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G W N e

Abstract: Echo planar imaging (EPI), a fast magnetic resonance imaging technique, is a pow-
erful tool in functional neuroimaging studies. However, susceptibility artifacts, which cause
misinterpretations of brain functions, are unavoidable distortions in EPI. This paper proposes
an end-to-end deep learning framework, named TS-Net, for susceptibility artifact correction
(SAC) in a pair of 3D EPI images with reversed phase-encoding directions. The proposed TS-Net
comprises a deep convolutional network to predict a displacement field in three dimensions to
overcome the limitation of existing methods, which only estimate the displacement field along
the dominant-distortion direction. In the training phase, anatomical T1-weighted images are
leveraged to regularize the correction, but they are not required during the inference phase to
make TS-Net more flexible for general use. The experimental results show that TS-Net achieves
favorable accuracy and speed trade-off when compared with the state-of-the-art SAC methods,
i.e. TOPUP, TISAC, and S-Net. The fast inference speed (less than a second) of TS-Net makes
real-time SAC during EPI image acquisition feasible, and accelerates the medical image-processing
pipelines.

Keywords: Susceptibility artifacts; deep learning; high-speed; echo planar imaging; reversed
phase-encoding.

1. Introduction

Echo planar imaging is a fast magnetic resonance imaging (MRI) technique that has
served as an important non-invasive tool in cognitive neuroscience [1]. EPI is widely
used to record the functional magnetic resonance imaging (fMRI) data for studying
human brain functions [2]. It is also the technique of choice to acquire the diffusion-
weighted imaging (DWI) data for analyzing brain connection patterns [3]. Despite its
popularity, EP1is prone to susceptibility artifacts (SAs) [4,5] and Eddy-current artifacts [6,
7], which consist of geometric distortions. The geometric distortions cause misalignments
between the functional image and the underlying structural image, subsequently leading
to errors in brain analysis, e.g. incorrect localization of neural activities in the functional
brain studies. Therefore, an accurate geometric distortion correction method is crucial
for applications that rely on EPI images.

In this study, we investigate the susceptibility artifact correction (SAC) as SAs are
inevitable in EPI [5]. Interestingly, two EPI images, which are acquired using identical
sequences but with reversed phase-encoding (PE) directions, have opposite patterns
of geometric distortions caused by SAs[8,9]. Consequently, the middle version of the
reversed-PE image pair is considered the distortion-free image. Chang and Fitzpatrick
proposed to correct the SAs in two reversed-PE images by finding the corresponding
points between two reversed-PE images; the corrected image was then formed by the
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mean intensity of the corresponding points [4]. Since displacements are estimated in
lines along the PE direction independently, the estimated displacement field is not
smooth, subsequently leading to unrealistic corrections. Andersson et al. proposed a
method, called TOPUP, by modeling the displacement at each voxel as a function of
discrete cosine basis functions [10]. This method estimates the entire displacement field
along the PE direction, thereby avoiding the unsmooth problem.

Several reversed-PE based SAC methods have adopted an image registration ap-
proach, in which the corrected image is treated as the intermediate version of the two
distorted input images. The two distorted reversed-PE images are transformed to the
corrected image by an equal displacement amount but with the opposite directions. This
registration approach for reversed-PE SAC was firstly proposed in [9]. Ruthotto et al.
introduced a regularization term, inspired by the hyper-elastic registration, to constrain
the displacement field in the registration framework, thereby achieving more realistic
corrected images [11]. Hedouin et al. introduced the block-matching algorithm that
estimates the displacement field at the block level of the given EPI image pair [12]. In
another approach, Irfanoglu et al. introduced an anatomical regularizer based on the
T2-weighted (T) image to the registration framework so as to align better the corrected
images to the underlying anatomical structure [13]. Duong et al. utilized T1-weighted
(T1w) for correction regularization as the Ty, images are routinely acquired in brain
studies [14,15]; this method is called TISAC.

The above SAC methods require an iterative-optimization algorithm to estimate
the displacement field and then compute the corrected images. This computation-
intensive optimization step can take from one to 12 min, for an image pair of size
192 x 192 x 36 voxels [15]. Recently, Duong et al. proposed an end-to-end deep
learning framework, called S-Net, to map a pair of 3D input reversed-PE images to
a displacement field in the phase-encoding direction, and provide the corrected im-
age pair [16]. S-Net is trained using a set of reversed-PE image pairs. A new image
pair is corrected by feeding the distorted image pair to the trained S-Net model di-
rectly, thereby reducing the processing time. The results of S-Net demonstrate the
feasibility of using a deep network for the SAC problem. While providing a competi-
tive correction accuracy, S-Net could still be improved in terms of correction accuracy,
robustness to input image sizes, and imaging modalities.

