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Abstract—The article proposes a method to evaluate and 

compensate uncertain disturbance in exoskeleton electric drive 
control system. The mathematical model for exoskeleton electric 
drive system with taking into account the nonlinear components 
and the interaction force between exoskeleton and lower 
extremities is developed.  The PD control combined with the RBF 
adaptive neural network is investigated with linear-quadratic 
regulator as the basic foundation of the feedback design to 
evaluate and compensate the unknown disturbances in control 
system. The PD ingredient is applied to stabilize the dominant 
model. The simulation results in Matlab/Simulink indicate that 
the proposed PD-linear quadratic regulator with adaptive neural 
network compensation is more efficiency in compared with the 
conventional PD-linear quadratic regulator. 

Keywords—Exoskeleton; electric drive; control system; 

disturbance estimation; disturbance compensation; neural network. 

I. INTRODUCTION

The exoskeleton electric drive control system is a complex 
system that requires high precision to ensure the stable 
movement of patients. The complexity of such systems due to 
the presence of elastic mechanical links.  In the transient 
process, these links oscillate by themselves, which ultimately 
leads to complete instability of the operation of the 
exoskeleton electric drives. For a system including an 
exoskeleton and its wearer, there is no assurance that 
conventional regulators will provide the expected performance 
under external disturbances. Thus, it is a necessary real 
problem to the creation of reliable controllers in case of taking 
into account all of nonlinearities and disturbances. Several 

methods of controlling the exoskeleton and its wearer were 
proposed based on the preliminary determination of the 
dynamic parameters [1], [2]. This method can be effective 
when the exoskeleton is worn by the same people in the same 
environments. Other approaches considered universal 
exoskeletons with the adaptive control which can be worn by 
people of different morphology [3], [4]. Several works on 
nonlinear control of exoskeletons were found in [5], [6]. 

II. MATHEMATICAL MODEL OF THE EXOSKELETON ELECTRIC

DRIVES SYSTEM 

The electric driver system of the exoskeleton hip and knee 
joints has the same design. Therefore, we will consider a 
physical model of the hip joint of an exoskeleton electric drive 
system as shown in Fig. 1 [7], where the driving motor is a 

brushless DC motor with parameters: av , ai —phase voltage

and current on the phase winding a stator respectively; 

,a aR L  —resistor and inductance of the stator phase winding,

respectively; 
mM —torque on the engine shaft; 

mθ —rotor

angular position; 
mJ —rotor moment of inertia; 

fM —frictional

torque; 
gJ —inertia torque of gear; gr —gear ratio;

gθ —

angular position of the gearbox output shaft; ,g sk k —rigidity;

,g sd d —damping; 
sθ — angular position of the spur gear;

aLaR

av

mθ

gJ

gr

gθ

gd

gk

sθ

sk

sd

lθ

cl lk

mM fM

Fig .1. Block diagram of the exoskeleton electric drives system 
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cl  —rigid connection between the torque sensor and the 

human lower limb; force interaction between the exoskeleton 
and the lower limb, which is modeled as a spring with 

stiffness lk ; lθ  —angular position of the lower-limb. 

The mathematical model of the system is built by a vector-
matrix as follows: 
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The mathematical model of the system is described by a 
vector-matrix as follows: 

                            
( , )= + + +


=

&
d x u

y

x Ax Bu B F d

Cx
                 (1) 

where 1 2 3 4 5 6

T
x x x x x x =  x —vector of state 

variables: 1 ax i= , 2 mx θ= , 3 mx θ= & , 4 sx θ= , 5 sx θ= & , 

6 lx θ= ;
6 6R ×∈A —matrix of states; 

1
0 0 0 0 0

T

aL

 
=  
  

B —control matrix; 

1
0 0 0 0 0
 

= − 
+  

T

d
m gJ J

B  —disturbances 

matrix; 0 0 0 0 0 1 =  C  —output matrix; 

(x, u) 0 0 (x, u) 0 0 0
T

f =  F —vector of a 

nonlinear function, where the mathematical expression for 
calculating friction that takes the form [8]: 

1 2 3 3 3( , ) t anh( )f x u x xα α α= + , 

where , 1,2, 3i iα ∈ ∀ = —unknown positive constants; 

0 0 ( ) 0 0 0
T

d t =  d —matrix of slowly changing 

external disturbances that cannot be measured and blocked

( ) md t d< . 

