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Abstract

This paper explores the stress concentration effect and the static responses of FGM cylindrical 

shells with various boundary conditions using the quasi-3D type higher-order shear deformation 

theory and the analytical approach. The displacement field is expressed by polynomials of the 

coordinate along the thickness direction. Compared to the polynomial used to analyze the 

transverse displacement, the order of the in-plane displacement polynomial is increased by one. 

The equations of equilibrium and their corresponding boundary conditions are derived based on the 

principle of virtual work. Using simple trigonometric series and the Laplace transform, the 

solutions of boundary problems with different conditions are derived. The results from the present 

theoretical models are compared with previously published data using several other models, 

including the 3D exact model. The paper also exhibits the effects of the boundary condition, the 

relative thickness, the relative length and the power-law index on the displacements and the 

stresses of shells. The stress concentration phenomenon is studied, and then the effects of several 

structural and material parameters on the concentrated stress are shown and assessed.
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1. Introduction

Due to the advanced characteristics compared to the conventional materials, such as high 

rigidity and strength, low weight and modest cost, composite materials have become popular for 

many applications in aerospace, mechanical, automobile and civil engineerings. The most 

commonly observed drawkack of composite materials is the inconsistency between their fibers 

and matrix in terms of mechanical properties. Hence, stress concentration may occur at the 

interface of these components, particularly in a high-temperature sourrouding environment. This 

phenomenon may be the cause of several types of structural damage, such as delamination and 

cracks.

Functionally graded materials (FGMs) have been created to minimize the effect of the 

abovementioned disadvantage of composite materials. An FGM is regarded as an advanced 

composite material, which is manufactured from several components with the smooth variations 

of the mechanical properties between surfaces. Therefore, in an FGM, stress concentration does 

not occur. The concept of FGMs was introduced by Japanese researchers in 1984 [1]. Due to 

their practical applications, FGMs have grasped the attention of many researchers. The history of 

FGMs may be found in the literature [2] by Jha et al. The overview of mathetical models used in 

FGM structural analyses was presented by Birman and Byrd [3], and Thai and Kim [4]

Developing shell theories with a high accuracy level to model the responses of shell 

structures subjected to external loads has drawn the interest of many researchers in recent years. 

An increasing number of shell theories have been developed on the basis of various assumptions 

and approximation methods. Normally, researchers make simplification assumptions for thin 

shells and apply them to thicker ones, and at the same time, a 3D problem is converted to a 2D 

counterpart. We can categorize the shell theories into three groups: classical shell theory (CST), 

first-order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). 

The overview of these shell theories can be found in the literature [5] of Reddy. The CST was 

developed originally for thin shells based on the Kirchhoff-Love kinematic hypothesis that the 



straight lines normal to the undeformed reference surface remain straight and normal to the 

reference surface after deformation [6]. Using this assumption, the effect of transverse shear 

deformations is neglected. The CST is applicable to most shell problems, such as analyses of the 

responses of shells with or without elastic foundation due to thermal and mechanical loads [7-9], 

analyses of shell dynamics [10-12], and stability analyses [13-15], etc. To obtain more accurate 

results of shell dynamic responses with moderate thickness and overcome the weaknesses of the 

CST, the FSDT was introduced. The FSDT includes the effect of transverse shear deformation 

[16]. The FSDT can be used in classical problems, such as statically analyzing shell subjected to 

various loads [17-19], analyzing shell dynamcis [20-23], analyzing shell stability [24-25], etc. In 

the FSDT, a shear correction factor is employed to obtain the transverse shear stiffness of a shell.  

However, the value of this factor is not a constant but rather dependent on several parameters 

including the material properties, the loading and the boundary conditions, etc. [5]. HSDTs were 

developed as an improvement of the FSDT in an effort to produce the more accurate results of 

the mechanical responses of shells. Several typical studies with HSDTs can be listed as Reddy 

and Liu [26], Touratier [27], Ferreira et al. [28], Carrera [29], Mantari et al. [30] and Viola et al. 

[31]. HSDTs are based on assumptions of the high-order variations of tangential displacement, or 

both tangential and transverse displacement components. Using HSDTs for shell structures 

usually provides closer results to the 3D elastic theory than those by the FSDT and CST.

The choice of the HSDT model used in a specific problem depends on the significance of 

each factor. Naghdi [32] developed a calculation model based on the analysis result of 

displacement along the thickness direction, in which tangential and transver displacement 

components are expressed by first- and second-order polynomials, respectively. Reddy and Liu 

[26] introduced an HSDT while assuming that the variation of tangential displacement takes the 

form of a third-order polynomial, and transverse displacement is a constant. Using the free-

boundary assumption, the number of independent displacement components is reduced to five. 