To reduce computation time and increase robustness, existing SAC methods esti-
mate the displacement field only along the phase-encoding direction (i.e. 1D distortion
model). This is based on the fact that the distortions in the PE direction are prominent,
whereas the distortions in the other directions are insignificant. In this study, we propose
a generalized approach to enhance the correction accuracy by considering the distortions
in all three directions (i.e. 3D distortion model). The 3D displacement field is predicted
through a 3D convolutional encoder-decoder given a 3D reversed phase-encoding image
pair. The convolutional network is trained end-to-end using the T;,, modality as an
auxiliary condition. The proposed method is called anatomy-guided deep learning SAC,
or TS-Net in which the letter "T" arises from T1,,.

The new contributions of this paper are highlighted as follows:

1.  We design a deep convolutional network to estimate the 3D displacement field.
The deep network is designed to make TS-Net robust to different sizes, resolutions,
and modalities of the input image by using batch normalization (BN) layers and
size-normalized layers.

2. We estimate the displacement field in all three dimensions instead of only along
the phase-encoding direction. In other words, TS-Net predicts the displacement
field that captures the 3D displacements for every voxel. This, to our knowledge, is
a significant improvement compared to most existing SAC methods [10,16], which
estimate the distortions only along the PE direction and ignore the distortions along
with the other two directions.
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Table 1: A summary of the datasets used in the experiments.

Datasets No. | Gender dis- Age Image size Resolution Acquisition BW | Field PE
subjs.| tribution distribution (voxels) mm? sequences Hz/Py |strength | directions
) q 8
Males: 72 iziz years: ;: Multi-band 2D
fMRI-3T | 182 U years: 90 x 104 x 72 2x2%2 gradient-echo | 259y | 37 |LRandRL
Females: 110 31-35 years: 71 EPI,
' over 36 years: 2 factor of 8
22-25 years: 23
Males: 71 .
26-30 years: 84 Multi-band 2D
DWI-3T | 180 144 x 168 x 111 1.25 x 1.25 x 1.25 spin-echo EPI, 1488 3T LR and RL
Females: 109 31-35 years: 71 factor of 3
' over 36 years: 2
Males: 72 iz_ig years: ;g Multi-band 2D
fMRI-7T | 184 oV years: 130 x 130 x 85 1.6 x 1.6 x 1.6 gradient-echo | 1954 | 7T | APandPA
Females: 112 31-35 years: 73 EPI,
' over 36 years: 2 factor of 5
22-25 years: 21
Males: 69 i
26-30 years: 85 M1.11t1—band 2D
DWI-7T | 178 200 x 200 x 132 1.05 x 1.05 x 1.05 spin-echo EPI 1388 7T AP and PA
P ,
Females: 109 31-35 years: 70 factor of 2
' over 36 years: 2

Abbreviations: BW = Readout bandwidth; LR = left-to-right; RL = right-to-left; AP = anterior-to-posterior; PA = posterior-anterior.
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3. We introduce a learning method that leverages Ty, images in the training of TS-
Net. The motivation is that the Ty, image is widely considered as a gold standard
representation of a subject’s brain anatomy [17], and it is readily available in brain
studies [18]. To make TS-Net more applicable for general use, the Ty, image is
used only in training for network regularization, but not in the inference phase.

4. We provide an extensive evaluation of the proposed TS-Net on four large public
datasets from the Human Connectome Project (HCP) [19]. First, an ablation study
is conducted to analyze the effects of using different similarity measures to train
TS-Net, the effects of various components in the TS-Net framework, and the effects
of using a pre-trained TS-Net when training a new dataset. Second, TS-Net is
compared with three state-of-the-art SAC methods, i.e. TOPUP [10], TISAC [15],
and S-Net [16], in terms of correction accuracy and processing time.

The remainder of this paper is organized as follows. Section 2 describes the materials
and the proposed method. Section 3 presents the experimental results and Section 4
discusses the proposed method and results. Finally, Section 5 summarizes our work.

2. Materials and Methods

In this section, Section 2.1 describes the EPI datasets used for experiments. Section
2.2 introduces the proposed TS-Net method. Section 2.3 presents the methods used for
conducting experiments.

