
International Journal of Pressure Vessels and Piping 189 (2021) 104274

Available online 30 November 2020
0308-0161/© 2020 Published by Elsevier Ltd.

Predicting burst pressure of defected pipeline with Principal Component 
Analysis and adaptive Neuro Fuzzy Inference System 

Hieu Chi Phan a, Huan Thanh Duong b,* 

a Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi, 100000, Viet Nam 
b Faculty of Engineering, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, 100000, Viet Nam   

A R T I C L E  I N F O   

Keywords: 
Burst pressure 
Corrosion 
Soft computing 
Principal component analysis 
Adaptive neuro fuzzy inference system 

A B S T R A C T   

Pipeline is an important and valuable infrastructure for transporting oil and gas which expanding a long distance 
and working in a corrosive environment. Consequently, corrosion becomes one of the most critical threads for 
metal material pipeline. The high internal pressure in an oil and gas pipeline is the additional factor leading to 
the high risk of bursting. Various models predicting the burst pressure of defected pipeline have been developed 
in literature. However, evaluating burst pressure of defected pipe is a nonlinear mechanical problem with the 
appearance of the stress concentration, accuracy of the existing models is not high and the issue still open. The 
application of data-driven approach with soft computing and machine learning has been a potential and 
promising approach. This paper investigates the application of Adaptive Neuro Fuzzy Inference System (ANFIS) 
and a data transforming technique for dimension reduction and noise elimination, the Principal Component 
Analysis (PCA). The PCA has demonstrated its ability in noise removal for the database and ANFIS provides an 
improvement in the accuracy of the prediction. The developed model is the combination of ANFIS and PCA, the 
ANFIS-PCA model, has overwhelmed other existing models by archiving the correlation of determination at 
0.9919 and the Root Mean Square Error decreases to 0.9883 MPa. Observations on the difference network 
configurations and number of epochs also provided.   

1. Introduction 

Transporting oil and gas with high strength steel pipeline is a 
commonly choice because of the continuous and stable characteristics. 
These structures expand to a long distance with various severe envi-
ronments which can directly affect to the mechanical capacity of them. 
Some of the hazards for the pipeline can be named as toxic components 
in the transported materials, corrosive soil, ice gouging, land sliding or 
earth quake etc. Among such factors, corrosion is the most significant 
cause leading to the reduction of pipe reliability and various studies 
have been conduct to understand the mechanism of failure of defected 
pipe. These defects significantly reduce the capacity of pipe-shaped 
structures especially when they suffer from internal pressure. 

Various models have been developed to predict the burst pressure of 
pipes under the internal pressure which can be mainly categorized as 
analytical or empirical approaches. The analytical approach which 
based on mechanical theory faces a difficult to deal with the appearance 
of defects causing the stress concentration and the locally change of pipe 
shape. A few researches have been attempted to provide the analytical 

equation to predict burst pressure compared to the empirical approach 
[1–3]. The common approach is to develop empirical model. The 
empirical models partly based on the mechanical relationship between 
input variables and the experiment or simulation data from to optimized 
the factors in an explicit equation. The factors may be limited to less 
than 10 and the accuracy of the model depend on both the structure of 
the equations and the database used to developed them. Most of the 
existing models in literature belong to this category [4–6]. 

However, recent researches revealed that both analytical and 
empirical models only provided a medium evaluation metric on pre-
dicting burst pressure compared to Finite Element Analysis (FEA) or 
experiments [6–8]. Phan et al. [6] has recognized the limitations of the 
existing models and revisited 3 of them based on an optimization al-
gorithm with the optimized variables are the empirical factors in the 
equation and the objective function is the error on the database obtained 
from FEA. The factors adjustment based on a database has significantly 
improved the models. Keshtegar et al. [7] has a wonderful validation for 
more than 30 existing models which depicts the high Mean of Absolute 
Error, (i.e. MAE) of such models, ranging from 3.183 MPa up to more 
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than 30.249 MPa and about a quarter of models have MAE larger than 
10 MPa on the test dataset. This is unacceptable with a database has the 
mean of burst pressure at 24.448 MPa. Amaya-Gómez et al. [8] provide a 
summary of ratios of predict-to-test burst pressures of 22 models and 
there are models produce low means of this ratio at around 0.7–0.8 
along with the coefficient of variances are significantly high at 0.16 to 
0.31. These studies have demonstrated an urge of improving the accu-
racy of burst pressure models. 

