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H I G H L I G H T S  

• Extend the ES-MITC3 element for the free vibration analyses of FGM plates resting on the elastic foundation in the thermal environment. 
• Investigate the influences of geometric parameters, material properties, and foundation stiffness on the free vibration of FGP plates. 
• Set up an ANN to predict the fundamental frequency of FGP plates resting on the elastic foundation in the thermal environment with four input- 

data.  
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A B S T R A C T   

In this article, some numerical results from the free vibration analysis of functionally graded 
material (FGM) plates resting on the elastic foundation (EF) in the thermal environment are 
presented. An ES-FEM combining with the MITC3 is used to improve the accuracy as well as 
eliminate the shear locking phenomena for the classical triangular element. The EF is modeled 
from the Winkler-Pasternak foundation with stiffness two-parameter. Numerical examples are 
compared with published works to prove the reliability and accuracy of the proposed method. 
The effects of volume fraction index (n), temperature (T), and two-parameter of the EF on the free 
vibration of FGM plates are also investigated. Furthermore, an artificial neural network (ANN) is 
trained to predict exactly the fundamental frequency of FGM plates.   

1. Introduction 

The structures on the elastic foundation (EF) are usually used in civil engineering as aircraft runways, building foundation slabs, 
railway tracks, and so on. In the published articles, the Winkler foundation (one-parameter) [1] or Winkler-Pasternak foundation 
(two-parameter) [2] are priority applied. Some typical works of the free vibration analysis of isotropic plate structures on the EF can be 
found in Refs. [3–6]. With the plates made by the FG material lying on the EF, Ferreira et al. [7] employed radial basis functions to 
examine the bending and free vibration of the FG porous plates. Shahsavari et al. [8] based on a new quasi-3D theory to investigate the 
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free vibration of FGM plates. Baferani and his co-workers [9] used the third-order shear deformation theory (TSDT) to analyze the free 
vibration of the FGM rectangular plate on the EF. Besides, Zenkour and Radwan [10] developed a four-unknown plate theory to study 
the free vibration response for the composite and sandwich plates. Duc et al. [11] employed an analytical method (AM) to analyze the 
nonlinear thermal dynamic behavior of FGM plates. In Ref. [12], he also studied the static bending and free vibration of FG carbon 
nanotube-reinforced composite plates using the AM. Mahmoudi et al. [13] based on a refined quasi-3D to investigate the FG sandwich 
plates on the EF subjected to thermo-mechanical loading. Thang et al. [14] calculated the buckling of FGM variable-thickness plates on 
the EF under compressive loading. Thien et al. [15] analyzed the buckling of nanoplates on the EF using isogeometric analysis (IGA). 
Thanh et al. [16] employed an ES-FEM to study the dynamic response of FGP plates and sandwich auxetic honeycomb plates on the EF 
[17] under moving loads. Ke et al. [18,19] used FEM to investigate the static bending, vibration, and buckling response of FG 
nanoplates lying on the EF. 

Recently, the mechanical behavior of FGM structures subjected to different loads in the high-temperature environment is studied by 
many researchers. For example, Talha et al. [20] used the TSDT to consider the static and dynamic responses of FGM plates with 
different boundary conditions (BC). Zenkour [21] and Shen et al. [22] computed the deflection, bending moments, and stresses of the 
FGM plate on the EF under uniform and sinusoidal loads in a thermal environment. Moreover, the buckling analyses of FG plates under 
the thermal loads have also been widely discussed in Refs. [23–31]. Nuttawit et al. [32] analyzed the dynamic response of FGM plates 
under high temperature by using an improved TSDT. Tinh et al. [33] examined the mechanical behavior of FGM plates at high 
temperatures using TSDT combine with FEM, and in Ref. [34], Shen analyzed nonlinear FGM plates/shells under mechanical and 
thermal loads. 