2.1. EPI datasets

To evaluate the SAC methods, we used four EPI datasets (fMRI-3T, DWI-3T, fMRI-7T,
and DWI-7T), which are the unprocessed data of the Subjects with 7T MR Session from
the public Human Connectome Project repository. The functional and diffusion MRI
datasets were used to study functional connectivity of the human brain and reconstruct
the complex axonal fiber architecture, respectively [20,21]. These four datasets were
acquired using different acquisition sequences, imaging modalities, field strengths,
resolutions, and image sizes; thus, the datasets are diverse in size and distortion property.
Table 1 shows a summary of the four datasets. Note that the apparent diffusion coefficient
map was not acquired in the DWI datasets. The b-values were 1000, 2000, and 3000
s/mm? for the DWI-3T dataset, and 1000 and 2000 s/ mm? for the DWI-7T dataset.
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2.2. Proposed TS-Net method

This section introduces a 3D anatomy-guided deep learning framework, called TS-Net,
to correct the susceptibility artifacts in a 3D reversed-PE image pair (see Fig. 1). The
proposed TS-Net includes a deep convolutional network to map the 3D image pair to
the 3D displacement field U. It also has a 3D spatial transform unit to unwarp the input-
distorted images with the predicted displacement field, providing the corrected images.
In contrast to existing SAC methods [15,16], TS-Net estimates the 3D displacement field,
or three displacement values for each voxel. Thus, the displacement field U can be
represented as Uy, Uy, U;], where Uy is the displacement field in the d direction.

Input forward PE /, Oult:_pu_t Icog (foGTezjr)d
71— 17

_________________________ 3D displacement field U

Deep convolutional | (U]
encoder-decoder fy(l;, I,) E 5
i 3D spatial
-nw —>
"' transform

T Back-propagation Compute
loss function

Output cor. inverse
2=1,® (G-U)

Input inverse PE I,

Used only in training 3
for network regularization

T, image A

Figure 1. The proposed learning framework (TS-Net) for correcting the SAs in reversed-PE images.
TS-Net accepts a pair of 3D reversed-PE images and produces the 3D displacement field and the
corrected images.

The 3D spatial transform unit is the interpolation operator to unwarp or resample
the input images by the estimate displacement field [22]. Let U denote the displacement
field of image I; to the corrected image, then —U is the displacement field of image I»
to the corrected image because of the inverse distortion property of the reversed-PE
image pair. The spatial transform unit produces the corrected images, expressed as
E; = [ ® (G+U)],and E; = [, ® (G — U)|, where ® is the linear interpolation and
G = |Gy, Gy, G;] is the regular grids in the x, y, and z directions.

The deep convolutional network can be considered as a mapping function fg :
(I1,,) — U, where 0 is the set of network parameters. The deep network, which is
inspired by S-Net [16], U-Net [23], and DL-GP [24], is U-Net-like architecture with an
encoder and a decoder (see Fig. 2). The encoder takes a two-channel input (which is
the reverse PE image pair) and extracts the latent features. The decoder takes the latent
features to predict the displacement field.

Both the encoder and the decoder use a kernel size of 3 x 3 x 3 voxels for their
convolutional layers to extract information from the neighboring voxels. This kernel
size is selected because it requires fewer trainable parameters than larger kernel sizes,
thereby improving computational efficiency. Each convolutional layer is followed by a
BN layer to mitigate changes in the distribution of the convolutional layer’s input [25].

To make TS-Net cope with different input image sizes, we add a size-normalization
layer before the encoder and a size-recovery layer after the decoder. The size-normalization
layer uses zero-padding so that each input dimension is divisible by 16. The size-recovery
layer crops the decoder output to the size of the input image. To resize images, TS-Net
uses zero-padding instead of interpolation to maintain the spatial resolution of the
input images. Maintaining the original spatial resolution is critical in SAC because the
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Encoder Decoder
Skip_ connection ‘
e . D4 DY D8 D7 5
g
= T
3 :
C =h
- o3
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[0} 1}
= =
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S <
1 1 1 1
(1): Size-normalization (2): Size-recovery
I Input/output [ Output of an upsampling layer
I Size-normalized input [ Output of a convolutional layer in decoder

I Output of an encoder layer

Figure 2. The convolutional encoder-decoder for mapping a pair of reversed-PE images to the 3D
displacement field. Box: output feature maps of a layer. Number inside each box: number of feature
maps in the layer. Number below each box: feature map size relative to the full input image size.

displacements in the EPI images are small and sensitive to image interpolation. Note
that the configuration of the introduced convolutional encoder-decoder, e.g. the number
of layers, batch normalization, and upsampling layers, was experimentally selected, see
Section 3.1.

In our previous deep-learning-based SAC method [16], the network parameters
0 are estimated by optimizing the objective function that promotes the similarity be-
tween the pair of corrected images and enforces the local smoothness of the predicted
displacement field. In this study, we regularize the training by introducing a Ty,,-based
regularizer to the loss function. This regularizer can improve the TS-Net training as
the Ty, image is widely considered a gold standard representation of a subject’s brain
anatomy [17]. Note that T;,, images are used in the training phase, not in the testing
phase.