The recent surge of data-driven models, which are heavily depend on 
the relationship of input the database, provides another approach for the 
prediction task in engineering and science. There are various techniques 
in machine learning and soft computing have been developed for pre-
dicting the output. Some of them are Artificial Neural Network (ANN), 
Support Vector Machine (SVM), Random Forest (RF) and Bayesian 
Network, Adaptive Neuro Fuzzy Inference System (ANFIS). Despite of 
the success of these models in other fields, machine learning and soft 
computing have not gain much concerned for predicting pipe burst 
pressure. There are rarely seen researches conducted this approach, 
some of few studies are [9–11]. The ANN has been applied for pipe with 
both single and multiple defects in Ref. [9,10]. Silva et al. [9] uses neural 
network to predict the burst pressure of multiple corrosion defects using 
the database from FEA. Chin et al. [10] conducted ANN for the pipe with 
single defect based on a database collected from literature. This 
approach has also been implemented with another machine learning 
model, the SVM. None of such data-driven models for have tried to 
preprocessing the database to obtain better results, the boundaries of the 
data-driven model, which naturally set by the range of the inputs is 
limitedly discussed. 

To the best of our knowledge, the application of ANFIS for the pre-
diction of burst pressure under internal pressure have not been devel-
oped. ANFIS is firstly introduced by Jiang [12] with various applications 
for a variety of engineering problems such as but not limit to geo-
technique [13,14] or finding material properties [8,15,16] etc. This soft 
computing method is a hybrid system of a neural network and Fuzzy 
Inference System (FIS) through the training process to optimized the 
membership functions, MF, of inputs and the rule weight. 

A drawback of the ANFIS is the exponential decrease of number of 
rules due to the increase of number of inputs and this leads to the 
explosive in computational cost. Consequently, the use of ANFIS may 
need a dimension reduction technique and the Principal Component 
Analysis (PCA) which is a data transformation aimed to the ranked the 
transformed data due to their variances is applied in this paper. Inputs 
with least variables thus can be removed or the feature selection is 
implemented. The PCA also well-known for the capacity of noise 
reduction in database and consequently improve the accuracy of the 
prediction [16–19]. 

In this study, the database is collected globally from various studies 
available in literature. The application of ANFIS to predict the burst 
pressure of the defected pipeline is implemented with and without PCA 
to observe the effectiveness of this technique. Along with this investi-
gation, various network configurations for ANFIS will be conducted in a 
grid search. Comparison study of ANFIS and other available models also 
provided to illustrate the effectiveness of the developed models. 

2. Material and methods 

2.1. Existing burst pressure models 

In general, both analytical and empirical models agree with the 
formation of burst pressure P model for defected pipe as the multiple of 
the burst pressure of the intact pipe, P0, and the reduction factor, f, as in 
Eq. (1). 

P= f (D, t, d, L,w) × P0(D, t, σ) (1)  

P0 =
2tσ
D

(2) 

The intact burst pressure is a function of material strength or 
allowable stress, σ, and pipe dimension including diameter, D, and pipe 
wall thickness, t. The widely accepted format of P0 is the Barlow’s for-
mula in Eq. (2) with minor variations. Allowable stress of material may 
be the yield stress σy (e.g. Ref. [1,2]) and a large number of models use 
the ultimate tensile strength σu (e.g. Refs. [4–6]). 

The defect, which has the complex and random shape, is commonly 
idealized to be rectangle-shaped as in Fig. 1. The defect dimensions are: 
defect depth, L; and sometimes there is an appearance defect width, w 
(e.g. Ref. [20]). The reduction factor is a function of normalized defect 
dimensions based on pipe dimensions such as d/t, L/D or L̅̅̅̅

Dt
√ [4–6,21]. A 

variety formats of the burst pressure equations mostly deprived from 
these factors. There are 7 existing equations given in Table 1 are chosen 
as the examples of the burst pressure equation format in Eq. (1) and they 

Fig. 1. Dimensions (depth × length × width, d × L × w) of the idealized defects in the pipe suffered from internal pressure P.  

Table 1 
The reference models.   