III. CONTROL SYSTEM SYNTHESIS 

In this section, we propose a control method consisting of 
PD and adaptive RBF (Radial Basis Function) compensator 
for the disturbances. A linear quadratic regulator (LQR) is 
used as the basic foundation of the feedback design with 
estimation and compensation of the disturbance by neural 
network (NN) for purpose of synthesizing the exoskeleton 
electric drive control system. The block diagram of the control 
system is shown in Fig. 2. 
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Fig. 2. The block diagram of the control system 

The optimal control using LQR synthesis with the function 
of quality indicators is given as: 

0

1

2

T TJ dt

∞
 

=    x Qx + u Ru  

where Q—weighted symmetric diagonal matrix expressing the 

tracking mismatch between the actual and the specified 

desired behavior of the control object ( 0≥Q ); R —weighted 

symmetric diagonal matrix reflecting an abrupt change in 
control actions ( 0>R ). The negative feedback matrix K is 
defined corresponding to the LQR control method. 

In this study, the RBF neural network is used to perform 
synthesis, evaluate and compensate the undefined disturbance. 
With the feedback matrix, the kinematics of the control system 
(1) can be written as: 

                 ,m d x u′=x A x + Bu + B F ( ) + d&                        (2) 

where mA = A - K , (x, u) 0, .. (x, u), 0..
T

f ′ =  F  

The nonlinearity and perturbation elements (2) are 
estimated by: 

      ˆ ˆ( , )m m m d x u= + + +x A x Bu B F d&                    (3) 
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where mx —state vector of evaluation model;  

ˆ ˆ( , ) 0, .. ( , ), ..
T

x u f x u =  F —nonlinear function estimation  

vector of ( , )x u′F ; ˆ ˆ0,.. ( ),..
T

d t =  d —evaluation vector d . 

If ( , )x u′F can be determined through the evaluation function

ˆ ( , )mx uF , d through d̂  so that: 

1 1 1
ˆ(x, u) (x, u) , 0,.. ,..

T
ε ε η ′ − ≤ =  F F  

where 1 2,η η are arbitrarily small, then the nonlinear element 

and the disturbance are compensated as shown in Fig. 2, and 

hence a linear element and an error remain 1 2,ε ε in (2). Eq. 

(2) and Eq. (3) can be rewritten as follows: 

                                  m=E A E + F + d& % %                            (4) 

where mE = x - x ;  

                                   ˆ( , ) (x, u)x u′ −F = F F%                        (5) 

ˆd = d - d%  

Since the vector of the function (x, u)′F  is smooth, 

therefore for the approximation, we use the RBF neural 
network with 3 layers (7 input layer neurons, 10 hidden layer 
neurons, 1 output layer neuron) [9]. The structure of the RBF 
neural network is shown in Fig. 3. 
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M
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7x
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10Ψ

η̂

Fig. 3. The structure of the RBF neural network 

(x, u)′F  is presented via a base function ( )iΨ x , where

1 6... ,
T

x x u =  x then: 

       1
1

( , ) 0, .. ( ), ..

T
m

i i
i

x u W ε

=

 
 ′ ′= = Ψ +
 
 

F F (x) x            (6) 

where , 1,2,...,iW i m=  —weight with a sufficient number of 

basic functions to ensure a given approximate error.  

Basic functions ( )iΨ x are selected as follows: 

  

2 2

2 2
1

(x) exp exp

2 2

m
i i

i
i

c c

σ σ=

   
− −   

Ψ = − −   
   
   


x x

     (7) 

where ic  is two-dimensional vector representing the center of 

the ith basis function, and σ  is the variance representing the 
spread of the basis function [10]. 

Evaluation vector ˆ (x, u )mF is expressed as a basis function 

(7) with the corrects weight ˆ
iW . 

 

1

ˆ ˆ ˆ ˆ(x, u) ( ) 0,.. ( ), .. 0, .. ( ), ..

T
mT

i i
i

f W

=

 
  = = = Ψ   
 

F F x x x (8) 

The neural network training process is the process of 

adjusting weight, ˆ
iW , of the RBF neural network output layer 

with the weight difference.  

                                   ˆ
i i iW W W= −%                                   (9) 

Transforming (6) and (8), we obtain: 

*ˆ ε′ = +F (x) F(x)  

where * *
1 1

1

0,.. ( ), .. ;

T
m

i i
i

Wε ε ε ε

=

 
 = − Ψ =
 
 

 x% when the

0, 1,2,...,iW i m→ =% . 

The Lyapunov function is applied for the system (4) as 
follows: 

                         
2 2

1

m
T

i
i

V W

=

= + +E PE d% %                       (10) 

where P —positive definite symmetric matrix. 