The Ty,-based regularizer penalizes the distances from the corrected images to the
corresponding Ty, structural image. Since Ty, and EPI are in different modalities, we
use the normalized mutual information (NMI) to measure the similarity between the
output images and the Ty, image because it is effective for multi-modal images. Let A
denote the Ty, image, then the Ty,-based regularizer is defined as

~ NMI(E;, A) + NMI(E,, A)

Eanat(Elz EZ; A) =1 5 (1)
The loss for TS-Net training is
‘C(Ilr 121 A, U) = Esim(Elz E2) + Aﬁsmooth(U) + 'Yﬁanat(Elr EZ/ A)r (2)

where Lgn is the dissimilarity between the pair of corrected images. Lgmootn is the
diffusion regularizer, denoting the non-smoothness of the predicted displacement field.
The positive and user-defined regularization parameters A and -y represent the trade-off
between the similarity of the corrected images, the smoothness of the displacement field,
and the similarity of the T, image to the output images.

Since the corrected images E; and E; have the same modality, we investigate three
possible unimodal similarity metrics: mean squared error (MSE), local cross-correlation
(LCC) [26], and local normalized cross-correlation (LNCC) [27] (refer to Appendix (A)
for a detailed description of the metrics). We experimentally found that LNCC metric is
the best choice in terms of the trade-off between training accuracy and processing time
(see the analysis in Section 3.1). Thus, LNCC is used as the Lgjm,.
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2.3. Experimental methods

To evaluate TS-Net, for each dataset, we first split the subjects randomly into two parts:
A and B. Then, the training set was formed by randomly selecting reversed-PE image
pairs of each subject in Part A; this strategy reduces the data repetition of subjects. The
test set was formed from all reversed-PE pairs of each subject in Part B. The training sets
were used to select the hyper-parameters and train the TS-Net models, and the test sets
were used to evaluate the correction accuracy of the TS-Net models. The training set of
each dataset was further divided into a training set and a validation set with a ratio of
9 : 1. Table 2 summarizes the training, validation, and test sets of the four datasets.

Table 2: A summary of the training, validation, and test sets for each of the four datasets.

. Training set Validation set Test set

No. subjects  No. pairs  No. subjects  No. pairs  No. subjects  No. pairs
fMRI-3T 140 1685 16 187 26 1395
DWI-3T 135 392 15 44 30 90
fMRI-7T 138 2890 15 322 31 1269
DWI-7T 133 140 15 15 30 60

The proposed TS-Net was implemented using Keras [28] deep learning library.
For training TS-Net, the Adam optimizer was used with the learning rate « = 0.001,
and the exponential decay rates 1 = 0.9 and B, = 0.999, as suggested by Kingma
and Ba [29]. The Tree of Parzen Estimator algorithm was used to select suitable values
for regularization parameters A and -y [30-32].In training each dataset, we selected the
maximum batch size that could fit into the available GPU memory to reduce the training
time. The batch sizes and regularization parameters used in training TS-Net are shown
in Table 3.

Table 3: Values of hyper-parameters in training TS-Net on the four datasets.

Params fMRI-3T DWI-3T fMRI-7T DWI-7T
A 0.1771 0.002 0.9323 0.025
0% 0.01 0.01 0.01 0.01
Batch size 4 1 1 1

We then compared the proposed TS-Net with two iterative-optimization methods,
i.e. TOPUP and TISAC, and a state-of-the-art deep learning method, i.e. S-Net. The
comparison is in terms of the correction accuracy and processing speed. To evaluate
the correction accuracy of the proposed method, we trained S-Net and TS-Net for 1500
epochs with each dataset. The trained models were used to compute the corrected image
pairs of the test sets. For TOPUP! and TISAC, the corrected image pairs were obtained
by implementing the iterative-optimization algorithms. Here, the correction accuracy is
measured in terms of LNCC similarity between the pair of reversed-PE images.

The experiments were conducted using images from the datasets directly, without
any pre-processing step. The experiments for evaluating processing times were per-
formed on a system that has an Intel Core i5-9600K CPU at 3.6 GHz, 32 GB of RAM, and
an NVIDIA GeForce RTX2080 GPU with 8 GB memory. The other experiments were
performed on a system that has an Intel Xero Gold 5115 CPU at 2.4 GHz, and an NVIDIA
GeForce GTX Titan Xp with 12 GB memory.

3. Results

In this section, Section 3.1 presents results of the ablation study. Section 3.2 shows the
results of the proposed method and other representative SAC methods in terms of
correction accuracy and processing time.