Model Equation 

1 Netto et al. (2005) [4] 
P = P0 ×

(

1 − 0.9435
(

d
t

)1.6(L
D

)0.4
)

2 ASME B31G (2012) [5] 

P = P0 ×

⎛

⎜
⎝

1 −
d
t

1 −
d

tM*

⎞

⎟
⎠

3 Gajdoš and Šperl (2012) 
[3] P = P0 ×

⎛

⎜
⎝

1 −
πd
4t

1 −
d
t

⎞

⎟
⎠

4 Modified PCORRC 
(2004) [21] P = P0 ×

(

1 −
d
t

(

1 − exp
(

− 0.157
L̅̅
̅̅̅

Dt
√

)))

5 Phan et al. (2017) Model 
1 [6] P = P0 ×

(

1 − 0.88555
(

d
t

)0.98077(L
D

)0.31053
)

6 Phan et al. (2017) Model 
2 [6] 

P = P0 ×

⎛

⎜
⎜
⎜
⎝

1 − 0.92126
d
t

1 − 0.92126
d
t

(

1 + 0.06361
L2

Dt

)− 2.75485

⎞

⎟
⎟
⎟
⎠

7 Phan et al. (2017) Model 
3 [6] P = P0 ×

⎛

⎜
⎝1 −

1.24678
d
t

1 + 12.6739
t
L

⎞

⎟
⎠

*M: Folias factor M =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 0.6275
L2

Dt
− 0.003375

L4

D2t2

√

for
L2

Dt
≤ 50; M =

0.032
L2

Dt
+ 3.3 for

L2

Dt
> 50 
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are latter used as the reference models for the proposed model. 

2.2. Principal Component Analysis (PCA) 

The main idea of the PCA technique is to orthogonally project data 
with n dimensional inputs and m samples, Xnxm, to the principal sub-
space with n1 dimensions in which the variance of the transformed data 
is maximized or the sum of square of projection errors is minimized [22]. 
Fig. 2 illustrates the basic idea of PCA with a database of 2 inputs x1 and 

x2 with the variances are σ1 and σ2, respectively. By a projection to the 
new space, inputs of database now are the principle components x*1 and 
x*2 with the variances are σ1 and σ2. The variance of x*1 is maximized 
with a large σ1 and the sum of square of data points to x*2 is minimized 
with the minimized σ2. The small value of sum of square of projection 
errors leads to the ignorable of the principle component x*2 and the 
large variance of x*1 implied the capacity of this principal component to 
explain the variance of the overall database. 

Mathematically, if the covariance matrix, CV, is expressed as: 

CVnxn =
1
m

∑m

i=1
(xi − x)(xi − x)T

=
1
m

X × X
T

(3)  

where: xi is column vector corresponding to data of each datapoint and x 
is the mean vector of the inputs x = 1

m
∑m

j=1xj. Consequently, X is the 
normalized matrix of database X. 

Designating λj and ej where i = [1, …,n] as the eigenvalues and ei-
genvectors of the CV matrix where: 

CV × ej = λj × ej (4) 

Denoting Unxn1 is a matrix where Xnxm can be projected to the 
principal n1 dimension subspace by UT

n×n1Xn×m. It is proofed that if the 
first n1 eigenvectors of CV matrix, ej where j = [1, …,n1], are used to 
establish the Unxn1 = [ej] matrix, the maximum of variance of the 
transformed data or the sum of square of projection errors as in the 
definition of the PCA can be satisfied. The eigenvalue of principal 
component ith, λi, is the explanation of this principal component to the 
variance of all database. Thus, we have 

∑n
i=1λi = 1 and 

∑n1
i=1λi is the 

cumulative explanation of the selected principal components. The 

Fig. 2. Illustration of PCA with a 2 inputs database.  

Fig. 3. Inputs with Gaussian MFs with R rules and Sugeno output weighted average method in FIS.  
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database Xnxm is transformed to the new subspace as matrix X*
n1×m by: 

X*
n1×m =UT

n×n1 × Xn×m (5)  

2.3. Adaptive Neuro Fuzzy Inference System (ANFIS) 

Introduced since 1993 by Jang [12], the ANFIS is the hybrid soft 
computing method which combines the Fuzzy Inference System FIS 
which has the advantage of explaining the patterns in the database and 
the neural network which has the capacity of accurately predict the 
output [23]. The FIS based on the linguistic-interpretable fuzzy rules 
and input MFs for decision making. An illustration of the Sugeno FIS can 
be observed in Fig. 3 with a system with n input 1, …, n; each of them 
has 3 Gaussian MFs. Assuming that there is a sample with n inputs [x1; 
…; xn], in the example from Fig. 3, it is equivalent to [0.8; …; 0.35]. This 
sample can be fuzzified into 3 MFs of input 1 = 0.8 (i.e. in1mf1, in1mf2 
and in1mf3) and input n = 0.35 (i.e. innmf1, innmf2 and innmf3). 
Linguistically, the MFs [in1mf1, in1mf2, in1mf3] can be interpreted as 
[low, medium, high] based on its values, respectively. Assuming that 
there is an existing set of R rules used to define the output MFs (i.e. 
[out1mf1, out1mf2, …, out1mfR]) of the output such as: 

