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Abstract. The paper presents the results of solving the problem of identifying the equivalent 

depth of the linkage of the frame - pile structural system. The computational model of the 

problem is a frame - pile structural system in the form of three-dimensional frame, linear 

elastic deformation, pile - soil link is replaced by a hard restraint (fixed) with equivalent 

restraint depth. The problem is solved by the method of penalty function to combine with the 

finite element method. Examples of numerical calculations show that models, algorithms and 

calculation programs can be trusted and acceptable. 

 

1. Introduction 

Pile foundation is a type of structure that used a lot in construction, transportation, irrigation, and 

offshore constructions… In the calculation, it is possible to replace the pile-soil link with the hard 

restraint (fixed) at the equivalent fixed depth (equivalent fixed). This equivalent fixed depth can be 

determined either by standard or experience, but does not completely accurately reflect the actual 

working of the pile. On the other hand, during the using process, piles can be reduced the link to the 

ground over time, so the equivalent fixed depth is changed. Determine the equivalent fixed depth to 

the actual working state of the pile (based on the specific vibration frequencies measured in the field) 

to determine the technical state of the structure is very important. 

The equivalent restraint depth can be determined according to the design standard [1], [2]:  
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where: 

k is Scale factor, kN/m
4
, according to table B.1 [2];  

E is Elastic strain modulus of pile materials, kN/m
2
; 

I is Inertial module cross - section of the pile, m
4
; 

bc is conventional width of piles (m); with pile pipes as well as column piles and bored piles with a 

diameter of 0.8m and larger than bc = d + 1m, and other types of piles and cross sections bc = 1.5d + 

0.5m; 

d is outside diameter of round section piles, side of square or rectangular pile section perpendicular 

to the applied load, m; 

According to [3], for offshore constructions, the equivalent restrain depth el , is determined by 

geology, such as: 
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+ el =(3.5 ÷ 4.5)d: in the case of clay. 

+ el =(7 ÷ 8.5)d: in the case of alluvial soil. (2) 

+ el =6d: when the geological conditions of the construction site have not yet been determined.  

l 0
l

l 0
l e

N N

(a)

(b)

 
Figure 1. Model of the equivalent restraint depth. 

However, the above determination methods are only suitable for a certain range, with (1) applied to 

piles with cross section with width less than 250 mm, constructed by close or pressed method, with (2) 

for large-diameter pipe piles for petroleum works. On the other hand during use and extraction, the 

piles may be reduced in connection with the ground over time, so the equivalent fixed depth is 

changed. Determining the equivalent fixed depth corresponding to the actual working state of the pile 

(based on the specific vibration frequencies measured in the field) to determine the technical state of 

the structure is very importance. 

The problem of structural identification has been mentioned by scientists around the world since 

the late 1970s and early 80s of the 20th century. In particular in the aerospace and oil - shore there are 

many authors interested in research such as Farrar and Doebling [4], Ghoshal et al. [5], Friswell and 

Penny [6], Lee and Shin [7], .... Chan Ghee Koh, Lin Ming See, Thambirajah, Balendra [8] evaluated 

the hardness index of each floor to diagnose damage of frame structure. Narkis Y. [9] locates cracks in 

the beam structure. Hassiotis S. and Jeong G.D. [10] use the global planning method with finite 

element method to solve the problem of structural identification. J.K.Sinha, M.I. Friswell, S. Edwards 

[11], J.K.Sinha, P.M.Mujumdar, R.I.K.Moorthy [12], M.I.Friswell, J.E.T.Penny, S.D.Garvey [13], 

M.I. Friswell [14], J.K.Sinha, M.I. Friswell [15] studied the problem of diagnosing structural damage, 

stiffness link by the penalty function method. 

2. Methods 

2.1. The equations of motion of the frame - pile structural system in three-dimensional frame 

Investigation of frame-pile structural system in the form of three-dimensional frame under dynamic 

load effect (Figure 2) in the coordinates Oxyz.  

Recognize the following assumptions: 

- Pile-soil link is replaced by hard equivalent fixed link. 

- The strain of the frame - pile structural system is linear and small. 

The analysis model of the structure is shown in Figure 3. 