1

We used the TOPUP implementation in the FSL package, Website: fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup
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Figure 3. Validation loss of the models trained with three types of similarity loss (MSE, LCC, and LNCC) versus training time (in
second) on the four datasets: (a) fMRI-3T; (b) DWI-3T; (c) fMRI-7T; and (d) DWI-7T. Top row: validation loss in terms of MSE. Middle
row: validation loss in terms of LCC. Bottom row: validation loss in terms of LNCC.
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3.1. Ablation study of the proposed method

This section analyzes the proposed TS-Net method on five aspects: (i) effects of using
different similarity measures; (ii) effects of the different network configurations in TS-
Net; (iii) effects of using the 3D distortion model and Ty, regularization; (iv) effects of
using a pre-trained TS-Net in training other datasets; and (v) the visualization of the
predicted displacement field.

Effects of similarity measures in network training: In this experiment, for each training
set, we trained TS-Net models using different similarity losses: (i) MSE; (ii) LCC; and (iii)
LNCC. The effects of using different similarity measures were evaluated in two aspects:
the validation loss and the training time of each epoch. The validation loss was measured
as the mean similarity measures for output image pairs across subsets of the training
sets. We conducted the experiments on the four datasets: fMRI-3T, DWI-3T, fMRI-7T,
and DWI-7T. Fig. 3 shows the validation loss versus time when training TS-Net with
the similarity loss as MSE, LCC, and LNCC. It can be seen that TS-Net trained with
the LNCC measure produces the lowest validation loss, while TS-Net trained with the
MSE measure produces the highest validation loss. TS-Nets trained with the LNCC and
LCC measures produce a competitive LCC validation loss on two datasets (DWI-3T and
fMRI-7T). Considering the validation loss versus the training time, it is clear that the
LNCC measure is a better choice than the MSE and the LCC for training TS-Net. Based
on this experiment, the LNCC metric was subsequently used as the similarity loss for all
the remaining experiments.

Effects of the network configurations in TS-Net: In this experiment, we analyzed the
effects of four different network configurations: (i) TS-Net without batch normalization
and with upsampling layer (UL) (ii) TS-Net with instance normalization (IN) [33], and
with UL; (iii) TS-Net with BN and transposed convolution (TC) [34]; and (iv) TS-Net
with BN and UL (proposed method). The validation loss during the training phase was
computed as the average LNCC measure between the output image pairs, across subsets
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(c) Comparison of the validation loss on two models trained: (i) from scratch; and (ii) using the pre-trained model of the fMRI-3T
dataset.
Figure 4. Ablation study of TS-Net in terms of: (a) network configurations; (b) 3D distortion model and anatomical guidance; and (c)
using a pre-trained model. Plots show the validation loss of trained models versus training time (in second).

=37 of the training sets. This validation loss was then used to compare different network
238 configurations.

230 Fig. 4(a) shows the validation loss versus the training time on three datasets:
2e0 fMRI-3T, DWI-3T, and DWI-7T; each subfigure includes the validation loss for the four
2ax network configurations. Several observations can be made. First, using batch normaliza-
2a2  tion (proposed TS-Net, green curve) provides a lower validation loss compared to not
2a3  using batch normalization (blue curve). Second, using batch normalization (proposed
2as  TS-Net, green curve) provides a similar or lower validation loss compared to using
2es  instance normalization (orange curve). Third, using the upsampling layer (proposed
246 1S-Net, green curve) has a similar validation loss compared to using the transpose
247 convolution (magenta curve). These results justify our selected configuration for TS-Net.

2as  Effects of using the 3D distortion model and anatomical guidance by Tq,: In this
240 experiment, we trained three types of networks: (i) TS-Net with the 1D distortion model
250 as used in S-Net [16]; (ii) TS-Net with 3D distortion model and without Ty, guidance;
261 and (iii) TS-Net with the 3D distortion model and T, guidance (proposed method).
252 Fig. 4(b) shows the validation loss versus the training time on three datasets: {MRI-3T,
23 DWI-3T, and DWI-7T. Several observations can be made. First, the proposed TS-Net with
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Ty, guidance (green-solid curve) has lower validation losses than the TS-Net without
T14 guidance (brown dash-dotted curve). This result shows that incorporating T,
guidance can improve the correction accuracy. Second, the proposed TS-Net using
the 3D distortion model (green-solid curve) produces significantly lower validation
losses than TS-Net using the 1D distortion model (magenta-dashed curve). This result
shows that the 3D distortion model used in the proposed TS-Net provides more accurate
correction than the 1D distortion model (i.e. only along the phase-encoding direction),
which is used in S-Net and existing iterative-optimization SAC methods.