Vasilev and Lurie [33] analyzed the displacement field along the thickness direction together 



with energy compatibility conditions to establish the fundamental equations and the boundary 

conditions for shallow shells. Based on the approach developed by Vasilev and Lurie, Doan et al. 

studied static and vibrating metal [34, 35] and laminated anisotropic [36] cylindrical shell. In 

these studies, the stress concentration phenomenon was investigated by a quasi-3D type HSDT 

model. Using an incomplete TSDT model, Neves et al. [37] conducted vibration analyses of 

FGM shells. A complete model based on the third-order polynomial of the displacement field 

was used by Punera and Kant for the static and free vibration analyses of FGM sandwich [38] 

and FGM open [39] cylindrical shells. Mantari and Guedes Soares [40] presented their analysis 

results of bending thick FGM shells using the trigonometric HSDT. Combining polynomial and 

trigonometric series to form a hybrid quasi-3D type HSDT model, Neves et al. [41] and Ferreira 

et al. [42] conducted static and free vibration analyses of FGM plates. From the above survey, it 

is seen that the previous studies using HSDT models have not focused on the stress concentration 

effect in FGM shell structures. 

In this paper, several different quasi-3D type HSDT models, which are presented in [33-

36], are employed to study FGM cylindrical shells. The fundamental equations and the boundary 

conditions are derived using the principle of virtual work. The solutions with various boundary 

conditions are obtained with the use of simple trigonometric series and the Laplace transform. 

The results in this paper are validated against those from an exact 3D model and several others. 

Compared to previous studies, in this work, the stress concentration phenomenon is analyzed 

intensively, and the effects of structural and material distribution parameters on the stress 

components in the regions of this phenomenon are assessed.

2. Theoretical formulation

In this paper, we consider an FGM cylindrical shell of length , radius  and thickness L R

. An orthogonal curvilinear coordinate system , which is shown in Fig. 1, is employed. h O z

The neutral surface is assumed to coincide with the middle surface. The displacements of an 

arbitrary point of the shell in the ,  and  directions are denoted by ,  and ,   z u v w



respectively. The Young’s modulus E, Poisson’s ratio  are assumed to be functions of the 

volume fraction of constituent materials. The shell is subjected to transverse normal loads 

 and  on the outer and inner surfaces, respectively. ,q    ,q  

Fig. 1. Geometry and notations of a FGM cylindrical shell

2.1. Displacement fields and strains

The displacement field of the shell in the orthogonal curvilinear coordinate system is O z

expressed by
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where ,  and  are the 2D displacements of an arbitrary point in the ,  and  0u 0v 0w   z

directions, respectively. and  are the transverse normal rotations corresponding to the ,  1u 1v  

axes. The other terms in equation (1) are the 2D high-order displacements according to the 

Taylor series.

The strain–displacements relations given by the linear part of Green-Lagrange strain tensor 

in the orthogonal curvilinear coordinate system  is defined as follows [5]:O z
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Substituting the expressions of the displacement components in equation (1) into equation 

(2), we obtain the strain field as follows:

- For the displacement model with 3K 

 (3)
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- For the displacement model with 2K 

 (4)
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2.2. Constitutive relations

The material property gradation of a two-constituent FGM’s in the thickness direction is 

involved in this study, and the following expression represents the profile of the volume fraction.
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respectively; and  is the power-law index that is a positive real number. The FGM material 

properties vary smoothly across the shell thickness. Material 1 is placed at the inner surface and 

material 2 is at the outer surface. 

The 3D linear constitutive relations of a cylindrical shell are
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2.3. Governing equations

The governing equations are based on the equilibrium state and obtained by the use of the 

principle of virtual displacements. The principle of virtual work in the present case is given as

 (8)
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Substituting equations (2) – (5) and (7) into equation (8) and integrating this equation 

through the thickness of the shell we derive:

- For the displacement model with 3K 
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- For the displacement model with 2K 
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

      
  


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/2 2

*

/2

, , 1, , 1 ,
2
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z
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z zQ S Q z dz
R   





     
  



 
/2 2 3

* *

/2

, , , 1, , , ,
2 6

h

z
h

z zQ S Q S z dz    




 
  

 




    / 2 / 2
1 1 , 0,1,2.

2 ! 2 !

i i

i

h hh hp q q i
R i R i

            
   

The equations of equilibrium can be derived from equations (9) and (10) by integrating the 

displacement gradients by parts and setting the coefficients ,  and  to zero separately. ku kv kw

Thus, one can obtain the equilibrium equations associated with the present quasi-3D type HSDT:

 

0 : 0,
N N

u  
 

 
 

 

0 : 0,
NNv Q


 


  

 

0 0: 0,
Q Qw N Rp 


 

 
   

 

1 : 0,
M M

u RQ 


 
 

  
 

1 : 0,
M Mv RQ 


 

 
  

 

(12)1 1: 0,z

S Sw M RQ Rp 


 
 

    
 

* *
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N N
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 
 

  
 

* *
*

2 : 0,
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 
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* *
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

 
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* *

*
3 : 0,

M M
u RQ 


 

 
  

 

.
* *

* *
3 : 2 0

M Mv RQ S 
 

 
 

   
 

The boundary condition of equation (11) may take one of the following forms:



- For the boundary condition  const 

 (13)

0 0 0 0 0 0

1 1 1 1 1 1

* ** * * *
2 2 2 2 2 2

* ** *
3 3 3 3

, , ,

, , ,

, , ,

, ,

N N u u N N v v Q Q w w

M M u u M M v v S S w w

N N u u N N v v Q Q w w

M M u u M M v v

    

     

    

  

        

        

        

     

- For the boundary condition  const 

 (14)

0 0 0 0 0 0

0 0 1 1 1 1

* ** * * *
2 2 2 2 2 2

* ** *
3 3 3 3

, , ,

, , ,

, , ,

, .