In the efforts to enhance the performance of the structural analysis, the MITC3 element [35] has combined with the ES-FEM [36] to 
create the ES-MITC3 element [37–43]. Using the ES-MITC3 element, the stiffness matrix is calculated over the edges of the MITC3 
elements instead of over the element as the classical FEM. The numerical results showed that the ES-MITC3 has many superior 
properties in the mechanic problem such as [37]: (1) it can avoid transverse shear locking even the thickness of the structure is very 
minimum; (2) it has better accuracy than the original triangular elements and MITC3 [35], DSG3 [44] and CS-DSG3 [45]; and is a good 
competitor with the MITC4 element [46] which set the same number of nodes. In the latest researches, to enhance the efficiency of FEM 
for analyzing the mechanical behavior of structures, Shuhui Ren and co-workers proposed a stabilized node-based smoothed radial 
point interpolation method (SNS-RPIM) to investigate the behavior of functionally graded magneto-electro-elastic (FGMEE) structures 
in the thermal environment [47] and in the hydrothermal environment [48]. Zhou et al. [49] analyzed the dynamic response of 
intelligent composite structures under the thermal and mechanical loads using the cell-based smoothed finite element method 
(CS-FEM) and the coupled multi-physics CS-FEM (so-call CPCS-FEM). They point out that their method is higher accuracy, lower mesh 
restriction, and much less calculation than the classical FEM. Zhou and his colleagues [50] also employed the CS-FEM to analyze 
time-dependent mechanical responses of MEE structures around Curie temperature. In addition, readers can find valuable results on 
the mechanical behavior of MEE structures in Refs. [51–53]. 

Nowadays, the applying of artificial intelligence (AI) in science as well as in mechanical problems becomes a hot trend. ANN is one 
of the types of AI that works based on the flexible, simultaneous working process of the human brain and imitates how the human brain 
works. The ANN can be processed with numerous data at the same time with less cost of time. In detail, after the training process, the 
neural network can be perceived as the similarities from the new input data [54]. Some publications used AI to present mechanical 
behaviors such as the design of experiments [55], genetic algorithms [56], optimization [57], fuzzy logic [58], and finite element 
analysis [59], and so on. Esmailzadeh et al. [60] combined FEM with an ANN to simulate an equal channel angular pressing for the 
process of creating an aluminum alloy. Miguel et al. [61] created an ANN to predict exactly the buckling load of the beam subjected to 
uniformly loads. The ANN models can predict the fundamental frequencies of structures with input data large enough. Furthermore, 
using the ANN model helps reduce computation time and cost. 

Based on the above-mentioned article review, the purpose of this paper now is to extend the ES-MITC3 element for the free vi-
bration analyses of FGM plates resting on the EF in the thermal environment and create an ANN to predict the fundamental frequency 
of them. The numerical results compare with other published researches to verify the effectiveness of our work. Finally, the influences 

Fig. 1. The FGM plate is resting on EF.  
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of geometric parameters, material properties on the free vibration of FGP plates are also studied. 

2. Modeling the FGM plate resting on EF 

Fig. 1 displays the FGM plate on the EF. The distance between the physical neutral surface and the geometric middle surface is 
determined as follows [34]: 

h0 =

∫h/2

− h/2

zE(z)dz

/ ∫h/2

− h/2

E(z)dz (1) 

The volume ratio of ceramics and metals varies through thickness following formulation [34]: 

Vc +Vm = 1 and Vc(z)=
(

z
h
+

1
2

)n

(2) 

with − h/2 ≤ z ≤ h/2, n is the volume fraction index. Subscripts c and m represent the ceramic and metal components, respectively. 
The properties of FGM change through thickness with the volume fraction index (n) and temperature (T) expressed as [33]: 

P(T, z)= (Pc(T) − Pm(T))Vc + Pm(T) (3)  

where: P is a symbol for Young’s modulus (E); Poisson’ ratio (ν); mass density of material (ρ) and coefficient of thermal expansion (α). 
Material properties of ceramic and metal vary in temperature as follows [33]: 

P(T)=P0
(
P− 1T − 1 + 1+P1T +P2T2 +P3T3) (4)  

with P0, P− 1 P1 P2, P3 depend on different materials. 
The temperature varies through thickness of the FGM plate is written by Ref. [33]: 

T(z)=Tm + (Tc − Tm)Λ(z) (5)  

in which Tc, Tm are respectively the temperature of ceramic and metal. The temperature distribution function Λ(z) is given by Ref. [33]: 

Λ(z)=
1
C

[(
1
2
+

z + h0

h

)

−
Kcm

(n + 1)Km

(
1
2
+

z + h0

h

)n+1

+
K2

cm

(2n + 1)K2
cm

(
1
2
+

z + h0

h

)2n+1

−
K3

cm

(3n + 1)K3
cm

(
1
2
+

z + h0

h

)3n+1 

+
K4

cm

(4n + 1)K4
cm

(
1
2
+

z + h0

h

)4n+1

−
K5

cm

(5n + 1)K5
cm

(
1
2
+

z + h0

h

)5n+1]

