES-MITC3 element only uses the 3-node element with the

same number of DOF as the MITC3 element, not increasing DOF to
improve accuracy.
5. Accuracy of the proposed method

Firstly, we consider simple support (SSSS) and fully clamped
(CCCC) FGP plates with three cases of distributions of porosity with
parameter geometry a ¼ b ¼ 1 m, the thickness of the plate is
constant h ¼ a=50. Material properties are shown in Table 4 with
power-law index k ¼ 1 and maximum porosity value U ¼ 0:5. The
maximum displacement of plate with different BC are presented in
Table 1 and Fig. 6. The natural frequencies of the plate are shown in
Table 2 and Fig. 7.

Secondly, the authors investigate a rectangular isotropic plate
that has linear thickness variations in the x-directions and y-di-
rections, length a ¼ 0:5 m, b ¼ 2a, h0 ¼ 0:3 m, h1 ¼ h2 ¼ 0:2 m,
Young’s moduli E ¼ 2 GPa. The plate is one short-edge clamped,
subjected to a uniform load P ¼ 2000 Pa: Fig. 8 shows the
2 � 12 14 � 14 16 � 16 18 � 18 20 � 20

.8495 0.8529 0.8549 0.8563 0.8573

.8981 0.9019 0.9042 0.9057 0.9068

.1045 1.1087 1.1112 1.1129 1.1140

.3217 0.3234 0.3243 0.3247 0.3250

.3701 0.3725 0.3736 0.3742 0.3745

.3684 0.3704 0.3714 0.3719 0.3722

f functionally graded porous variable-thickness plates using an edge-
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Fig. 6. The convergence of displacement of the plate with different meshes. a) The SSSS plate; b) The CCCC plate.

Table 2
Natural frequencies of the plate with different meshes.

Mesh 4 � 4 6 � 6 8 � 8 10 � 10 12 � 12 14 � 14 16 � 16 18 � 18 20 � 20

The first natural frequency l1
SSSS 16.410 13.814 13.319 13.138 13.050 13.000 12.969 12.948 12.933

15.399 12.882 12.391 12.211 12.125 12.076 12.045 12.025 12.011
15.523 12.846 12.373 12.209 12.131 12.088 12.060 12.042 12.029

CCCC 43.374 25.416 22.678 21.946 21.659 21.517 21.436 21.385 21.351
41.484 23.058 20.264 19.534 19.256 19.121 19.045 18.998 18.967
43.252 25.268 22.527 21.796 21.509 21.368 21.287 21.236 21.202

The second natural frequency l2

SSSS 41.485 33.878 31.689 30.824 30.400 30.159 30.008 29.907 29.836
37.353 30.478 28.455 27.647 27.251 27.026 26.885 26.790 26.724
40.741 33.243 31.101 30.264 29.858 29.629 29.486 29.391 29.325

CCCC 110.13 57.501 48.612 45.933 44.845 44.300 43.986 43.788 43.654
105.17 52.299 43.560 40.954 39.913 39.401 39.111 38.929 38.806
109.81 57.175 48.297 45.622 44.537 43.994 43.682 43.485 43.351
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displacement at some points of the plate compared to the numer-
ical results in Ref. [21]. It can be seen that the numerical results of
present work are in good agreement with both value and shape in
these comparisons.

Thirdly, let us consider the isotropic square plate with geometry
parameters: a ¼ b ¼ 1 m; h0 ¼ a=100, the thickness varies linearly

with the axis x: hx ¼ h0
�
1þa x

h

�
with a ¼ 0:1 and material prop-

erties: E ¼ 2:1 GPa y ¼ 0:3, r ¼7850 kg/m3 as shown in Ref. [22].

Non-dimensional natural frequencies u* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh0u2a4
D0ð1�y2Þ

4
q

with D0 ¼
Eh3

0
12ð1�y2Þ are shown in Table 3. The error results of the natural fre-

quencies compared with those in Ref. [22] do not exceed 1%. From
the results of comparison with reference solutions, it is shown that
the proposed method ensures reliability and accuracy.
Please cite this article as: Tran TT et al., Static and free vibration analyses o
based smoothed finite element method, Defence Technology, https://doi
6. Numerical results and discussions

In this section, we use the material properties of the FGM plate
from the study of Kim et al. [1]. The moduli and mass densities of
two constituents are shown in Table 4.
6.1. Static bending of the FGP plates