N N u u N N v v Q Q w w

M M u u M M v v S S w w

N N u u N N v v Q Q w w

M M u u M M v v

    

    

    

  

        

        

        

     

Equations (13) and (14) cover all types of boundary condition, and the number of the 

boundary conditions equals to the order of the differential equation system.

In the case of a closed cylindrical shell, the boundary condition presented in equation (14) 

is replaced by a periodic condition with respect to the  coordinate. The boundary condition in 

equation (13) can be simplified for some common cases as

- For fully clamped boundary condition:

 (15)0 1 2 3 0 1 2 3 0 1 20, 0, 0,u u u u v v v v w w w          

- For fully simply supported boundary condition:

(16)* *
0 1 2 3 0 1 20, 0, 0.N M N M v v v v w w w             

- For fully free boundary condition:

(17)* * * * *0, 0, 0,N M N M N M N M Q S Q                    



3. Solving process

3.1. Converting partial differential equations to ordinary differential equations

The equilibrium equation (12) gives us the system of  differential equations for 3 2K 

displacement components , ,  and the number of degrees of freedom is 3 2K  ku kv kw

 Equation (12) is re-written as 2 3 2 .K 

 (18)

 

   

2 2 2

1 1 ,11 1 ,22 2 ,122 2
0 0
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2 2 2

1 ,12 2 2 ,11 2 ,222 2
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1
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0

0, 1,..., 1 ,

0, 2 ,..., 2 2

K K
l l l l
i i i i i i

i i

K
l
i i

i

K K
k k k k
i i i i i i

i i

K
k
i i

i

H H H u H v

H w l K

H u H H H v

H w k K K

   



   



 





 





   
        


   



   
        


    



 



 



   

2 21

1 ,1 3 3 ,11 3 ,222 2
0 0

2 ,2
0

,

, 2 3 ,..., 3 2 ,

K K
n n n n
i i i i i i

i i

K
n n n
i i q q

i

H u H H H w

H v H q H q n K K

  

  



 

 



   
       


     



 



herein, the coefficients  are constants, which depend on the radius , the relative thickness H R

, Poisson's ratio , and  Young's modulus  of the whole structure. These /h R FGM FGME

constants are determined by synchronizing the coefficients of the two equations (12) and (18).

We transform partial differential equations (18) into a system of ordinary differential 

equations. For a closed circular cylindrical shell, we employ an expansion method using 

trigonometric series with respect to the circumferential variable θ. The periodicity conditions are 

automatically satisfied. The displacement field and the load are represented by single 

trigonometric series as follows:

       1 2
0

1
, cos sin ,i i im im

m
u U U m U m      





    

       1 2
0

1
, sin cos ,i i im im

m
v V V m V m      





    
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

    
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1
, cos sin ,m m

m
q Q Q m Q m      


   



    

0, 1, ..., , 0, 1, ..., 1.i K j K  

Substituting equation (19) into equation (18) and performing some simple mathematical 

transformations, we can obtain differential equations to determine ,  functions as 0iU   0jW 

 (20)
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In the case of symmetrical axial loading, the components . 0 0iV  

To determine functions , ,  and , , , we  1
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imV   2

jmW 

obtain the system of differential equations in the same form as follows:
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 
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 
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

In equation (21), we neglect the superscripts 1 and 2 of the quantities ,  and  imU   imV 

. jmW 



3.2. Solving boundary problems by the Laplace transform 

The solutions from equations (20) and (21) are obtained using the Laplace transform. 

Equation (20) is regarded as a specific case of equation (21) when . Here, we study the 0m 

solution from equation (21).

Let ,  và  be the image functions of , , ,   imU p   imV p   jmW p  imU   imV   jmW 

respectively.

According to the rule of differentiating source functions, we derive:

         
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2, ,im imim im im im im
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d d
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Applying the Laplace transform to equation (21) and using equation (22), we derive the 

following algebraic equation with respect to , , :  imU p   imV p   jmW p
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In equation (24), ,  are respectively the image functions of  and   mQ p
   mQ p

  mQ 

. mQ 

For closed circular shells, the boundary conditions (15), (16) and (17) at  are 0 

analyzed through the constants of integration , , , , , , , 10
imC 20

imC 30
jmC 11

imC 21
imC 31

jmC 0,1,...,i K

 as follows: 0,1,..., 1j K 

- For the clamped boundary condition [equation (15)]:

(25) 10 20 300, 0, 0, 0,1,..., , 0,1,..., 1 .im im jmC C C i K j K     

- For the simply supported boundary condition [equation (16)]:

