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Abstract — This paper proposes an application of Elman 

recurrent neural networks as state observer to estimate 

electromechanical variable coordinates in electric drive control 

system of the optical-mechanical complex. The mathematical 

description of electric drive of the optical-mechanical complex is 

developed in the form of a two-mass elastic system. These elastic 

vibrations can be damped by using additional feedback signals 

from the elastic moment and the load velocity. The architecture 

of dynamic recurrent neural networks-based Elman scheme in 

investigated in the form of vector-matrix model, which allows 

approximating a wide class of nonlinear dynamic systems. 

During computer simulation in the MATLAB/Simulink 

environment, the comparison of the root-mean-square error 

between different learning algorithms for Elman's recurrent 

neural networks was carried out to study their accuracy 

estimates coordinates in a closed loop control system of optical-

mechanical complex. 

Keywords — Optical-mechanical complex; Elman recurrent 

neural networks;  neural state observer; two-mass elastic system 

I. INTRODUCTION 

The purpose of this article is to synthesize a neural 
network observer, used recurrent neural networks according to 
the Elman scheme, to estimate immeasurable 
electromechanical states in the control system of the tracking 
electric drive of the optical-mechanical complex guidance, 
taking into account the influence of nonlinear disturbances and 
measurement noise. Compared to the Kalman filter, the neural 
network observer requires less computational time, which 
reduces the implementation cost. In addition, in the case of a 
special microprocessor structure (for example: a 
programmable logic integrated circuit - FPGA), the time 
required to start one cycle of the recurrent neural networks 
(RNNs) algorithm can be significantly reduced due to the fact 
that RNNs allows parallel data processing, in contrast to the 
Kalman filter, the algorithm of which is consistent [1-2]. 

II. ELMAN RECURRENT NEURAL NETWORKS  

The optical-mechanical complex guidance system is a 
nonlinear elastic control object. Therefore, for the synthesis of 
an observer of state variables, it is expedient to use recurrent 
neural networks made according to the Elman scheme [3-4]. 
Elman's dynamic recurrent neural networks are multilayer 
perceptrons containing input and / or output delays. Therefore, 
complex nonlinear objects can be processed according to 

Elman's scheme. The RNNs architecture according to the 
Elman scheme is shown in Fig. 1. 

The use of delay feedback allows one to describe the 
Elman RNNs in the form of a state space model. Consider the 
RNNs according to Elman's scheme (Fig. 1), containing 
inputs, neurons of the first hidden layer, covered by feedback 
through delay elements and neurons of the output layer. 
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Fig. 1. Architecture of Elman neural network 

Then the mathematical model of Elman's RNNs is 
described by a discrete nonlinear system of differential 
equations: 
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where ( )kx - n - dimensional vector of the state of the system, 

consisting from n  neurons of the first hidden layer of the 

RNNs; ( )ku - m - dimensional vector of inputs, consisting 

from m  RNNs inputs; ( )ky - p - dimensional vector of inputs, 

consisting of neurons from p  the output layer; 
a

W - ( )n n×  - 

dimensional matrix of synaptic weight of neurons of the first 

hidden layer; 
b

W - ( )n m×  - dimensional matrix of the synaptic 
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weight of neurons at the input of the RNNs; С - ( )m p× - 

dimensional matrix of synaptic weight of output layer 

neurons; ( )f ⋅ - nonlinear activation functions. 

Now we consider the task of training the Elman RNNs. 
Currently, there are two types of teaching methods: "online 
learning" and "offline learning". 

The learning process of the "offline learning" RNNs, 
considered in this article, assumes that the object state variable 
is obtained at the output of Elman's RNNs. In this case, the 
training set of Elman's RNNs consists of control signals of the 
object and measured state variables with delays as in the 
NARMA [5] models. 

[ ]ом ( ), ( 1), , ( ), ( 1),
T

k k k k= − −M u u d dK K           (2) 

where омM is the training set of Elman's RNNs; ( )ku - the 

vector of the control signal of the control object at the moment 

of time k ; ( )kd - vector of real values of measured state 

variables. 

The learning process of Elman's RNNs refers to the 

calculation of synaptic matrices 
a

W  and 
b

W  in (1) with a 

training set (2), it is necessary to optimize the quality 
functional of the RNNs. For this, the quality functional of the 

RNNs ( )E w  can be written in the form of the root mean 

square error (RMSE) over the entire number of images N  of 
the training set: 
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where i - the index of the training image; 

ˆ( ) ( ) ( )
i i i

k k k= −e d y - the error vector between the value of 

the output signal vector of the Elman RNNs ˆ ( )
i

ky  and its real 

value ( )
i

kd  at the k-th iteration. 

The most popular learning algorithms for Elman's RNNs 
for optimizing the quality functional (3) include: 
backpropagation gradient descent (traingd) algorithm; 
adaptive gradient descent backpropagation (traingdx), 
Levenberg – Marquardt backpropagation (trainlm); a 
backpropagation gradient descent algorithm on scaling 
conjugation (trainscg) [5]. 

III. NEURAL NETWORK OBSERVER FOR OPTICAL-MECHANICAL 

COMPLEXES ELECTRIC DRIVE. 