In this subsection, we consider an SSSS FGP plate with dimen-
sion a ¼ b ¼ 1 m, h0 ¼ a=50, the thickness is varied linearly in x-
axis and y-axis. Thematerial properties of the FGP plate is shown in
Table 2 with porosity distribution of case 1 in which U ¼ 0:5 and
power-index k ¼ 1. The plate subjected to uniform load with in-
tensity p ¼ �1 along z-axis. From Fig. 9(a) for plates with constant
thickness h0 ¼ h1 ¼ h2 ¼ a=50, it can be seen that the deformation
field is symmetric, and the maximum of deflection is at the center
f functionally graded porous variable-thickness plates using an edge-
.org/10.1016/j.dt.2020.06.001



Fig. 7. The convergence of natural frequency of the plate with different meshes. a) The SSSS plate; b) the CCCC plate.

Fig. 8. Displacement at some points of the plate.

Table 3
Nondimensional natural frequencies u* .

u* u*
1 u*

2 u*
3 u*

4 u*
5 u*

6

[22] 4.675 7.446 7.447 9.436 10.693 10.696
Present 4.675 7.419 7.437 9.446 10.589 10.594

% ¼ 100
jPresent� ½22�j

½22�
0 0.36 0.13 0.11 0.97 0.95
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Table 4
Material properties of the FGP plate.

Material properties Young’s moduli/GPa Mass densities/(kg/m�3) Poisson’s ratio

Top surface (ceramic) Et ¼ 14:4 rt ¼ 12200 y ¼ 0:38
Bottom surface (metal) Eb ¼ 1:44 rb ¼ 1220 y ¼ 0:38

Fig. 9. The visualization of the deformation of an SSSS FGP plate (top view).

Fig. 10. Displacement at some points of the plate and stress at the point of plate that has maximum deflection along with z-axis.

T.T. Tran et al. / Defence Technology xxx (xxxx) xxx10
of the plate. However, the deflection of the plate with variable
thickness is not symmetric, the maximum of deflectionwill be near
Please cite this article as: Tran TT et al., Static and free vibration analyses o
based smoothed finite element method, Defence Technology, https://doi
the thinner thickness and far away from thicker thickness as shown
in Fig. 9(b and c).
f functionally graded porous variable-thickness plates using an edge-
.org/10.1016/j.dt.2020.06.001



Table 5
Maximum of deflection of the FGP plate.

Law of variable thickness Type 1 Type 2 Type 3

Maximum displacement w/mm 0.84940 1.50410 3.44820
Maximum stress sx/Pa 338.8142 461.0199 783.4902
Maximum stress sy/Pa 338.8142 486.9305 885.1117
Maximum stress sxy/Pa 102.9081 177.9914 234.3172

Table 6
The maximum deflection of FGP plate (type 3) with different values of k (mm).

U k 0 2 4 6 8 10

0.25 Case 1 1.487 3.980 4.815 5.246 5.578 5.867
Case 2 1.594 4.074 5.008 5.492 5.853 6.165
Case 3 1.594 4.435 5.377 5.880 6.276 6.623

0.5 Case 1 1.640 4.450 5.310 5.744 6.078 6.371
Case 2 1.951 4.759 5.916 6.504 6.921 7.273
Case 3 1.951 5.827 6.997 7.632 8.145 8.596

0.75 Case 1 1.828 5.096 5.962 6.385 6.717 7.010
Case 2 2.608 5.988 7.644 8.490 9.041 9.473
Case 3 2.608 8.883 10.563 11.489 12.252 12.918

1 Case 1 2.066 6.125 6.902 7.277 7.595 7.884
Case 2 5.037 9.528 13.471 16.064 17.654 18.687
Case 3 5.037 26.914 33.995 38.384 41.691 44.063
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In Fig. 10(a), the deflection of some points along x-aix with
y ¼0.5 m (type 1, type 2) and y ¼7/12 (type 3) are presented.
Fig. 10(bed) show the stress at the point of plate that has maximum
deflection. Maximum of deflection and stress are shown in Table 5.
This phenomenon shows that the variation of plate thickness sig-
nificant effects on the static bending response of the FGP plate.