Rule 1: If (Input 1 is in1mf3) and … and (Input n is innmf2) then 
(Output = out1mf1 is z1) 

… 
Rule k: … … … … 
…. 
Rule R: If (Input 1 is in1mf2) and … and (Input n is innmf2) then 

(Output = out1mfR is zR) 
The output thus has R MFs of [out1mf1, …, out1mfR] = [z1, …, zR] 

(constants in this study) and corresponding weights w1, …, wR. The crisp 
output of the FIS can be found by weighted average as in Fig. 3 and Eq. 
(6). The weights, wk with k = 1, …, n, can be found by a given manner (i. 
e. and method in Fig. 3 or and logical gate in Fig. 4) which is the product 
of membership functions corresponding to a given rule (i.e. Fi(.) with 
i = 1, …,n) of the n variables in this study. The full version of zk for 

Suneo type of FIS is given in Eq. (7) but simplified to be zk = ck (i.e. 
ak1 = ak2 = … akn = 0) in this study. 

z=

∑R

k=1
wkzk

∑R

k=1
wk

(6)  

zk =
∑n

i=1
aki + ck (7) 

Without the training process, the use of FIS is hard to provide proper 
MFs of inputs and the weights wk corresponding to each rule. The 
neutral network thus applied to tune the Gaussian MFs (i.e. by adjusting 
the mean and standard deviation) and the weights of rules to minimize 
the error on the training set. In this study, the Root Mean Square Error, 
RMSE, is used as the objective function of this optimization. An example 
of the structure of the ANFIS is given in Fig. 4 with the first layer is the 
crisp input, which is fuzzified with the inputmf layer which contain a 
selection of nodes, each of these nodes is presented for the MF of each 
input. This layer is connected to the next layer with a set of nodes rep-
resented for the set of rules. The inputmf of inputs are combined with the 
rule and then the output MFs are obtained at the outputmf layer. This 
layer then converged to a node as the weighted average z as in Fig. 3. 
The training and validating processes in this study are implemented on 
Matlab®. 

3. Results and discussion 

3.1. Data collecting 

Database used for training ANFIS contained 217 samples is gathered 
from published studies including Ma et al. [24] (79 experiment sam-
ples), Shuai et al. [25] (39 FEA samples and 14 experiment samples), 
Phan et al. [6] (28 FEA samples), Freire et al. [26] (17 experiment 
samples) and Cronin [27] (40 experiment samples). Descriptive statistics 
of the database are given in Table 2. The database covered a wide range 
of steel grades including X42, X46, X52, X56, X60, X65, X80, X100 and 
some anonyms due to the missing data. The Ultimate Tensile Strength 
ranges from 309 MPa to 886 MPa (there is none of N/A for σu). Different 
pipe sizes are collected from both experiment and simulation with di-
ameters ranges from 76.2 mm to 1320 mm and wall thicknesses from 
2 mm to 25.4 mm. The data contains both intact and defected pipes with 
depth to thickness ratio varies within [0, 0.8] and length of the defects 
are up to 1432.560 mm. Width of the defects are not included in the 
input data because this input is observed to have minor effect to the pipe 
burst pressure and absence in many available models in literature as can 
be seen in Table 1 and reviewed in Ref. [7,8,25,27]. The predicted 
variable or the burst pressure ranges from 3.570 MPa to 35.968 MPa. 
This set of data ranges (bolded in Table 2) is used as the boundary of the 
developed model. The database is split into train set and test set with the 
ratio of 8:2. The train set uses 173 samples for the training the model and 
the test set with 44 samples uses for validating the trained models. 

Fig. 4. Example of an ANFIS network structure.  

Table 2 
Descriptive statistics of the database.  