(6)  

in which 

C = 1 −
Kcm

(n + 1)Km
+

K2
cm

(2n + 1)K2
cm

−
K3

cm

(3n + 1)K3
cm

+
K4

cm

(4n + 1)K4
cm

−
K5

cm

(5n + 1)K5
cm

Kcm = Kc − Km

(7)  

with Kc, Km are respectively thermal conductivity of ceramic and metal. 
In this work, the EF is Winkler-Pasternak foundation model [2] with two parameters, the relationship between force and 

displacement in this foundation is modeled as follows: 

qe = k1w(x, y) − k2

(
∂2

∂x2 +
∂2

∂y2

)

w(x, y) (8)  

with w is the displacement along z-axis; k1 and k2 are respectively two-parameter of foundation stiffness. The Winkler-Pasternak 
foundation also includes the Winkler foundation when ignoring the effect of shear parameter (k2). 

3. The first-order shear deformation theory and weak form of FGM plates 

3.1. First-order shear deformation theory for FGM plates 

The displacement field of the FGM plate based on the FSDT as follows [62]: 
⎧
⎨

⎩

u (x, y, z) = u0(x, y) + (z − h0)θx(x, y)
v (x, y, z) = v0(x, y) + (z − h0)θy(x, y)
w (x, y, z) = w0(x, y)

(9)  

in which u0, v0, w0, θx, θy are five unknown displacements of the mid-surface of plates. The strain field can be written by: 

T.T. Tran et al.                                                                                                                                                                                                         



Case Studies in Thermal Engineering 24 (2021) 100852

4

ε= εm + (z − h0)κ (10) 

The membrane strain 

εm =

⎧
⎨

⎩

u0,x
v0,y
u0,y + v0,x

⎫
⎬

⎭
(11) 

The bending and transverse shear strains 

κ=

⎧
⎨

⎩

θx,x
θy,y
θx,y + θy,x

⎫
⎬

⎭
(12)  

γ =
{

w0,x + θx
w0,y + θy

}

(13) 

The stress-strain relations of the plate can be obtained as 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σx
σy
τxy
τxz
τyz

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎣

Q11 Q12 0 0 0
Q21 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q55 0
0 0 0 0 Q44

⎤

⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εx
εy
γxy
γxz
γyz

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(14)  

in which 

Q11 = Q22 =
E(T, z)

1 − ν(T, z)2;Q12 = Q21 =
ν(T, z)E(T, z)
1 − ν(T, z)2 ;

Q44 = Q55 = Q66 =
E(T, z)

2(1 + υ(T, z))

(15)  

3.2. Weak form equations 

Using Hamilton’s principle, we obtain the motion equations of the plate as follows [62]: 

∫t2

t1

(δU − δK )dt= 0 (16)  

where the strain energy U is defined as 

U =U
p + U

f (17)  

with U f represents the strain energy of the foundation: 

U
f =

1
2

∫

ψ

(

k1w2 − k2

[(
∂2w
∂x2

)2

+

(
∂2w
∂y2

)2])

dψ (18)  

and U p is the strain energy of plates: 

U
p =

1
2

∫

ψ

(
εT Dbε+ γT Dsγ

)
dψ (19)  

in which ε = [ εm κ ]T and 

Db =

[
A B
B F

]

(20) 

A B, F, and Ds are determined by 

(A,B,F)=
∫h/2

− h/2

(
1, (z − h0), (z − h0)

2)

⎡

⎣
Q11 Q12 0
Q21 Q22 0
0 0 Q66

⎤

⎦dz (21)  
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Ds =

∫h/2

− h/2

[
Q55 0
0 Q44

]

dz (22) 

The kinetic energy of the plate 

K =
1
2

∫

Ψ

u̇Tmu̇dΨ (23)  

in which uT =
[

u0 v0 w0 θx θy
]
, and m is obtained by: 

m=

⎡

⎢
⎢
⎢
⎢
⎣

I1 0 0 I2 0
I1 0 0 I2

I1 0 0
I3 0

I3

⎤

⎥
⎥
⎥
⎥
⎦

(24)  

in there (I1, I2, I3) =
∫h/2

− h/2
ρ(1, (z − h0), (z − h0)

2
)dz. 