(26) 11 20 300, 0, 0, 0,1,..., , 0,1,..., 1 .im im jmC C C i K j K     

- The free boundary condition [equation (17)] can be rewritten in a form of a system of 
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Coefficients , ,  in equation (27) are obtained from the expressions of the 1
n
iG 2

n
iG 3

n
jG

generalized internal forces corresponding to equation (11). Let the values of , ,  be 10
imC 20

imC 30
jmC

given, the system of equations (27) becomes linear with variables  , , . Soving the 11
imC 21

imC 31
jmC

system of algebraic equations (27), we can derive the expressions to determine , ,  11
imC 21

imC 31
jmC

through , , .10
imC 20

imC 30
jmC

For example, for a homogeneous shell in the case of K=3, , ,  are expressed 11
imC 21

imC 31
jmC

through , ,  as10
imC 20

imC 30
jmC
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In the case of K=2, we can derive:
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Therefore, through equations (25), (26) and (27), the boundary condition at an edge of the 

shell is automatically satisfied when we provide , , , , ,  with reasonable 10
imC 20

imC 30
jmC 11

imC 21
imC 31

jmC

values. At the same time, half of the constants of integration are satisfied automatically; and 

thus, the solving process of equation (21) is simplified.

Solving the algebraic equation (24) while considering the boundary condition at  for 0 

the image functions ,  and , we derive the expressions of the image   imU p   imV p   jmW p

functions in a form of an algebraic fraction, whose numerator and denominator are polynomials 

of p. The inverse Laplace transform is applied to these functions to obtain the displacement 

components ,  and . The second half of constants of integration (23) are  imU   imV   jmW 

determined by the remaining boundary condition.



Substituting the derived expressions of ,  and  into equation (19),  imU   imV   jmW 

we can obtain the displcements components , and . From equations  ,iu    ,iv    ,jw  

(1), (2), (3), (4) and (5), we can derive the expressions of the deformation field.  and  ,   

may be obtained from equation (9). The shear stress conponents are calculated by integrating the 

equation of equilibrium according to the 3D theory of elasticity as bellows:
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4. Numerical analysis and discussion

4.1. Validations

For the first validation analysis, we analyze an FGM cylindrical shell with both edges 

clamped. The input parameters are given in the literature [43] by Santos et al., which are the 

length , the radius and the thickness ; the inner 0.381 mL  0.1905 R m 0,000501 h m

surface is made of Zirconia with  and  while the material of outer 0.2980c  168.06 c GPaE 

surface is stainless steel with  and ; the shell is subjected to outer 0.3178m  207.79 mE GPa

pressure . Table 1 presents the transverse displacement  at the middle position of 1000q Pa  w

the shell for two theoretical models corresponding to K=2 and K=3. To validate the results, we 

make comparison with those from semi-analytical finite element models with the number of 

elements increasing from 60 to 120 [43].

Table 1 

The transverse displacement  of the FGM cylindrical shell at the middle position.710w w 

 60 Elements 90 Elements 120 Elements Present Present



[43] [43] [43] 2K  3K 

10 -3.864 -3.859 -3.857 -3.857 -3.856

5 -3.794 -3.789 -3.787 -3.787 -3.786

1 -3.511 -3.506 -3.504 -3.504 -3.504

1/4 -3.289 -3.284 -3.282 -3.282 -3.282

1/6 -3.249 -3.244 -3.243 -3.243 -3.243

1/8 -3.228 -3.223 -3.221 -3.221 -3.221

When analyzing the data shown in Table 1, it is observed that the models corresponding to 

K=2 and K=3 presented in this paper can produce accurate results that are in good agreement 

with those from the semi-analytical finite element model using 120 elements. This agreement is 

sufficient to ascertain the validity of the present calculation model.

For the second validation analysis, we study an FGM cylindrical panel with the simply-

supported edges. The input parameters are from the literature [44] by Brischetto, including the 

radius , the length , the arc length  and the relative thickness  is 10R m 1L m
3

b R
 /R h

variable; the inner surface is made of Aluminum Alloy Al2024 with  and  0.3m  73mE GPa

while the material of the outer surface is Alumina Al2O3 with  and . The 0.3c  380cE GPa

shell is subjected to a harmonic transverse normal load distributed on the outer surface 

, where . Table 2 presents the transverse displacement sin sin
/ /zq Q

L R b R
    1zQ Pa

 at the middle position of the shell with respect to various values of   and . 1010w w  /R h 

The results are then validated against those calculated by the 3D theory of elasticity [44], the 

FSDT and the layser wise theory LW4 given in [29].

Table 2 

The transverse displacement  of the FGM cylindrical shell at the middle position.1010w w 

/R h Elastic 3D [44] Present 3K  Present 2K  FSDT [29] LW4 [29]

1 

100 5.2783 5.2782 4.4163 4.3735 5.2783



10 0.0170 0.0173 0.0159 0.0170 0.0170

4 0.0019 0.0016 0.0031 0.0054 0.0013

4 

100 7.9738 7.9711 6.6315 6.5603 7.9734

10 0.0314 0.0328 0.0269 0.0277 0.0315

4 0.0032 0.0040 0.0051 0.0090 0.0022

10 

100 9.2029 9.2014 7.6154 7.5561 9.2033

10 0.0404 0.0430 0.0337 0.0358 0.0405

4 0.0042 0.0064 0.0077 0.0121 0.0022

It is seen in Table 2 that for short cylindrical shells, the model with K=3 may provide 

results close to the 3D theory of elasticity and the Layer Wise Theory LW4 model whereas the 

model with K=2 shows the results similar to those from the FSDT, and this kind of model is 

applicable to thin shells.