The considered electric drive optical-mechanical complex, 
as a control object, is a nonlinear two-mass elastic system [6, 
7]. The mathematical description of control object can be 
written in the form of a system of differential equations as: 
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where 1J  - total moment of inertia of the motor rotor, axle 

shaft and inner rings of bearings (first mass); 2J  - moment of 

inertia of the optical-mechanical complex pipe (second mass); 

21b - shaft damping coefficient; 21c - stiffness coefficient; 1ω - 

angular speed of the first mass; 2 2φ ,ω - angular position and 

speed of the second mass, respectively; 0φ - clearance in the 

gearbox kinematics; 21T - the torque of elastic connection 

between the masses; 1 2,
f f

T T - nonlinear moments of friction 

of motion in bearings of the first and second masses; 
L

T - 

external disturbing torque acting on the second mass; 21M̂ , 

2ω̂ - estimates of the elastic torque, the angular speed of the 

second mass at the output of the neural network observer 

Elman; 
e

β , 
e

T - the transfer ratio and constant time of the 

current regulator; [ ]1 2 3 4, , ,k k k k=K - vector of coefficients 

of the optimal speed controller; φ
ss

- setting signal of the 

angular position at the input of the position regulator, φ
ss

 - 

setting speed φ . 
sr

k - coefficient of speed regulator. 

The architecture of Elman's neural network observer for 
assessing state variables in the optical-mechanical complex 
guidance system is shown in Fig. 2. 
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Fig. 2. The architecture of Elman's neural network observer 
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In the case under consideration, Elman's neural network 
observer is used to restore unmeasured state variables: elastic 

torque ( 21T̂ ), angular  speed of the second mass ( 2ω̂ ). This 

neural network observer has three-layer Elman RNNs with a 
dimension of 6-15-3, which consists of 6 neurons in the input 
layer, 15 neurons in the hidden layers and two neurons in the 
output layer. As input signals of the neural network observer, 

the data of the motor current (
m

i ; m- motor) and the angular 

speed of the motor ( 1ω ) with a delay are used. The depth of 

unit delays at the Elman RNN input is two. The activation 
functions in the hidden layers are hyperbolic tangential 
(tansig), and in the output layer they are linear with constraints 
(satlins). 

The simulation model of the closed-loop system of the 
tracking electric drive position of the optical-mechanical 
complex in the MATLAB / Simulink environment is shown in 
Fig. 3. In the Subsystem 1 block, there is a mathematical 
model of the optical-mechanical complex in the form of a two-
mass elastic system, the electromechanical parameters of 
which are shown in detail in [6]. The Subsystem 2 block is the 
optimal speed controller and the Subsystem 3 block is the PI 
position regulator. 
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Fig. 3. A simulation model of a closed system in the MATLAB / Simulink  

In the block diagram of modeling shown in Fig. 3, the 
Elman Neural Network block is implemented using the Neural 
Networks Tool application package. 

IV. SIMULATION RESULTS 

The training set data for the training process is collected by 

the motor current (
m

i ) and motor speed ( 1ω ) sensors. The 

amount of data in the training and test sets is 610 samples. The 

discrete for the Elman RNNs learning process is 410
s

T −= s. 

The value of the reference angular velocity entering the input 

of the speed controller is equal to 2 r s10 ad/− . The external 

disturbing moment of resistance acts on the second mass 2 s 
after the beginning of the transient process. 

To study the effect on the RMSE of the estimation of state 
variables when training the neural network observer Elman, 
various training algorithms are used for the same time 
intervals and constant computational parameters of the 
computer.  

In Fig. 4-6 show the results of modeling the estimation of 
the angular velocity of the second mass and the elastic 
moment between the masses after the learning process of the 
neural network observer Elman, where: fig. 4 – estimation 
results with the a gradient descent training algorithm (traingd); 
fig. 5 – estimation results with the gradient descent training 
algorithm for scaling conjugation (trainscg); fig. 6 – 
estimation results with the Levenberg - Marquardt training 
algorithm (trainlm). 
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Fig. 4. Estimation results with the gradient descent training algorithm 
(traingd) 
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Fig. 5. Estimation results with the gradient descent training algorithm for 
scaling conjugation (trainscg) 
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Fig. 6. Estimation results with the Levenberg - Marquardt training algorithm 
(trainlm) 
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The curves in Fig. 4-6 represent transient processes of 
elastic moment between masses, angular speed of the second 
mass and are designated as follows: 1 – elastic torque between 

masses ( 21T ); 1'– estimated elastic torque between masses 

( 21T̂ ); 2 – angular speed of the second mass ( 2ω ); 2' – 

estimated angular speed of the second mass ( 2ω̂ ). 

The results of comparing the value of the RMSE training 
RNNs Elman as a neural network observer of the state 
between the training algorithms are shown in Table 1. 

TABLE 1: PERFORMANCE COMPARISIONS 

Learning algorithm type 
RMSE 

training 

Epoch 

training 

Gradient descent algorithm (traingd) 26.3 31 

Gradient descent algorithm for blending 

scaling (trainscg) 
12.1 458 

Levenberg – Marquardt Algorithm 

(trainlm) 
0.25 166 

 

The simulation results presented in Fig. 4-6 and in table 1 
show that such learning algorithms as the gradient descent 
algorithm and the gradient descent algorithm for scaling the 
conjugation do not cope with the task at all due to the large 
value of the standard deviation. The Levenberg - Marquardt 
learning algorithm best copes with the task with a small value 
of RMSE = 0.25. 

V. CONCLUSION 

 In this article, the method for synthesizing a neural 
network observer based on Elman's recurrent neural networks 
was proposed , which allows identifying electromechanical  
state variables in the control system of the tracking electric 
drive of guidance for the optical-mechanical complex based 
on the feedback signals of the current and the angular speed of 
the motor. The simulation results showed that the efficiency of 
using a neural network observer depends on the chosen 
architecture, the training algorithm of Elman's recurrent neural 
networks and is related to the accuracy of their estimation. 
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