L T

(a) fMRI-3T (b) DWI-3T

—2.0 -15 ﬂ 2

(c) fMRI-7T (d) DWI-7T

Figure 5. Samples of three predicted displacement fields (in voxel) of TS-Net from the four test
sets. In each subfigure, left image: displacement field in the left-right (LR) direction; middle image:
displacement field in the anterior-posterior (AP) direction; and right image displacement field in
the superior-inferior (SI) direction. The dominant phase-encoding dimension (direction) is shown
in red text; the other two other dimensions are shown in white text.

Effects of using a pre-trained TS-Net: In this experiment, we explored whether using a
TS-Net model pre-trained on one dataset can reduce the training time on another dataset,
compared to a randomly initialized TS-Net. To this end, we trained two TS-Net models:
(i) from scratch; and (ii) using an initial network, which had been pre-trained for 1500
epochs on the fMRI-3T dataset. Fig. 4(c) shows the validation loss versus training time
on three datasets: DWI-3T, fMRI-7T, and DWI-7T. The figure shows that the validation
loss when training TS-Net using a pre-trained model (cyan dash-dotted curve) is much
lower than when training from scratch (green-solid curve). The result suggests that
TS-Net is able to learn generalized features for correcting the susceptibility artifacts from
one dataset. Subsequently, adopting the learned features in training other datasets leads
to a faster converge.

Visualization of the predicted displacement fields: Fig. 5 shows the samples of the dis-
placement field estimated by the trained TS-Net for the four test sets. The displacement
field is shown in three directions (left-right, anterior-posterior, and superior-inferior).
TS-Net can estimate the geometric distortions along the directions that are not the domi-
nant PE direction. The visual results indicate that TS-Net is able to predict realistic 3D
displacement fields, i.e. the displacements in the phase-encoding direction are dominant
than the one on the other two directions.

3.2. Comparison with other methods

This section compares TS-Net with three SAC methods, i.e. TOPUP, TISAC, and S-Net.
Fig. 6 shows sample slices of uncorrected and corrected images from each of the four test
sets. Each example includes two reversed-PE images (Rows 1 and 2) and the absolute
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Figure 6. Sample visual results of SAC methods from the four test sets. In each subfigure, Column 1: input uncorrected images.
Columns 2, 3, 4, and 5: output corrected images produced by TOPUP, TISAC, S-Net, and TS-Net, respectively. Rows 1 and 2: reversed
phase-encoding EPI images. Row 3: the color bar of the absolute different maps. Row 4: the absolute difference between the image
pair. Row 5: the corresponding Ty, image of the reversed-PE images and the estimated displacement fields of the compared SAC
methods. For visualization, only the displacement field in the phase-encoding direction of TS-Net is shown. Row 6: the color bar of the
displacement fields, in which the number expresses the number of voxels shifted.

2ea  difference between the two images (Row 3). The arrows indicate the regions where
2es  IS-Net produces significantly improved correction in comparison with three other SAC
26 methods. It can be seen that TS-Net removes distortions in the uncorrected images
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significantly. In general, TS-Net produces the output images that are comparable to or
better than the outputs of TOPUP, TISAC, and S-Net. Note that the SAC methods work
with 3D images; however, for visualization, 2D slices are presented in the figures. For a
larger view of the TS-Net outputs, see Fig. Al in Appendix (B).

Table 4: Accuracy in terms of local normalized cross-correlation for different test sets:

fMRI-3T, DWI-3T, fMRI-7T, DWI-7T.

fMRI-3T DWI-3T fMRI-7T DWI-7T
Datatypes
mean =+ std mean =+ std mean =+ std mean =+ std

Uncorrected 0.335* 4+ 0.023 0.142* 4+ 0.020 0.229* 4+ 0.023 0.120* 4+ 0.018
TOPUP 0.753* 4 0.024 0.468* £+ 0.031 0.583* 4 0.024 0.371* £+ 0.025
TISAC 0.674* 4+ 0.036 0.436* + 0.058 0.427* 4+ 0.036 0.364* 4+ 0.048
S-Net 0.608* £ 0.027 0.242* 4+ 0.039 0.412* 4+ 0.027 0.182* £+ 0.025
TS-Net 0.692 + 0.022 0.571 + 0.034 0.648 + 0.022 0.398 + 0.031

The asterisk symbol (*) indicates that the computed P is less than 0.001 for the null hypothesis
Ho : MTS-Net = Mother- A P value below 0.001 means that the null hypothesis is rejected at a confidence level of
99.9%. In other words, the similarity measure LNCC of TS-Net is significantly different from the compared
method.

Table 4 summarizes the accuracy of uncorrected and corrected images in terms of
LNCC on four different test sets. Paired t-tests were performed on the LNCC measures
between TS-Net outputs and each of four image types: uncorrected images, TOPUP
outputs, TISAC outputs, and S-Net outputs. The null hypothesis is Hy : 7s.Net = Mother-
All computed P values are smaller than 0.001; this indicates that the null hypothesis is
rejected at a confidence level of 99.9%. In other words, TS-Net produces image pairs
with significant differences (i.e. improvements) in terms of accuracy compared to the
output image pairs of other methods.