Substituting Eqs. 17 and 23 into Eq. (16), we obtain the weak form formulation following as 
∫

ψ

δεT Dbεd+
∫

ψ

δγT Dsγdψ+

∫

ψ

δwT
[

k1w − k2

(
∂2w
∂x2 +

∂2w
∂y2

)]

dΨ=

∫

Ψ

u̇T mu̇dΨ (25)  

4. An ES-MITC3 method for the plate 

4.1. Formulation of the MITC3 element 

The bounded domain of plates ψ⊂R 2 is disjointed into ne finite triangular elements with nn nodes such that ψ ≈
∑ne

e=1
ψe and ψi ∩

ψj = ∅, i ∕= j. When the displacements ue = [ue
j , ve

j , we
j , θe

xj, θe
yj]

T of element ψe are approached as [35]: 

ue(x)=
∑nne

j=1

⎡

⎢
⎢
⎢
⎢
⎣

NI(x) 0 0 0 0
0 NI(x) 0 0 0
0 0 NI(x) 0 0
0 0 0 NI(x) 0
0 0 0 0 NI(x)

⎤

⎥
⎥
⎥
⎥
⎦

de
j =

∑nne

j=1
N(x)de

j (26)  

where nne is the total of nodes; N(x) presents the shape function; and de
j = [ue

j , ve
j , we

j , θ
e
xj, θe

yj]
T are the degrees of freedom (DOF) of a 

node. 
The strain field of MITC3 element is indicated as follows: 

εe
m = [Be

m1 Be
m2 Be

m3 ]d
e = Be

m de (27)  

κe = [Be
b1 Be

b2 Be
b3 ]d

e = Be
b de (28)  

where 

Be
m1 =

1
2Ae

⎡

⎣
b − c 0 0 0 0
0 d − a 0 0 0
d − a b − c 0 0 0

⎤

⎦, (29)  

Be
m2 =

1
2Ae

⎡

⎣
c 0 0 0 0
0 − d 0 0 0
− d c 0 0 0

⎤

⎦, (30)  

Be
m3 =

1
2Ae

⎡

⎣
− b 0 0 0 0
0 a 0 0 0
a − b 0 0 0

⎤

⎦, (31)  

Be
b1 =

1
2Ae

⎡

⎣
0 0 0 b − c 0
0 0 0 0 d − a
0 0 0 d − a b − c

⎤

⎦, (32) 
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Be
b2 =

1
2Ae

⎡

⎣
0 0 0 c 0
0 0 0 0 − d
0 0 0 − d c

⎤

⎦, (33)  

Be
b3 =

1
2Ae

⎡

⎣
0 0 0 − b 0
0 0 0 0 a
0 0 0 a − b

⎤

⎦, (34) 

The formulation of the MITC3 element based on FSDT [35] to avoid shear locking problem is represented as follows: 

γe =Be
s de (35)  

in which 

Be
s = [Be

s1 Be
s2 Be

s3 ] (36)  

with 

Be
s1 = J− 1

⎡

⎢
⎢
⎣

0 0 − 1
a
3
+

d
6

b
3
+

c
6

0 0 − 1
d
3
+

a
6

c
3
+

b
6

⎤

⎥
⎥
⎦ (37)  

Be
s2 = J− 1

⎡

⎢
⎢
⎣

0 0 1
a
2
−

d
6

b
2
−

c
6

0 0 0
d
6

c
6

⎤

⎥
⎥
⎦ (38)  

Be(0)
s3 = J− 1

⎡

⎢
⎢
⎣

0 0 0
a
6

b
6

0 0 1
d
2
−

a
6

c
2
−

b
6

⎤

⎥
⎥
⎦ (39)  

where 

J− 1 =
1

2Ae

[
c − b
− d a

]

(40) 

in which a = x2 − x1, b = y2 − y1, c = y3 − y1, d = x3 − x1, and Ae is the area of the triangular element as indicated in Fig. 2. 
Substituting the displacement field into Eq. (25), the system equation for the free vibration analysis of plates is expressed as follows: 

(
K − ω2M

)
d= 0 (41) 

Fig. 2. Model of the triangular element.  
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where K and M are the stiffness and mass matrices. 
The stiffness matrix: 

K =
∑ne

e=1

(
Ke

p +Ke
f

)
, (42)  

where 

Ke
p =

∫

ψe

BT DbBdψe +

∫

ψe

BT
s DsBsdψe (43)  

and 

Ke
f = k1

∫

ψe

NT
wNwdψe + k2

∫

ψe

[(
∂Nw

∂x

)T(∂Nw

∂x

)

+

(
∂Nw

∂y

)T(∂Nw

∂y

)]

dψe (44)  

in which 

Be = [Be
m Be

b ] (45)  

Nw = [00N100, 00N200, 00N300] (46) 

The mass matrix: 

M =
∑ne

e=1
Me

p (47)  

where 

Me
p =

∫

ψe

NT mNdψe (48)  

4.2. An ES-MITC3 method for FGP plates 

The smoothing domains ψk is built based on edges of the MITC3 elements such that ψ = ∪nk

k=1 ψk and ψk
i ∩ ψk

j = ∅ for i ∕= j. An 
edge-based smoothing domain ψk connected with the inner edge k is formed by connecting two end-nodes of the edge to the centroids 
of adjacent triangular elements, as depicted in Fig. 3. 