# Metric D t d L σu Pactual 

1 count 217 217 217 217 217 217 
2 mean 482.906 9.397 4.424 314.023 554.132 15.279 
3 std 242.888 4.506 2.998 294.417 84.741 6.752 
4 min 76.200 2.000 0.000 0.000 309.000 3.570 
5 25% 323.600 6.400 2.620 99.060 481.130 10.210 
6 50% 324.104 8.585 3.750 243.000 542.000 13.580 
7 75% 508.000 9.800 6.818 466.700 598.900 21.100 
8 max 1320.000 25.400 15.410 1432.560 886.000 35.968  
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3.2. Grid searching for the best ANFIS 

As can be seen in Table 3, the most significant principle x*1 account 
for more than 68% of the overall variance of the database followed by 
x*2 with 29.1%. The combination of x*1 and x*2 thus can explain most of 
the total variance (97.76%). x*3, x*4 and x*5 are the least significant 

level with the explain variance at 2.21%, 0.03% and 0.01%, 
respectively. 

Grid searching for both ANFIS with PCA (designated as ANFIS-PCA) 
and without PCA are conducted and provided in Table 4. Along with the 
development of ANFISs with original database without the PCA (i.e. 
Attempt 1), the transformed databases with 4, 3 and 2 principal com-
ponents used in attempts 2, 3 and 4, respectively. 

In each attempt, several trials are implemented with the adjustment 
of Gaussian MFs. The number of epochs of the training process is 
regularly chosen at 10000 with some exceptions on the Attempt 2 when 
this value intentionally changed to observe the effect of epoch to the 
result. The relative difference of RMSEs of train and test set provides an 
intuition of the overfitting, the scenario that the model well predicted on 
train set but badly on the test set, if it is occurred. 

The best models in this attempt is Model 1.1, which contain 2 MFs for 
each input, has the RMSE on the train and test set are 1.4723 MPa and 

Table 3 
Explain variances of Principle Component.  

Principle Component Explain Variance 
λi  

Cumulative Explanation 
∑n1

i=1λi  

X*1 0.6865 0.6865 
X*2 0.2910 0.9776 
X*3 0.0221 0.9997 
X*4 0.0003 0.9999 
X*5 0.0001 1.0000  

Table 4 
Grid search for selecting best configuration for the network.  

Attempt Trial/Model Number of Inputs, n Epochs Number of input MFS RMSEtrain (MPa) RMSEtest (MPa) Relative difference of RMSEa 

1 1.1 Original (5) 10000 2 2 2 2 2 1.4723 2.3513 0.5970 
1 1.2 Original (5) 10000 3 3 3 3 3 0.92875 10.0764 9.8494 
2 2.1 4 100000 2 2 2 2 0.6805 0.9883 0.4523 
2 2.2 4 10000 2 2 2 2 0.7378 1.0485 0.4211 
2 2.3 4 1000 2 2 2 2 0.8459 1.1304 0.3363 
2 2.4 4 100 2 2 2 2 1.1456 1.4254 0.2442 
2 2.5 4 10 2 2 2 2 1.1380 1.1372 − 0.0007 
2 2.6 4 10000 5 2 2 2 0.4058 1.2902 2.1794 
2 2.7 4 10000 3 3 3 3 0.1843 2.2299 11.0993 
3 3.1 3 10000 2 2 2 5.7025 6.3969 0.1218 
3 3.2 3 10000 3 3 3 4.2414 18.7202 3.4137 
3 3.3 3 10000 4 4 4 3.0930 44.4064 13.3571 
4 4.1 2 10000 2 2 5.8088 6.5054 0.1199 
4 4.2 2 10000 3 3 5.2718 6.2452 0.1846 
4 4.3 2 10000 4 4 4.7500 4.7499 0.0000 
4 4.4 2 10000 5 5 4.1742 7.1229 0.7064  

a (RMSEtest - RMSEtrain)/RMSEtrain. 

Fig. 5. MFs of input variables in Model 2.1.  
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2.3513 MPa, respectively. Compared with the mean value of burst 
pressure in Table 2 (15.279 MPa), this evaluation metric implied a 
reasonable model and further observed in the next part of the study. In 
model 1.2, RMSE on the test set is 10.0764 MPa, an unacceptable result 
for the output. The relative difference of RMSE of this model exploded to 
9.8494 confirms that the overfitting occurred. 