To build the equation of the motion of the frame - pile structural system, the finite element method 

(FEM) will be used. 
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The equations of motion of the frame - pile - soil structural system according to FEM method [4], 

after applying boundary conditions to the system, can be formulated as follows: 

 ( ) ( ) ( ) ( )MU t CU t U t P t     (3) 

Where    , ( ),U t U t U t  respectively are the displacement vector, velocity and node acceleration of 

the bar - pile structural system. 

, ,M K C  respectively are mass, stiffness, and damping matrices of the structural system.  

 P t  is the nodal load vector of the structural system. 

The damping matrix of structural system can be calculated according to the mass matrix and 

stiffness matrix as:  

 C K    (4) 

Whereα,β are the factors depend on the specific vibration frequencies of the system and the 

viscous damping factors of the material. 

1 2α ,α are Rayleigh damping coefficient, determined by the lowest individual frequencies of the 

structure 1 2,  ; and the corresponding damping ratios 1 2,   according to the formula: 
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 (5) 

Where 1 2,  are 1st and 2nd individual frequencies of the structural system. 

1 2,   are damping ratios depend on the structural material also as nature of work of the system. 
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Figure 2. Real model of Frame - pile space 

structural system. 
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Figure 3. Structural analysis model 

Frame - pile of space. 

The matrices of the whole system in equation (3) can be built from the matrices of FEM in 

the system by the "direct stiffness" method [4]. The following are the matrices of FEM for the 

three- dimensional Frame - pile structural system. 
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In order to establish the overall matrix of structural system ,M K  and nodal load vector P , 

it is necessary to define mass matrices m , stiffness matrices k , and nodal load vector p  of 

element in local coordinate system. Mass matrices m , stiffness matrices k , and nodal load 

vectors p of elements in the local coordinate system have the following form: 

2 2

2 2

140 0 0 0 0 0 70 0 0 0 0 0

0 156 0 0 0 22 0 54 0 0 0 -13

0 0 156 0 22 0 0 0 54 0 -13 0

140
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0 0 22 0 4 0 0 0 13 0 -3 0

0 22 0 0 0 4 0 13 0 0 0 -3

70 0 0 0 0 0 140 0 0 0 0 0420
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Where Iy, Iz are Moment of inertia for the axis y, z; Ip is Polar inertia moment; F is Area section of 

the element; a is length of the element; m is Mass distributed on the long unit of element; pu, pv, pw are 

Vertical load and distributed horizontal; p  is Distributed torsional load; G is Elastic shear modulus 

of materials, kN/m
2
. 

2.2. The problem of identification of the equivalent fixed depth and the solution method 

Investigate the Frame - pile structural system in the form of existing space frame at the site. The 

problem here is to determine (or identify) the equivalent fixed depth of each pile on the basis of the 

specific vibration frequencies measured by dynamic testing of structures at the site. 

To solve the problem, we will apply the penalty function method of the FEM update model in 

structural dynamics [16], [17], whereby the identification parameters of the problem are determined on 

the basis of minimizing the penalty function - is the sum of squares of errors between measured 

individual values and calculated values. 

Symbols: 1 2 1 2[ , ,.., ,..., ] [ , ,.., ,..., ]T T

j p j pl l l l      is the vector of the identification parameters 

has an unknown value; 1 2[ , ,.., ,..., ]T

e e e ei eNz      is the vector of the first N values obtains from 

measurement when dynamically testing the structure at the site; 1 2[ , ,..., ,..., ]T

c c c ci cNz     is the 

vector of the first N values receives from the analysis, depending on the identification parameters, 

( )c cz z  . 

( ( )) ( )e cz z      is errors vector between measured individual values and calculated values. 

The penalty function ( )J   has the form 

 
2 2

1

( ) ( ) ( ( )) ( ( )) ( ( ))
N

T

e c e c i ei ci

i

J z z W z z W        


       (7) 

where 1 2( , ,.., ,..., )i NW diag W W W W      is diagonal matrix is positive and is usually the inverse 

matrix of the variance of the eigenvalues measurement data. 

    The functions ( )  and ( )J   usually high-level nonlinear functions of updated parameters  . 