Fig. 3. The smoothing domain ψk of triangular elements.  
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Using the edge-based smooth technique [37], the strain fields ε̃k
m, κ̃k

, γ̃k over the smoothing domain ψk are calculated as: 

ε̃k
m =

∫

ψk

εm Φk(x)dψ, (49)  

κ̃k
=

∫

ψk

κ Φk(x)dψ, (50)  

γ̃k
=

∫

ψk

γ Φk(x)dψ, (51)  

where Φk(x) is a smoothing function that satisfies at least 
∫

ψk
Φk(x)dψ = 1. 

Using the constant smoothing function as [37]: 

Φk(x)=

⎧
⎪⎨

⎪⎩

1
Ak x ∈ ψk

0 x ∕∈ ψk
(52)  

in which Ak is the area of domain ψk with: 

Ak =

∫

ψk

dψ =
1
3
∑nek

i=1
Ai (53)  

where nek is the total MITC3 elements in the smoothing domain ψk; and Ai is the area of the ith element attached to the edge. k.
Substituting Eqs. (49)–(51) into Eqs. (27), (28) and (35), the strain field of the smoothing domain ψk can be defined by: 

ε̃k
m =

∑nnk

j=1
B̃

k
mjd

k
j ; κ̃k

=
∑n

nk
sh

j=1
B̃

k
bjd

k
j ; γ̃k

=
∑n

nk
sh

j=1
B̃

k
sjd

k
j ; (54)  

where nnk
sh is the total of nodes of the MITC3 elements attached to edge k (nnk

p = 1 for boundary edges and nnk
p = 2 for inner edges as 

given in Fig. 3; dk
j is the DOFs of nodes connected with the smoothing domain ψk; B̃

k
mj, B̃

k
bj, and B̃

k
sj computed by 

B̃
k
mj =

1
Ak

∑nek

i=1

1
3
AiBe

mj (55)  

B̃
k
bj =

1
Ak

∑nek

i=1

1
3
AiBe

bj (56)  

B̃
k
sj =

1
Ak

∑nek

i=1

1
3

AiBe
sj (57) 

Then, the stiffness matrix of the FGM plate is assembled by 

K̃=
∑n

k
sh

k=1
K̃

k
(58)  

where K̃
k 

is the ES-MITC3 stiffness and computed by 

K̃
k
=

∫

ψk

(
B̃

kT
DbB̃

k
+ B̃

kT
s DbB̃

k
s

)
dψ= B̃

kT
DbB̃

k
Ak + B̃

kT
s DsB̃

k
s Ak (59)  

in which 

B̃
kT
=
[

B̃
k
mj B̃

k
bj

]
(60)  
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5. Accuracy of the ES-MITC3 element 

Firstly, authors consider the fully simple support (SSSS) FGM plate (Al/Al2O3) with their material properties: metal (Al) Em =

70 GPa, ρm = 2702 kg/m3, and ceramic (Al2O3) Ec = 380 GPa, ρc = 3800 kg/m3, υ = 0.3 are fixed. The following non-dimensional 
parameters are defined by Refs. [8,9]: 

K1 =
k1a4

Hm
;K2 =

k2a2

Hm
with Hm =

Emh3

12(1 − υ2)
; Ω = ωh

̅̅̅̅̅̅
ρm

Em

√

(61) 

It can be found that the numerical results of the present method agree well with those by an analytical method based on a new 
quasi-3D hyperbolic theory [8], more accurate than using TSDT [9] and the original MITC3 element as shown in Table 1. 

Secondly, the non-dimensional fundamental frequencies of a fully clamped (CCCC) FGM plate in thermal environments (without 
the EF) are studied. The material properties are shown in Table 2, the volume fraction index is n = 1. The geometrical parameters of 
the plate are considered: b = a; h/a = 0.1. The non-dimensional fundamental frequency is determined by the formulation: 

Ω=ω b2

h

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρ0
(1 − ν2

0)

E0

√

(61)  

where E0 and ρ0 are the reference values of Em and ρm at T0 = 300K. 
The numerical results of the proposed method are compared with those in the literature [32,33] and presented in Table 3. These 

results agree well with those in published work [33] which use FEM based on the TSDT, and the error is about 3.5% when compared 
with reported results using the analytical method [32]. It means that the present method is highly reliable. 