Attempt 2 with only 4 eigenvectors used preprocessing seems to be 
the best options compared to both original ANFIS and other ANFIS-PCAs 
models (i.e. in attempts 3, 4). Model 2.1 has the lowest RMSE at 0.9883 
on the test set, and thus, chosen to be the final model (Table 4). Because 
the final model appeared in this Attempt, more observations imple-
mented with the change of epochs and number of MFs in each input. 
RMSEs in models from 2.1 to 2.5 decrease gradually from 1.1372 MPa to 
0.9883 MPa, respectively. It is worth noting that a very appropriate 
RMSE at 1.1372 MPa on the test set is reached after only 10 epochs in 

Model 2.5. This error value even higher than RMSE of Model 1.1 with 
RMSE on the test set at 2.3513 MPa. This observation provides a 
conclusion that with the proper configuration, ANFIS-PCA can be 
developed fast and provided a proper model with only few epochs. 

Other trials on Attempt 2 are the change of number of MF for the 
most important principal component from 2 to 5 (trial 2.6) and increase 
MFs of all inputs from 2 to 3 (trial 2.7). In trial 2.6, RMSE on the train set 
decrease significantly to 0.4058 MPa but this value is slightly increasing 
to 1.2902 MPa on the test set. This implies a slight overfitting with the 
increaset of MFs on the most critical principal component x*1. This 
overfitting increases with the relative difference RMSE jumping to 
11.0993 in Trial 2.7. However, the RMSE on the test set of this model is 
reasonable at 2.2299 and slightly larger than this of Model 1.1. 

Attempt 3 and 4 not provide any proper configurations for ANFIS 
with the appearance of high values of RMSEs is consistently larger than 3 
and up to 44.4064. The overfitting also occurred with relative difference 
RMSE increases to 13.3571 in Model 3.3. Analogous to Attempt 2, there 
is a trend of increasing MFs of input leading to the increase of errors in 
Attempt 3. This tendency is not appeared in Attempt 4 with a fluctuation 
of this metric appeared. 

Details of the adaptive MFs of input for the ANFIS-PCA are in Fig. 5 
and the set of rules for the models are in Table 5 with the corresponding 
MF for the output. The scatter plots of the predicted versus actual burst 
pressures of Model 1.1 and 2.1 provided in Fig. 6 illustrates the effective 
of such models. Most of the data points scatter densely around the 1:1 
line in both cases. This implies the capacity of the models to predict the 
burst pressure close to the actual values. The higher density of ANFIS- 
PCA model around 1:1 line compared with the ANFIS graphically de-
picts its lower RMSEs (0.9883 compared to 2.3513, respectively). 

Comparison of soft computing models with other reference models 
are given in Table 6 with the outstanding of soft-computing model with 
the significant improvement in evaluations metrics. The application of 
PCA effectively improves the coefficient of determination, R2, the 

Table 5 
Rules for the ANFIS-PCA with the corresponding output MF.  

# Linguistic Rules Output MF 

1 1. If (X1 is in1mf1) and (X2 is in2mf1) and (X3 is in3mf1) 
and (X4 is in4mf1) then (P_(MPa) is out1mf1 = z1) 

z1 = -145.9760 

2 2. If (X1 is in1mf1) and (X2 is in2mf1) and (X3 is in3mf1) 
and (X4 is in4mf2) then (P_(MPa) is out1mf2 = z2) 

z2 = 216.7739 

3 3. If (X1 is in1mf1) and (X2 is in2mf1) and (X3 is in3mf2) 
and (X4 is in4mf1) then (P_(MPa) is out1mf3 = z3) 

z3 = − 12.1173 

4 4. If (X1 is in1mf1) and (X2 is in2mf1) and (X3 is in3mf2) 
and (X4 is in4mf2) then (P_(MPa) is out1mf4 = z4) 

z4 = 32.2241 

5 5. If (X1 is in1mf1) and (X2 is in2mf2) and (X3 is in3mf1) 
and (X4 is in4mf1) then (P_(MPa) is out1mf5 = z5) 

z5 = -47.7218 

6 6. If (X1 is in1mf1) and (X2 is in2mf2) and (X3 is in3mf1) 
and (X4 is in4mf2) then (P_(MPa) is out1mf6 = z6) 

z6 = 99.7615 

7 7. If (X1 is in1mf1) and (X2 is in2mf2) and (X3 is in3mf2) 
and (X4 is in4mf1) then (P_(MPa) is out1mf7 = z7) 

z7 = − 184.8438 

8 8. If (X1 is in1mf1) and (X2 is in2mf2) and (X3 is in3mf2) 
and (X4 is in4mf2) then (P_(MPa) is out1mf8 = z8) 