In order to investigate the effect of power-index k to static
bending of the FGP plate. We change the k from 0 to 10 for all cases
of porosity distribution. From Fig. 11 and Table 6, it can be observed
that with the same U value, themaximum deflection of FGP plate in
porosity distribution of case 3 is greatest and the smallest result is
for the porosity distribution of case 1.When k increases, the volume
of metal increases, the stiffness of the FGP platewill be reduced and
hence the deflection increases.

Next, the authors investigate the effect of maximum porosity
Fig. 11. The maximum deflection of FGP plat

Please cite this article as: Tran TT et al., Static and free vibration analyses o
based smoothed finite element method, Defence Technology, https://doi
value U on bending of the FGP plate. Maximum porosity values are
chosen as U ¼ 0, 0.2, 0.4, 0.6, 0.8, 1 for all cases of porosity distri-
bution. From to Fig. 12 and Table 7, when k ¼ 0 (the material of the
plate is ceramic), it can be seen that the deflection of FGP plate in
porosity distribution of case 1 is the smallest, and the deflection of
FGP plate with porosity distribution of case 2 and case 3 are the
same. These results are appropriate because, with the homoge-
neous FGP plate, the porosity distributions of cases 2 and 3 are
symmetric, and the values of stiffness obtained are not different.
With k not equal to zero, the deflection of FGP plate in porosity
e (type 3) with different of values of k.

f functionally graded porous variable-thickness plates using an edge-
.org/10.1016/j.dt.2020.06.001



Fig. 12. The maximum deflection of FGP plate (type 3) with different values of k:

Table 7
The maximum deflection of FGP plate (type 3) with different values of U (mm).

k U 0 0.2 0.4 0.6 0.8 1

0 Case 1 1.359 1.459 1.575 1.710 1.871 2.066
Case 2 1.359 1.540 1.787 2.157 2.824 5.036
Case 3 1.359 1.540 1.787 2.157 2.824 5.036

2 Case 1 3.613 3.899 4.246 4.680 5.259 6.124
Case 2 3.613 3.969 4.446 5.150 6.379 9.527
Case 3 3.613 4.239 5.166 6.717 10.037 26.914

4 Case 1 4.418 4.729 5.098 5.547 6.120 6.902
Case 2 4.418 4.872 5.497 6.452 8.224 13.471
Case 3 4.418 5.148 6.228 8.033 11.922 33.995

1012 Case 1 9.222 9.699 10.236 10.851 11.571 12.448
Case 2 9.222 10.166 11.432 13.306 16.710 28.393
Case 3 9.222 10.646 12.681 15.911 22.234 50.367

Table 8
Natural frequencies of the FGP plate.

f1/Hz f2/Hz f3/Hz f4/Hz f5/Hz f6/Hz

8.1743 18.7768 19.2096 31.6758 38.4102 39.0436
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distribution of case 1 is the smallest, and the largest is for the
porosity distribution of case 3. This also proves that when the
porosity is more distributed on the upper surface of the FGP plate
according to thickness, stiffness of the plate is reduced (case 3).

6.2. Free vibration of FGP plates

In this subsection, an SSSS FGP plate is considered with geo-
metric parameters: a ¼ b ¼ 1 m, h0 ¼ a=50, the thickness is varied
linearly in x-axis and y-axis (type 3). The material properties of the
FGP plate are similar to the static bending problem with porosity
distribution U ¼ 0:5 and power-index k ¼ 1. The first six natural
frequencies of the FGP plate are shown in Table 8 and the first six
mode shape are presented in Fig. 13. In these figures, the mode
shape of vibration of the variable-thickness FGP plate is not sym-
metric because the thickness at each position on the plate is
different. The maximum values of the mode shape are traveled
toward a smaller thickness.

Now, we investigate the influence of power-law index k on free
vibration of the FGP plate. Power-law index gets values k¼ 0, 2, 4, 6,
8, 10 for all cases of porosity distribution. In Fig. 14 and Table 9, it
can be seen that with the same U value, the first natural frequency
f functionally graded porous variable-thickness plates using an edge-
.org/10.1016/j.dt.2020.06.001



Fig. 13. The first six mode shapes of the FGP plate (type 3).
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Fig. 14. The first natural frequencies of FGP plate with different values of k.

Table 9
The first natural frequencies of the FGP plate with different values of k (Hz).