The third validation analysis is conducted for an FGM cylindrical shell with the two simply-

supported edges. The material parameters are the same as those in the second validation analysis. 

The geometric parameters are as follows: the radius , the length , the relative 10R m 1L m

thickness . The shell is subjected to a harmonic transverse normal load distributed on the / 4R h 

outer surface , where . The non-dimensional stresses and sin sin
/zq Q

L R
    1zQ Pa

displacements calculated by the theoretical model with K=3 are shown in Table 3 and compared 

with the results from the 3D theory of elasticity [44]. Herein,  is used to denote .0 /L R

The non-dimensional form of stresses and displacements are defined as [44]
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Table 3 

The non-dimensional displacements and the stresses of the FGM cylindrical shell.



u v w    z z z

 ,  0,
2
 

 
 

0 ,0
2
 

 
 

0 ,
2 2
  

 
 

0 ,
2 2
  

 
 

0 ,
2 2
  

 
 

 0,0 0 ,
2 2
  

 
 

0,
2
 

 
 

0 ,0
2
 

 
 

0.5 

/ 2z h 

2K  65.516 200.22 334.46 -3.7783 5.4396 6.9982 0 0 0
3K  66.713 202.00 334.97 -3.0645 6.1713 7.0701 0 0 0

Ref. [44] 66.732 201.99 334.97 -3.0504 6.2079 7.0941 0 0 0
0z 

2K  4.0474 182.72 327.81 7.0616 25.579 17.794 0.3818 8.3811 2.6468
3K  4.0435 184.10 330.64 7.6526 26.346 17.926 0.4020 7.5897 2.1443

Ref. [44] 4.0633 184.09 330.64 7.6328 26.308 17.904 0.4019 7.5923 2.1460
/ 2z h

2K  -57.09 165.83 321.15 35.320 43.073 16.791 1.0000 0 0
3K  -57.66 166.96 322.91 32.971 40.678 16.882 1.0000 0 0

Ref. [44] -57.655 166.94 322.91 32.897 40.593 16.885 1,0000 0 0

1 

/ 2z h 

2K  87.131 245.89 413.13 -4.5131 5.5786 7.4716 0 0 0
3K  88.802 248.16 413.14 -3.6376 6.4579 7.5530 0 0 0

Ref. [44] 88.819 248.13 413.13 -3.6717 6.4938 7.6111 0 0 0
0z 

2K  11.493 224.18 404.71 5.0891 24.047 17.358 0.3196 7.8095 2.4716
3K  11.526 225.94 408.23 5.8924 25.024 17.491 0.3395 7.0152 1.9720

Ref. [44] 11.559 225.91 408.20 5.8800 24.973 17.451 0,3394 7.0175 1.9735
/ 2z h

2K  -64.220 203.09 396.30 40.816 52.164 20.966 1.0000 0 0
3K  -64.864 204.53 398.70 37.918 49.252 21.089 1.0000 0 0

Ref. [44] -64.861 204.49 398.68 37.792 49.105 21.079 1.0000 0 0

2 

/ 2z h 

2K  119.01 316.69 534.80 -6.3629 7.0586 9.7424 0 0 0
3K  121.34 319.90 534.30 -5.0490 8.3581 9.8570 0 0 0

Ref. [44] 121.31 319.84 534.34 -5.1432 8.2629 9.8622 0 0 0



0z 

2K  21.993 288.66 523.71 3.1089 20.125 15.004 0.2706 7.4707 2.3568
3K  22.052 291.16 528.62 4.0199 21.195 15.130 0.2907 6.6427 1.8423

Ref. [44] 22.185 291.15 528.56 4.0474 21.174 15.082 0.2906 6.6434 1.8443
/ 2z h

2K  -75.967 261.19 512.61 49.628 66.308 27.436 1.0000 0 0
3K  -76.756 263.28 516.37 45.903 62.638 27.626 1.0000 0 0

Ref. [44] -76.749 263.23 516.36 45.593 62.278 27.575 1.0000 0 0

Analyzing the data in Table 3, it is found that for shells of medium and large length, results 

from the model with K=3 are very close to those from the 3D theory of elasticity, while the 

model with K=2 also can guarantee an acceptable level of accuracy.

The above three analyses may confirm the validity of the model used in the present study. 

The model with K=3 provides results that are in good agreement with the 3D theory of elasticity 

for all cases. The model with K=2 is used in the calculation of shells of small to medium 

thickness and medium to large length.