6. Numerical results 

In this subsection, an SSSS FGM plate in a thermal environment with Tc = 400K and Tm = 300K. The geometrical parameters a =

b, h = a/50 and the stiffness of EF: K1 = 100, K2 = 10 are considered. The material properties are listed in Table 2 with the volume 
fraction index n = 1. The first six non-dimensional fundamental frequencies of the FGM plate are listed in Table 4. Besides, the first six 
mode shapes are also plotted in Fig. 4. The foundation stiffness and non-dimensional fundamental frequencies as follow Eq. (62) with 
H0 = E0h3

12(1− ν2
0)

; in which E0, ρ0, and ν0 are the reference values of Em, ρm, and νm at T0 = 300K, respectively. It can be seen that the second 

and third mode shapes are similar to each other (the fundamental frequencies are approximated to each other, the difference is due to 
the direction of the observation). It is suitable for the symmetrical plates under the same boundary conditions. 

6.1. Effect of temperature T and volume fraction index n 

To examine the effects of temperature and volume fraction index, we now examine the SSSS FGM plate with a = b, h = a/ 25. The 
material properties of FGM are listed in Table 2. Temperature value Tc change from 300 to 1500K, Tm = 300K is fixed. The volume 
fraction index gets values. n = 0, 1, 2, 5, 10, ∞.

From Fig. 5 and Table 5, it can be seen that when the increase of Tc and n gives the non-dimensional fundamental frequencies of 
plate decrease. It is understandable because Tc and n increase leads to the stiffness of the plate decreases while the mass of the plate 
does not change. Specifically, when the increase of n from 0 to 10 gives the first non-dimensional fundamental frequency of the plate 
decreases strongly, and it changes very little when n is greater than 10. It also can be seen that when Tc changes from 300 K to 1000 K 
leads to the slight change of the first non-dimensional fundamental frequency of the plate and the decrease of the first non-dimensional 
fundamental frequency of the plate when Tc is bigger 1000 K. In all of the cases, the ceramic-rich plates have greater hardness and 
better heat resistance than the metal plates. High strength and good heat resistance are the basic properties of structures made of the 

Table 1 
The first non-dimensional fundamental frequencies of FGM plates according to the EF.  

(K1, K2) k Present Δ(%) MITC3 Δ(%) [9] Δ(%) [8] 

(0, 0) 0 0.0291 0.000 0.0291 0.000 0.0290 0.344 0.0291 
1 0.0225 0.442 0.0225 0.442 0.0227 0.442 0.0226 
2 0.0205 0.485 0.0205 0.485 0.0209 1.456 0.0206 
5 0.0194 0.513 0.0194 0.513 0.0197 1.026 0.0195 

(100, 0) 0 0.0298 0.000 0.0301 1.007 0.0298 0.000 0.0298 
1 0.0235 0.424 0.0235 0.424 0.0238 0.847 0.0236 
2 0.0217 0.459 0.0216 0.917 0.0221 1.376 0.0218 
5 0.0207 0.481 0.0207 0.481 0.0210 0.962 0.0208 

(100, 100) 0 0.0411 0.000 0.0413 0.487 0.0411 0.000 0.0411 
1 0.0385 0.259 0.0385 0.259 0.0388 0.518 0.0386 
2 0.0381 0.522 0.0381 0.522 0.0386 0.783 0.0383 
5 0.0384 0.260 0.0384 0.260 0.0388 0.779 0.0385  
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FG materials. 

6.2. Effect of the stiffness of the EF 

Next, the influences of the foundation stiffness K1, K2 are investigated. Let us consider a SSSS FGM plate has a = b, h = a/ 25; K1 
change from 10 to 100, K2 from 0 to 10, and the volume fraction index is n = 1. The first non-dimensional fundamental frequency of 
the FGM plate is presented in Table 6 and shown in Fig. 6. From these figures and tables, it can be observed that the increase of K1 and 
K2 gives the non-dimensional fundamental frequency increases. This problem can be explained that two parameters of foundation 
make the plate stiffness greater, and when the increase of temperature leads to the plate stiffness reduces. We also can be found that the 
stiffness of Pasternak K2 is more effective than the stiffness of Winkler K1. 