Table 5: Processing time (in second) of SAC methods for correcting a pair of reversed-PE
images.

DWI-7T
200 x 200 x 132
(mean =+ std)

fMRI-3T

Methods Processor 90 x 104 x 72
(mean =+ std)

DWI-3T
144 x 168 x 111
(mean =+ std)

fMRI-7T
130 x 130 x 85
(mean =+ std)

TOPUP CPU 252.55 + 3.61 997.39 £9.04 535.71 + 44.29 1944.65 + 18.72
TISAC 25.76 £ 11.81 57.73 £12.03 28.48 +5.14 126.13 £ 26.25
S-Net 0.63 = 0.03 2.21 £0.03 1.36 £ 0.03 4.55 £+ 0.04
TS-Net 0.65 + 0.04 2.30 +0.05 1.45 £+ 0.04 4.92 £ 0.06
S-Net GPU 0.13 £0.14 0.42 +0.18 022 £0.16 0.72 £ 0.25
TS-Net 0.14 £ 0.16 043 £0.21 0.23 £0.18 0.80 £0.26

For visual clarity, Fig. 7 shows the box plots for comparing the LNCC measures of
the four SAC methods. The results in Table 4 and Fig. 7 show three notable observations.
First, TS-Net produces output images that have significantly higher LNCC measures
than the uncorrected images; in other words, TS-Net does reduce the susceptibility
artifacts. Second, TS-Net produces output images that have higher LNCC measures
than the outputs of the TISAC method in 4 out of 4 datasets, and the outputs of the
TOPUP methods in 3 out of 4 datasets. This means that TS-Net has better correction
accuracy compared to the two iterative-optimization methods, i.e. TISAC and TOPUP.
Third, TS-Net also produces higher LNCC measures than S-Net in 4 out of 4 datasets.
Compared to S-Net, the proposed TS-Net has several differences, one of which is its
use of Tqy, images in training. This result demonstrates that including the gold-standard
representation of a subject’s brain anatomy helps regularize the susceptibility artifact
correction in TS-Net. Note that TS-Net does not require the Ty, image in the inference
phase, which explains its comparable processing speed with S-Net, as analyzed next.

To compare the processing speed, we first randomly selected 50 distorted image
pairs for each of the four datasets. We then recorded the time for correcting the selected
image pairs by four SAC methods: TOPUP, TISAC, S-Net, and TS-Net. Table 5 shows the
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Figure 7. Comparisons of the proposed TS-Net versus other three SAC methods in terms of the LNCC-based accuracy on the test sets.

Due to differences in the LNCC ranges of the datasets, the plots are drawn in different y-axis ranges for clarity. In each box plot, the top

line is the maximum LNCC value excluding the outliers; the bottom line is the minimum LNCC value excluding the outliers; the middle

line is the median LNCC value; the solid rectangle is the interquartile range of the LNCC values; and the points are the outliers.

average processing time per image pair of TS-Net and the three SAC methods. Over the
four datasets, TS-Net is 396.72 times faster than TOPUP, 29.45 times faster than TISAC,
and only 1.05 times slower than S-Net. Both deep learning-based SAC methods (TS-Net
and S-Net) can be accelerated by five times when using the GPU instead of the CPU.
Note that in the experiments for all datasets, the proposed TS-Net has 260,187 trainable
parameters, whereas the S-Net model has 259,241 trainable parameters. In other words,
the proposed TS-Net requires only 0.36% more trainable parameters than S-Net.

The results of TS-Net over the four datasets show that the inference time of TS-Net
is linearly proportional to the size of the input images. To correct an image pair with a
size of 90 x 104 x 72, TS-Net takes 0.65 s using CPU, and 0.14 s using GPU. On average,
the inference speed of TS-Net is approximately 1.08 million voxels per second with CPU,
and 5.98 million voxels per second with GPU.

4. Discussion

This section discusses the proposed TS-Net in three aspects: robustness, generalizability,
and feasibility. In terms of robustness, TS-Net can predict realistic 3D displacement
fields, i.e. the most dominant displacements in the phase-encoding direction regardless
of the PE direction order, resulting in high-quality corrected images. The experiments
conducted on four different datasets show that TS-Net performed consistently on differ-
ent image resolutions, image sizes, image modalities, and training set sizes. Furthermore,
it can cope with different phase-encoding directions.