4.2. The effect of the boundary condition

The shell with the following parameters is used to study the effect of the boundary 

condition: radius , the outer surface is made of Aluminum Alloy Al2024 with  1R m 0.3m 

and , the inner surface is made of ceramic (Alumina Al2O3)  with  and 73mE GPa 0.3c 

, the power-law index , the length  and the relative thickness  are 380cE GPa 1  L /R h

variable. The shell is subjected to a transverse normal load distributed uniformly on the outer 

surface , where . The following boundary conditions are investigated: clamped zq Q  1zQ Pa

support - clamped support (C-C), clamped support - simple support (C-S), simple support - 

simple support (S-S), clamped support - free (C-F). The non-dimensional stresses and transverse 

displacement are defined as

. (28)
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Table 4 shows the non-dimensional transverse displacement  and the stresses , , w  

,  at the middle position and the edge  obtained by the use of the model with K=3.z z 0 

Table 4 

The effect of the boundary condition on the non-dimensional of transverse displacement  and the w

stresses , , , .  z z

w   z z   z z

0 ,0
2
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 

 0

0 ,0
2
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 
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 / 2h

0 ,0
2
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0 ,0
2
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 
 

 3 / 8h

0 ,0
2
 

 
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 / 4h

 0 ,0

 / 2h

 0 ,0

 / 2h

 0 ,0

 3 / 8h
 0 ,0

 / 4h

4 , / 10L R R h 

C-C 29.777 1.093 
 0.000





-8.522 -3.652 -4.010 -6.430

4.758 17.972 0.000 0.411 39.236 16.816 -7.706 11.454
C-S 32.713 0.116 3.319 0.000 0.901 0.000 0.000 -0.944 -0.339

-0.329 17.975 0.000 0.411 0.000 0.000 -1.149 0.496
S-S 32.718 0.115 3.319 0.000 0.901 0.000 0.000 -0.944 -0.339

-0.327 17.978 0.000 0.411 0.000 0.000 -1.149 0.496
C-F 32.710 0.114 3.319 0.000 0.901 0.000 3.325 0.000 0.906

-0.325 17.974 0.000 0.411 0.000 18.310 0.000 0.433

0.5 , / 10L R R h 

C-C 7.904 2.691 1.727 0.000 0.891 -7.169 -3.073 -3.596 -4.880
-7.671 1.799 0.000 0.230 26.536 11.373 -5.825 7.126

C-S 12.177 3.253 2.289 0.156 0.883 0.000 0.000 -1.060 -0.339
-11.560 2.973 0.377 0.237 0.000 0.000 -1.436 0.496

S-S 19.571 4.597 3.365 0.000 0.868 0.000 0.000 -1.095 -0.339
-16.076 5.717 0.000 0.258 0.000 0.000 -1.516 0.496

C-F 19.113 0.249 2.082 0.084 0.905 0.000 4.023 0.000 0.887
-1.039 10.128 0.191 0.329 0.000 22.482 0.000 0.535

4 , / 100L R R h 

C-C 0.294 9.549 32.295 0.000 0.880 -83.189 -35.652 -29.581 -67.558
48.863 168.939 0.000 0.380 362.686 155.437 -57.182 114.115



C-S 0.323 0.100 32.295 0.000 0.880 0.000 0.000 -1.935 -0.325
-0.323 168.939 0.000 0.380 0.000 0.000 -3.465 0.469

S-S 0.323 0.100 32.295 0.000 0.880 0.000 0.000 -1.935 -0.325
-0.323 168.939 0.000 0.380 0.000 0.000 -3.465 0.469

C-F 0.323 0.100 32.295 0.000 0.880 0.000 32.306 0.000 0.880
-0.323 168.939 0.000 0.380 0.000 169.250 0.000 0.383

Figures 2 and 3 show the distributions of the non-dimensional transverse displacement  w

and the stresses , ,  along the thickness direction at various positions for shells of   z

several values of length and at different boundary conditions. From these data, it is possible to 

state that

- For shells of medium or large length, at the middile position (large distances from the 

edges), the boundary condition does not have any substantial effect on the displacements and the 

stresses.

- At the edges of the shell, the maximum stress depends on the boundary condition. The 

stress concentration occurs at the clamped edge, and the transverse normal stress  increases z

considerably and reaches 30% of the maximum value.

- For short shells, the boundary condition has a large effect on the displacements and the 

stress components in the whole structure.



a) Variation of non-dimensional displacement  at w
the middle position 0 / 2 

b) Variation of non-dimensional stress  at the 
middle position 0 / 2 

c) Variation of non-dimensional stress  at the 
middle position 0 / 2 

d) Variation of non-dimensional stress  at the z
boundary position 0 

Fig. 2. Variation of non-dimensional displacement and the stresses through the thickness  for /z h
, , .0.5L R / 10R h  1 

a) Variation of non-dimensional displacement  at w
the middle position 0 / 2 

b) Variation of non-dimensional stress  at the 
middle position 0 / 2 



c) Variation of non-dimensional stress  at the 
middle position 0 / 2 

d) Variation of non-dimensional stress  at the z
boundary position 0 

Fig. 3. Variation of non-dimensional displacement and the stresses through the thickness  for /z h 4L R
, , ./ 10R h  1 