6.3. Creating an ANN model 

To predict the non-dimensional fundamental frequencies of the plate, we first have to train the ANN model by several sets of 
material parameters, stiffness of EF, and non-dimensional fundamental frequencies. We set up the ANN model to have four input data: 
temperature (Tc), volume fraction index (n), stiffness of the foundation K1, K2; one data output is the non-dimensional fundamental 
frequencies (see Fig. 7). In this model, we randomly choose fifteen data input for training in a total of 20, and the rest five data to test. 
In this work, the ANN is designed in MATLAB software. It contains the following 3 layers: Input layer - the activity of the input data 
represents the raw information that can feed into the network, Hidden layer - to determine the activity of each hidden data. The 
activities of the input data and the weights on the associations of the input and the hidden data. There may have one or more hidden 
layers and the output layer. The output data depends on the activity of the hidden data and the weights between the hidden and output 
data. To prepare for this work, three files are created: Data_input, Data_output, and Predict_output. In which Data_input includes material 

Table 2 
Temperature-dependent coefficients of FGM plates.  

Material Properties P0  P− 1  P1  P2  P3  

Si3N4  Ec (Pa)  349.43 × 109  0 − 3.070 × 10–4  2.160 × 10–7  − 8.946 × 10–11  

αc (1/K)  5.8723 × 10–6  0 9.095 × 10–4  0 0 
Kc (W/m K)  13.72 0 0 0 0 
νc  0.240 0 0 0 0 
ρc (kg/m3)  2370 0 0 0 0 

SU304  Em (Pa)  201.04 × 109  0 3.079× 10–4  − 653,4× 10–7  0 
αm (1/K)  12.330 × 10–6  0 8.086× 10–4  0 0 
Km (W/m K)  15.379 0 0 0 0 
νm  0.326 0 − 2.002× 10–4  3.797× 10–7  0 
ρm (kg/m3)  8166 0 0 0 0  

Table 3 
Non-dimensional fundamental frequencies of FGM plates in thermal environments.   

ΔT = 100 K  ΔT = 200 K  ΔT = 300 K  

Present 13.4393 13.2936 13.1163 
Δ(%) 3.41 1.25 1.35 
MITC3 13.3821 13.2371 13.0606 
Δ(%) 3.82 1.67 0.92 
[33] 13.433 13.280 13.093 
Δ(%) 3.46 1.35 1.17 
[32] 13.915 13.462 12.941 

Note that: Δ(%) = 100 ×

⃒
⃒Ωpre − Ωfre

⃒
⃒

Ωfre 
with Ωpre is the non-dimensional fundamental frequency in this paper and Ωfre is non- 

dimensional fundamental frequencies in references. 

Table 4 
Non-dimensional fundamental frequencies of the FGM plate.  

Ω1  Ω2  Ω3  Ω4  Ω5  Ω6  

0.0808 0.1936 0.1941 0.299 0.3655 0.3655  
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parameters and stiffness of foundation, Data_output is the first non-dimensional fundamental frequencies of the FGM plate (these 
frequencies are calculated in the previous section), and Predict_output includes material parameters and the foundation stiffness of the 
ANN to predict the first non-dimensional fundamental frequencies. Then, by using the established calculation program, the authors 
calculated the first non-dimensional fundamental frequencies separately and compared them with ANN’s predicted results. In a hidden 
layer, we change the number of neurons from 5 to 20. The training time of an ANN depends strongly on weight and bias updates. In 
MATLAB software, the weights are automatically updated after each value of the input data. Furthermore, there is one-parameter as 
the momentum value is used to avoid stuck in local optimization. Besides, the learning rate is often established the data in a range of 
0.001–10. It depends on during the training process, and the momentum has remained at an average value equal to 0.8. After the 
training process, we find that twenty neurons achieved the most accurate prediction of frequencies. Results of training are presented in 
Table 7. The predicted result of non-dimensional fundamental frequencies by the ANN is listed in Table 8. The percentage error is 
defined as follows: 

Δ(%)= 100 ×
|Predict data − Computation data|

computation data
(62) 

From Table 8, it can be seen that errors are less than 2%. This ANN algorithm can predict exactly the non-dimensional fundamental 
frequencies of the FGM plate. Thus, the model can be applied to different structures, which only need to set the input data, detail 
targets, the number of input data, testing, and choose the number of neurons of the hidden layers also as the momentum. 

7. Conclusions 

In this article, the free vibration of FGM plates on the EF in the thermal environment is investigated. We used the ES-MITC3 element 
to create the governing equation of FGM plates. An ANN is also created to predict the non-dimensional fundamental frequencies. Our 
work has the following advantages: 

Using the ES-MITC3 element represents a good agreement with the other methods. It is also more accurate than using the classical 
MITC3 and original triangular element. 