Theorem. For the stability of system (4), the following 
conditions must be simultaneously satisfied: 

                                     
1

1

2 nη

γ
>

P
E ;                             (11) 

                                    (x)i n iW = − ΨP E
&% ;                         (12) 

                                         ;n= −d P E
&%                                  (13) 

                ( ) ( )
1 1

1 1 11 1
n n

n n nk c a
− −

− − −= − − − ;          (14) 
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                               ( ) ( )1 1
n n

n n nk c a= − − −                  (15) 

where nP —row matrix is formed from the n-th row of the 

matrix P ; 1γ —minimum eigenvalue of the matrix

T
m m

 = −   
Q A P + PA ; 

( )
1

1 1 2 1 1 2 2 2 31 ... ... ... ...
n

n n n n nc λ λ λ λ λ λ λ λ λ λ
−

− − −− = + + +

; ( ) 1 2 11 ...
n

n n nc λ λ λ λ−− = ( iλ —solution of the 

characteristic equation of the system.). 

Expressions in (12), (13) of the theorem represent the law 
of estimation for nonlinear elements and perturbations. 
Substituting (12) in (9) we can get: 

                             ˆ ( )i i n iW W− = − ΨP E x
&&                         (16) 

Because 0i iW const W= → =&  then: 

                               ˆ ( )i n iW = ΨP E x
&

                                 (17) 

By integrating equation (17), we obtain the law of weight 
renewal: 

                             ˆ ( ) (t )i n iW d= ΨP E x                           (18) 

Substituting (18) in (8), we obtain the law of the indefinite 

vector (x, u)′F  through ˆ ˆ( ) 0,.. ( ), ..
T

f =  F x x . 

                     ( )
1

ˆ( ) ( ) (t ) ( )
m

n i i
i

f d

=

= Ψ ×Ψ x P E x x          (19) 

Substituting (13) in (5) we get: 

ˆ
n= −d - d P E

&&  

Due to slowly change of d , we get:  

                                      ˆ
n= −d P E

&
                                   (20) 

Integrating (20), we obtain the disturbance estimation law: 

                                   ˆ (t )n d= d P E                                 (21) 

From expressions in (19) and (21), we obtain the 
estimation law to compensate for indefinite nonlinear elements 
and external disturbances (22). 

             ( )
1

ˆ ( ) ( )
m

n i i n
i

dt dtη
=

= Ψ × Ψ +  P E x x P E        (22) 

IV. SIMULATION RESULTS. 

The parameters of electric driver system are shown in 
Table 1. 

TABLE 1. THE PARAMETERS OF ELECTRIC DRIVER SYSTEM 

Параметры Знач Параметры Знач Параметры Знач 

aR , Ω 0.522 
gJ , kg.m2 2.82·10-2 

gk , Nm/rad 270 

aL , mH 0.625 
gd ,Nm.s/rad 2.09 

cl , m 0.313 

tk , m.Nm/A 109 
sk , Nm/rad 81.853 

1α  0 

vk , rpm/V 88 
sJ , kg.m2 0.48·10-3 

2α  100 

mJ , kg.m2 0.3·10-2 
sd , Nm.s/rad 0.74·10-3 

3α  0.01 

gr  
160 

lk , N/m 97   

The exoskeleton has constantly confronted with external 
disturbances and model uncertainties as various heights, 
masses, and disease states such as varying degrees of 
spasticity. Therefore, a random perturbation is used to check 
the stability of the proposed control method to external 
disturbances and model uncertainties. The  electric driver 
control system of the exoskeleton is modeled in the 
Matlab/Simulink with an external disturbance [11]: 

(t ) 0.5 * randn(1,1)d = ; The covariance matrices to 

calculate the optimal negative feedback matrix of the LQR 

control: 0.015 =  R ; (50,50,50,50,50,100)=Q diag ; The 

gain coefficients of the PD controller: 52.5PK = ; 

78DK = ; The training methods of Bayesian Regularization 

(trainbr) of back propagation. 

In Fig. 4-6 show the results of simulation in the 
Matlab/Simulink environment. 

 

Fig 4. Angular position response of the lower-limb
lθ  
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Fig 5. Neural network that identifies disturbanceη̂  

 

Fig 6. Stabilizes the system state vectors 

V. CONCLUSION. 

The paper proposes a method for identifying undefined 
nonlinear elements and external disturbances for the electric 
drive control system of the exoskeleton. The advantage of this 
method is to pass from an unstable nonlinear problem to a 
linear problem with the additional negative feedbacks. Using 
powerful neural network tools leads to the law of estimation of 
a nonlinear function of uncertain external disturbances. The 
estimation and calibration process occurs once the nonlinear 
element and external disturbance change, which does not 
depend on any other factors. The quadratic model is used as 

the basic foundation of the feedback design, and an adaptive 
ingredient designed based on a RBF produces for the 
possibility of performance enhancement when the feedback 
control alone is inadequate. The simulation results 
demonstrate the effectiveness of the proposed method. 
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