4.3. The effects of thickness and length

We investigate a shell with the following parameters: the radius , the inner surface 1R m

is made of Aluminum Alloy Al2024 with  and , the outer surface is made 0.3m  73mE GPa

of ceramic Zirconia with  and , the power-law index , the 0.3c  168.06 c GPaE  0.2 

length  and the relative thickness  are variable. The boundary condition is clamped L /R h

support - simple support (C-S). The shell is subjected to a transverse normal load distributed 

uniformly on the outer surface , where . Table 5 presents the non-dimensional zq Q  1zQ Pa

transverse displacement  and the stresses , ,  calculated by equation (28) at the w   z

middle position and the edge  using the theoretical model with K=3. It is seen that, for 0 

shells of small length, the thickness and the length have large influences on the displacement 

filed and the stresses. For shells of large length ( ), we can observe only the effect of the / 4L R 

thickness while the that of the length is negligible. This trend is exhibited clearly in Fig. 4.



Table 5 

The effects of thickness and length on the non-dimensional transverse displacement  and the stresses w

, , .  z

w   z   z

/R h 0 ,0,0
2
 

 
 

0 ,0,
2 2

h  
 

0 ,0,
2 2

h  
 

0 ,0,
2 4

h  
  0,0,

2
h  

 
0,0,

2
h  

 
0,0,

4
h  

 

0.5L R

4 46.1308 -1.4464 -0.0553 0.1557 3.1512 1.3462 1.6483
10 17.0310 -5.2476 0.7597 0.1398 15.0752 6.4608 7.7488
20 8.4325 -11.3291 5.8366 0.1603 36.9279 15.8262 19.8642
50 2.0455 -13.6230 30.5323 0.2072 85.5064 36.6456 47.5249
100 0.5204 -3.8802 68.9029 0.2245 163.8853 70.2365 92.4781

4L R

4 324.5210 0.1075 3.3387 0.2902 7.1825 3.0782 3.8415
10 49.6960 0.0219 7.1147 0.2449 17.4940 7.5403 9.3541
20 12.2132 0.0215 13.5152 0.2315 34.4170 14.7502 18.6219
50 1.9327 0.0167 32.7477 0.2236 83.6725 35.8597 46.4488
100 0.4814 0.0152 64.8153 0.2211 164.4653 70.4851 92.8063

10L R

4 324.4943 0.0534 3.3202 0.2890 7.1821 3.0781 3.8408
10 49.7008 0.0286 7.1175 0.2450 17.5940 7.5403 9.3541
20 12.2132 0.0210 13.5150 0.2315 34.4170 14.7502 18.6219
50 1.9327 0.0167 32.7477 0.2236 83.6725 35.8597 46.4488
100 0.4814 0.0152 64.8153 0.2211 164.4653 70.4851 92.8063



a) Variation of non-dimensional displacement  at w
the middle position 0 / 2, 0z  

b) Variation of non-dimensional stress  at the 
boundary position 0, / 2z h  

c) Variation of non-dimensional stress  at the 
boundary position 0, / 2z h  

d) Variation of non-dimensional stress  at the z
boundary position 0, / 4z h   

Fig. 4. Variation of non-dimensional displacement and the stresses with relative length L/R for different 
relative thickness.

4.4. The effect of power-law index

The cylindrical shell with the following parameters are investigated: the radius , the 1R m

inner surface is made of Aluminum Alloy Al2024 with  and , the outer 0.3m  73mE GPa

surface is made of ceramic Alumina Al2O3  with  and , the length  and 0.3c  380cE GPa L

the relative thickness  are variable. The boundary condition is clamped support - free (C-F). /R h



The shell is subjected to a transverse normal load distributed linearly on the outer surface 

, where . Table 6 presents the non-dimensional transverse  0zq Q     1zQ Pa

displacement  and the stresses , ,  calculated by equation (28) at the middile position w   z

and the edge  using the theoretical model with K=3. Figure 5 shows the variation of non-0 

dimensional transverse displacement  and the stresses , ,  against the power-law w   z

index  for various relative thickness . It is found that the absolute values of the non- /R h

dimensional stresses ,  and the non-dimensional transverse displacement  increase with   w

the power-law index . The non-dimensional stress  reaches its minimum value when is  z 

around 1.8. This finding is important as it demonstrates the effect of the inhomogeneity on the 

performance of FGM structures.