Set up an ANN model that can be predicted relatively accurate non-dimensional fundamental frequencies of FGM plate with input 
four-parameter. 

Fig. 4. The six mode shapes the FGM plate resting on EF in thermal environments.  
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Fig. 5. The first non-dimensional fundamental frequencies of the FGM plate with various values of T and n. (a) K1 = K2 = 0; (b) K1 = 100; K2 =

0; (c) K1 = 100; K2 = 10. 

Table 5 
The first non-dimensional fundamental frequencies of the FGM plate on the EF.  

(K1 ;K2) Tc  n  

0 1 2 5 10 ∞  

(0; 0) 300 0.02190 0.01517 0.01337 0.01206 0.01100 0.01051 
500 0.02168 0.01502 0.01325 0.01195 0.01090 0.01041 
700 0.02149 0.01489 0.01313 0.01184 0.01079 0.01028 
900 0.02132 0.01476 0.01300 0.01171 0.01064 0.01011 
1100 0.02114 0.01461 0.01285 0.01155 0.01044 0.00987 
1300 0.02094 0.01444 0.01268 0.01135 0.01019 0.00954 
1500 0.02070 0.01422 0.01245 0.01110 0.00986 0.00910 

(100; 0) 300 0.02367 0.01657 0.01467 0.01327 0.01215 0.01164 
500 0.02347 0.01643 0.01455 0.01317 0.01206 0.01156 
700 0.02330 0.01631 0.01444 0.01307 0.01196 0.01144 
900 0.02314 0.01619 0.01433 0.01295 0.01182 0.01128 
1100 0.02297 0.01606 0.01420 0.01281 0.01165 0.01107 
1300 0.02279 0.01590 0.01404 0.01264 0.01142 0.01078 
1500 0.02256 0.01570 0.01383 0.01241 0.01113 0.01039 

(100; 10) 300 0.02684 0.01904 0.01695 0.01540 0.01417 0.01362 
500 0.02667 0.01893 0.01685 0.01532 0.01409 0.01355 
700 0.02652 0.01882 0.01676 0.01523 0.01400 0.01345 
900 0.02638 0.01871 0.01666 0.01513 0.01388 0.01331 
1100 0.02623 0.01860 0.01654 0.01501 0.01374 0.01313 
1300 0.02607 0.01846 0.01641 0.01486 0.01355 0.01289 
1500 0.02587 0.01830 0.01623 0.01467 0.01330 0.01256  
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Two parameters of the EF are K1 and K2 increase stiffness, while the increase of temperature decrease stiffness of the FGM plate. 
The material parameter n also influences on the free vibration of the plates. Specifically, increasing n leads to the stiffness of the 

plate decreases due to the volume factor of ceramic in the plate reduces. 
This study can expand to analyze other structures resting on the EF in the thermal environment using different theories. Set up an 

ANN in Matlab software to predict output-parameter for complicated mechanical systems. 

Table 6 
Non-dimensional fundamental frequencies of the FGM plate with various values of K1 and K2.  

Temperature K2 K1 

10 30 50 70 100 

Tc = 300 K 
Tm =

300 K  

0 0.01351 0.01377 0.01404 0.01429 0.01467 
3.0 0.01429 0.01454 0.01479 0.01503 0.01539 
5.0 0.01478 0.01503 0.01527 0.01550 0.01585 
7.0 0.01526 0.01550 0.01573 0.01596 0.01630 
10 0.01596 0.01618 0.01641 0.01663 0.01695 

Tc = 1000 K 
Tm = 300 K  

0 0.01307 0.01335 0.01361 0.01388 0.01427 
3.0 0.01387 0.01413 0.01439 0.01464 0.01501 
5.0 0.01438 0.01463 0.01488 0.01512 0.01548 
7.0 0.01488 0.01512 0.01536 0.01559 0.01594 
10 0.01559 0.01582 0.01605 0.01627 0.01660 

Tc = 1500 K 
Tm = 300 K  

0 0.01260 0.01288 0.01316 0.01343 0.01383 
3.0 0.01343 0.01370 0.01396 0.01422 0.01460 
5.0 0.01396 0.01421 0.01447 0.01472 0.01508 
7.0 0.01446 0.01471 0.01496 0.01520 0.01555 
10 0.01519 0.01543 0.01566 0.01589 0.01623  

Fig. 6. Non-dimensional fundamental frequencies of the FGM plate with various values K1, K2. 
(a) Tc = Tm = 300 K; (b) Tc = 1000 K; Tm = 300 K; (c) Tc = 1500 K; Tm = 300 K. 
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