U k 0 2 4 6 8 10

0.25 Case 1 8.292 7.983 8.536 8.956 9.224 9.392
Case 2 8.021 7.735 8.249 8.667 8.943 9.118
Case 3 8.021 7.845 8.489 8.922 9.172 9.312

0.5 Case 1 8.745 8.273 8.770 9.173 9.444 9.625
Case 2 8.053 7.638 8.041 8.432 8.718 8.915
Case 3 8.053 7.938 8.657 9.085 9.309 9.421

0.75 Case 1 9.418 8.648 9.054 9.430 9.701 9.897
Case 2 7.967 7.345 7.558 7.880 8.158 8.374
Case 3 7.967 7.956 8.777 9.173 9.337 9.393

1 Case 1 10.537 9.118 9.390 9.723 9.991 10.204
Case 2 6.941 6.376 6.155 6.189 6.324 6.482
Case 3 6.941 6.755 7.422 7.484 7.383 7.276
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of the FGP plate in porosity distribution of case 1 is greatest, and the
smallest is for the porosity distribution of case 3.WithU¼ 0.25, 0.5,
0.75 when k increases from 0 to 1, the first natural frequencies of
the FGP platewill be reduced, but k increases from 1 to 10 when the
first natural frequencies of the FGP plate will increase. However,
with U ¼ 1 the first natural frequencies of the FGP plate with
porosity distribution of case 1 and case 2 increase when k changes
from 2 to 10. In case 3 the first natural frequencies of the FGP plate
increase from 4 to 10.

Finally, the effect of maximum porosity distribution on the free
vibration of the FGP plate (type 3) is considered. The value of
maximum porosity U changes from 0 to 1 for all cases of porosity
distribution. From Fig. 15 to Table 10, in can be found that when
Please cite this article as: Tran TT et al., Static and free vibration analyses o
based smoothed finite element method, Defence Technology, https://doi
k ¼ 0 (the material of plate is ceramic), the first natural frequencies
of FGP plate in porosity distribution of case 1 increase, the first
natural frequencies in case 2 and case 3 are similar. With k varies
from zero, the first natural frequency of FGP plate in porosity dis-
tribution of case 1 is the largest, and the smallest is for the porosity
distribution of case 3.
7. Conclusions

In this paper, the static and free vibration analyses of the FGP
variable-thickness plates are studied using the ES-MITC3. Numer-
ical results of static bending and free vibration obtained by the
present approach are compared to other available solutions. From
the present formulation and the numerical results, we can with-
draw some following points:

- For static and free vibration analyses of the FGP variable-
thickness plates, the ES-MITC3 element which can eliminate
“the shear locking” phenomenon will give the more accurate
results than the standard triangular elements and the original
MITC3 element.

- The law of variable thickness significant effects on displacement,
stress, and free vibration of the plates. The material parameters
also change the stiffness and mass of the plates. Specifically,
with the same geometry and BC, when the power-index k in-
creases, the “stiffness” of the plate will decrease and when the
maximum porosity distributions U increase, the “stiffness” of
plate will decrease, respectively.
f functionally graded porous variable-thickness plates using an edge-
.org/10.1016/j.dt.2020.06.001



Fig. 15. Natural frequencies of the FGP plate with different values of U.

Table 10
The natural frequencies of the FGP plate with different values of U (Hz).

k U 0 0.2 0.4 0.6 0.8 1

0 Case 1 7.966 8.219 8.544 8.979 9.594 10.537
Case 2 7.966 8.011 8.046 8.044 7.906 6.941
Case 3 7.966 8.011 8.046 8.044 7.906 6.941

2 Case 1 7.755 7.933 8.149 8.412 8.735 9.118
Case 2 7.755 7.743 7.691 7.557 7.236 6.376
Case 3 7.755 7.826 7.902 7.965 7.919 6.755

4 Case 1 8.343 8.495 8.671 8.877 9.118 9.390
Case 2 8.343 8.274 8.145 7.898 7.393 6.155
Case 3 8.343 8.458 8.588 8.721 8.763 7.422

1012 Case 1 8.925 9.206 9.547 9.970 10.510 11.225
Case 2 8.925 9.005 9.067 9.067 8.860 7.629
Case 3 8.925 8.942 8.936 8.865 8.586 6.941
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- Numerical results in present work are useful for calculation,
design, and testing of material parameters in engineering and
technologies.

- The present approach can be developed for investigating the
plates with laws of variable thickness and also for analysing the
FGP plates subjected to other loads.
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