z8 = 296.7603 

9 9. If (X1 is in1mf2) and (X2 is in2mf1) and (X3 is in3mf1) 
and (X4 is in4mf1) then (P_(MPa) is out1mf9 = z9) 

z9 = − 139.0048 

10 10. If (X1 is in1mf2) and (X2 is in2mf1) and (X3 is in3mf1) 
and (X4 is in4mf2) then (P_(MPa) is out1mf10 = z10) 

z10 = 161.9820 

11 11. If (X1 is in1mf2) and (X2 is in2mf1) and (X3 is in3mf2) 
and (X4 is in4mf1) then (P_(MPa) is out1mf11 = z11) 

z11 = − 77.0989 

12 12. If (X1 is in1mf2) and (X2 is in2mf1) and (X3 is in3mf2) 
and (X4 is in4mf2) then (P_(MPa) is out1mf12 = z12) 

z12 = 110.0268 

13 13. If (X1 is in1mf2) and (X2 is in2mf2) and (X3 is in3mf1) 
and (X4 is in4mf1) then (P_(MPa) is out1mf13 = z13) 

z13 = − 72.6329 

14 14. If (X1 is in1mf2) and (X2 is in2mf2) and (X3 is in3mf1) 
and (X4 is in4mf2) then (P_(MPa) is out1mf14 = z14) 

z14 = 114.1636 

15 15. If (X1 is in1mf2) and (X2 is in2mf2) and (X3 is in3mf2) 
and (X4 is in4mf1) then (P_(MPa) is out1mf15 = z15) 

z15 = − 73.9586 

16 16. If (X1 is in1mf2) and (X2 is in2mf2) and (X3 is in3mf2) 
and (X4 is in4mf2) then (P_(MPa) is out1mf16 = z16) 

z16 = 118.1119  

Fig. 6. Scatter plot of predicted with a) Model 1.1 and b) model 2.1 (ANFIS-PCA) versus actual burst pressure.  

Table 6 
Comparison of developed ANFIS to reference models on the test set.  

Group Model RMSE R2 MAE 

ANFIS ANFIS without PCA 2.3513 0.9516 1.7423 
ANFIS-PCA 0.9883 0.9919 0.6917 

Reference models Netto et al. (2005) 2.4902 0.8829 2.0863 
Gajdoš and Šperl (2012) 2.7434 0.8579 2.1563 
ASME (2012) 2.0516 0.9205 1.5797 
Modified PCORRC (2004) 2.0346 0.9218 1.6026 
Phan et al. 1 (2017) 2.0773 0.9185 1.6927 
Phan et al. 2 (2017) 1.8116 0.9380 1.4444 
Phan et al. 3 (2017) 2.0964 0.9170 1.7515  
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models from 0.9516 (ANFIS) to 0.9919 (ANFIS-PCA). The ANFIS-PCA 
model also outdistances other existing models with R2 ranges from 
0.8829 (Netto et al., 2005) to 0.9380 (Phan et al., 2017). The RMSE of 
ANFIS-PCA at 0.9883 MPa is about a half of those of other models which 
ranges from 1.8166 MPa to 2.7434 MPa. 

4. Conclusions 

The study has developed a high accuracy model for burst pressure 
predicting bases on PCA and ANFIS. The grid search, which tries 
different configurations for both ANFIS and ANFIS-PCA, is necessary to 
be applied while both overfitting and low-accuracy models found with 
inappropriate network configurations and number of MFs used for each 
input. The increase of number of MFs seems to be useless to improve the 
quality of the models. In many cases, the increase of this value may lead 
to high error on test set, overfitting, or both. 

The PCA technique has significantly improved the model with the 
RMSE is cut off a half from 2.3513 MPa to 0.9883 MPa. The chosen 
model uses a set of 4 most significant principal components which 
explain up to 0.9999 variance of the database. The ignorance of the last 
principal component is not only reducing the calculation cost but also 
removing the unnecessary noise appeared in the database. The model is 
also tested with different number of epochs. It is interesting that ANFIS- 
PCA required a limited number of epochs (i.e. 10 epochs) to obtain a 
model with acceptable evaluation metric in Model 2.5. The evaluation of 
the ANFIS and ANFIS-PCA models with other existing empirical models 
shows the advantage of using data-driven models on the evaluation 
process. Without the PCA, the ANFIS has a R2 of 0.9516, higher than any 
of those of references models. With the PCA, this value outdistances 
other models with R2 up to 0.9919. 
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