In terms of generalizability, TS-Net is able to learn the generalized features of
the susceptibility artifacts in reversed-PE image pairs from one dataset. A trained TS-
Net can be easily transferred to a new dataset, effectively reducing the training time.
This observation is similar to the generalization capability of the deep networks [35].
Therefore, TS-Net can employ the network initialization techniques, e.g. MAML [36] and
Reptile [37], to address the problem of long training time, which is a common bottleneck
in deep learning algorithms.

In terms of feasibility, TS-Net can produce higher accuracy than the state-of-the-art
SAC methods, while having fast processing time. To correct a pair of distorted images,
TS-Net only takes less than 5 seconds using CPU or less than 1 second using GPU.
These high-accuracy and high-speed capabilities allow TS-Net to be applied in many
applications. For example, the TS-Net can be integrated into the MRI scanner to correct
SAs in real-time; this is typically not possible with the traditional reversed-PE SAC
methods because they are slow.

5. Conclusions

This paper presented an end-to-end 3D anatomy-guided deep learning framework,
TS-Net, to correct the susceptibility artifacts in reversed phase-encoding 3D EPI image
pairs. The proposed TS-Net contains a deep convolutional network to predict the
displacement field in all three directions. The corrected images are then generated by
feeding the predicted displacement field and input images into a 3D spatial transform
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unit. In the training phase, the proposed TS-Net additionally utilizes Ty, images to
regularize the susceptibility artifact correction. However, the Ty, images are not used in
the inference phase to simplify the use of TS-Net.

The visual analysis shows that TS-Net is able to estimate the realistic 3D displace-
ment field, i.e. the displacements are dominant in the phase-encoding direction than the
other two directions. Evaluation on the four large datasets also demonstrates that the
proposed TS-Net provides higher correction accuracy than TISAC and S-Net in all four
datasets, and TOPUP in three out of four datasets. Over the four datasets, TS-Net runs
significantly faster than the iterative-optimization SAC methods: 396.72 times faster
than TOPUP and 29.45 times faster than TISAC. TS-Net is slightly slower than S-Net,
but it still meets the real-time correction requirement of MRI scanners. Furthermore, the
training time of TS-Net on a new dataset can be reduced by using a pre-trained model.
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Appendix A. Similarity metrics

This section presents the three similarity metrics, i.e. MSE, LCC, and LNCC, which are
used in Lgim,.

Appendix A.1. Mean squared error
The MSE between two images E; and Ej is defined as

_ L

=15 L [Be) — Ep)]” (A1)

peQ

MSE(E;, E,)

where Q € R? is the image domain and || is the total number of image indexes. A
smaller value of MSE indicates a higher similarity between the images. Thus, the Lgin,
loss based on the MSE measure is

LMSE(E,, Ey) = MSE(Eq, Ep). (A2)

sim

Appendix A.2. Local cross-correlation

The LCC can be explained as follows. Consider an image X. Let X be the local mean
image obtained by applying an n x n X n averaging filter on X. The local centered image
X is computed as

X=X-X. (A3)

For a given voxel p = (x,y,z), let W(p) denote the set of voxels in the n x n X n cube
centered on p. For a pair of images E; and Ep, we compute a local correlation coefficient
image C:

(© [Eap) Batpo)
Pi€W(p)
Y [Eip))? L [Eap))?

piEW(p) pi€W(p)

Clp) =

(A4)

The LCC measure for images E; and E; is now defined as the mean intensity of the
local correlation image C:

LCC(Ey E2) = 1 - Cp) (A5)
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A higher LCC indicates more similarity between two output images. We now can express
the Lgm loss based on the LCC measure as

LEC(E), Ey) =1 - LCC(Ey, E). (A6)

sim

ss0  Appendix A.3. Local normalized cross-correlation
The LNCC can be defined as follows. Let X be the variance image of X:

. 1 2
X(p)= Y [X(p)? - =l Y, X(p)]™ (A7)
picW(p) picW(p)
Let R be the correlation image between two images E; and Ej:
1
R(p)= ). [Ei(pi) E2(pi)] — 3 Y. Eilpi) ), Eapi) (A8)
Pi€W(p) PieW(p) Pi€W(p)

The LNCC between two images E; and E; is given by

LNCC(Eq, Ep) = 1 Y. W%)]z

= . A9
0l 24 E(p) Ex(p) )

A higher LNCC indicates higher similarity between two output images. We now can
express the L, loss based on the LNCC measure as

LENCC(E, E;) =1 — LNCC(E;, E). (A10)

sim

ssn Appendix B. Supplementary data

(c) fMRI-7T (d) DWI-7T

Figure A1. Larger view of the TS-Net outputs from the four test sets. In each subfigure,Column 1:
input uncorrected images. Columns 2: output corrected images produced by TS-Net. Columns 3:
the zoomed view of cyan rectangles from the TS-Net output.
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