Table 6 

The effect of power-law index  and thickness on the non-dimensional transverse displacement  and  w

the stresses , , .  z

w   z   z

 0 ,0,0
2
 

 
 

0 ,0,
2 2

h  
 

0 ,0,
2 2

h  
 

0 ,0,
2 4

h  
 

0,0,
2
h  

 
0,0,

2
h  

 
0,0,

4
h  

 

/ 4R h 

0 129.0714 0.0957 5.1385 0.3286 10.4056 4.4596 3.9252
0.1 140.2744 0.0795 3.4006 0.2971 7.2584 3.1108 3.8544
0.2 151.1466 0.0669 2.4274 0.2704 5.4194 2.3226 3.7856
1 226.1590 0.0854 1.7570 0.1697 4.4816 1.9207 3.3709
10 507.6642 0.2471 3.9957 0.2536 9.1825 3.9354 3.7303

/ 20R h 

0 4.8838 0.0101 21.0224 0.2643 49.8812 21.3777 19.2160
0.1 5.2778 0.0182 13.8048 0.2376 34.7574 14.8960 18.7178
0.2 5.6583 0.0203 9.7871 0.2152 25.9384 11.1165 18.2595
1 8.2678 0.0429 6.8540 0.1312 21.8030 9.3441 15.8677
10 18.5590 0.1536 15.4408 0.1938 43.2432 18.5328 18.4692

/ 100R h 



0 0.1928 0.0019 101.0044 0.2528 237.5102 101.7901 95.9692
0.1 0.2081 0.0122 66.2309 0.2270 165.9082 71.1035 93.3165
0.2 0.2228 0.0156 46.8951 0.2054 124.1057 53.1881 90.8971
1 0.3240 0.0382 32.6278 0.1246 106.3988 45.5995 78.5827
10 0.7273 0.1426 73.2942 0.1834 204.5827 87.6782 92.7428

a) Variation of non-dimensional displacement  at w
the middle position 0 / 2, 0z  

b) Variation of non-dimensional stress  at the 
boundary position 0, / 2z h  

c) Variation of non-dimensional stress  at the 
boundary position 0, / 2z h  

d) Variation of non-dimensional stress  at the z
boundary position 0, / 4z h   

Fig. 5. Variation of non-dimensional displacement and the stresses with power-law index  for 

various relative thickness values R/h.



4.5. Stress concentration analysis

As shown above, stress concentration mainly occurs near a clamped edge. Hence, in the 

present subsection, we focus on this phenomenon for this kind of boundary condition using 

theoretical models with K=3 and K=2, and the FSDT. The input parameters are as follows: the 

radius , the inner surface is made of Aluminum Alloy Al2024 with  and 1R m 0.3m 

 while the outer surface is made of ceramic Alumina Al2O3  with  and 73mE GPa 0.3c 

, the length . The shell is clapmed at the two edges and subjected to a 380cE GPa 4L 

transverse normal load distributed uniformly on a part of the outer surface as

   
0 0

0

0, / 2 ,
, 0 / 2, 1 .z z

for
q

Q for Q Pa
  

   


     

The load applied on the shell is illustrated in Fig. 6. The non-dimensional normal stresses 

, ,  are determined by equation (28) at a clamped edge with several values of the   z

power-law index   and the relative thickness  as shown in Figs. 7-9. /R h

Fig. 6. Model of transverse normal local load tác dụng lên vỏ.

Analyzing the results, it is found that

- At a clamped edge, the stresses increase considerably, the stress concentration 

phenomenon is seen in both thick and thin shells.

- The normal transverse stress must be included while investigating structures with a z

clamped-support boundary condition due to the existence of stress concentration.



- The size oof the stress concentration zone is small, and does not exceed half of the 

thickness.

a) Variation of non-dimensional stress  b) Variation of non-dimensional stress 

c) Variation of non-dimensional stress z d) Variation of non-dimensional stress z

Fig. 7. Variation of non-dimensional stresses through the thickness  at the boundary zone for /z h 4L R
, , ./ 10R h  10 



a) Variation of non-dimensional stress  b) Variation of non-dimensional stress 

c) Variation of non-dimensional stress z d) Variation of non-dimensional stress z

Fig. 8. Variation of non-dimensional stresses through the thickness  at the boundary zone for /z h 4L R
, , ./ 30R h  1 



a) Variation of non-dimensional stress  b) Variation of non-dimensional stress 

c) Variation of non-dimensional stress z d) Variation of non-dimensional stress z

Fig. 9. Variation of non-dimensional stresses through the thickness  at the boundary zone for /z h 4L R
, , ./ 100R h  0.2 

5. Conclusions

On the basis of the calculation results presented in this paper, we can come to the 

following principle conclusions:

1. The governing equations for the calculation of FGM cylindrical shells have been 

established based on the quasi-3D type HSDT, which includes the effects of transverse shear and 

normal deformations. The material distribution along the thickness of the shell is assumed to 



follow a power law. The fundamental and the boundary conditions are derived using the virtual 

work principle. The solution from the equilibrium equations is derived through the use of simple 

trigonometric series and the Laplace transform. The obtained results in this study are compared 

with those by other authors for several cases, and the validity of the calculation model is 

ascertained.

2. Analyses were conducted to study the effects of the boundary condition, the relative 

thickness , the relative length , the power-law index of shells on the nondimensional /R h /L R

displacements and the stresses. The results show that the boundary condition, the power-law 

index and several geometric parameters have great effects on the displacements and the stresses.

3. The stress concentration effect was found and analyzed at the clamped-edge zone. The 

paper has shown the effects of the relative thickness and the power-law index on the distribution 

of stresses in this zone.
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