Therefore, the solution   of the minimization problem of the aforementioned penalty function is hard 

to get in closed form by the precise analysis method. In this paper, instead of using the correct method, 

we use the iterative method, called the penalty function method. Below are set up the equations and 

algorithms according to this iterative method. 

     Develop Taylor error vector ( )   according to certain identification parameters in a given 

vector k  , obtaining 

 
( ( ))

( ) ( ( )) [ ] shigher order component
k

e c
k e c k k

z z
z z  


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


 
  


  (8) 

If only the first two elements of the string (8) are retained, resulting in  

 
( ( ))

( ) ( ( )) [ ] ( )
k

e c
k e c k k k k k k k

z z
z z z S 


       




 
     


 (9) 

Where k is the increment of the identification parameter; kz is errors vector between 

eigenvalues measured and  eigenvalues calculated when k  .  

 ,k e c kz z z    (10) 

 , 1, 2, , ,( ) [ , ,..., ,..., ]T

c k c k c k c k ci k cN kz z        (11) 

kS is sensitivity matrix - the first derivative of eigenvalues calculated according to the 

identification parameters at k  . 
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c
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

 
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 
  

       
 
 
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 (12) 

with:   

 
,

,

ci k

ij k

j

S








 (13) 

The penalty function ( )J   is in this form 

 ( ) ( ) ( ) ( ) ( ) ( )T T

k k k k k k k k k k k k kJ W z S W z S J                (14) 

The solution of equation (14) is obtained by minimizing the function ( )k kJ   follow k , whereby 

 
( )

0k k

k

J 







 (15) 

Replace ( )k kJ   from  (14) to (15), we get 

As of (9), minimize (7) according to k  have the result:  

 
1

T T

k k k k kS W S S W z  


     (16) 

Because the function (9) is a linear approximation function , to get as close to the exact value of 

the problem as iterative. If performed:  

 
1k k k     (17) 

from (16) may write: 

 
1

1

T T

k k k k k kS W S S W z   



      (18) 

or:             

 
1

1 1 1 1 1

T T

k k k k k kS W S S W z   


    
      (19) 

Here (k-1), k, (k+1) index indicate the interation steps. 

The looping process ends when the solution of the problem converges with the required accuracy.  

The elements of a sensitive matrix S  can be obtained from partial vibration differential equation of 

the structure: 

   0K M    (20) 

where:   and   are the normalized eigenvalues and eigenvectors of the structure.  

The result we have: 

 Tci
ij i i i

j j j

K M
S


  

  

   
   
    

 (21) 

With: i , i  are Normalized eigenvalues and eigenvectors i of the structure. 

At the iteration k the above quantity has the form: 
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,

, , ,

k

ci k T

ij k i k i i k

j j j

K M
S

 


  

  


   
   

    

 (22) 

Where: ,i k is Normalized vector of the structure corresponding to the i value at the k iteration (or 

at k  ). 

According to the iterative algorithms established above, the content of calculating the updated 

parameters is conducted in the following order: 

* The original analysis 

Select vector of the parameters need to be identified   of the structure model (here is equivalent 

restrain depth vector). 

1 2 1 2[ , ,.., ,..., ] [ , ,..., ..., ]T T

j p j pl l l l       

- Set up the stiffness matrix K and 
j

K






 (j = 1,2, ..., p), mass matrix M and 

j

M






(j = 1,2, ..., p) 

according to the identification parameters  . 

- Select a vector of initial identification parameters 0 . 

0 1,0 2,0 ,0 ,0 1,0 2,0 ,0 ,0[ , ,.., ,..., ] [ , ,..., ..., ]T T

j p j pl l l l       

- Calculate the matrix M , K  when 0  .                                             

- Calculate eigenvalues ci,0 (i=1,2,…,N), eigenvectors ,0i (i=1, 2,…, N) and ,
j j

K M

 

    
   
       

of the 

structural system when 0  . 

- Calculate the sensitivity ,0ijS  according to formula (22) (with index k=0;i=1,2,…,N; j=1,2,…,p) 

and form the sensitivity 0S  by the formula (12) with k=0.  

- Forming eigenvalue measurement vector ez  

   1 2[ , ,.., ,..., ]T

e e e ei eNz      

- Calculate the vector of eigenvalue error 0z  

0 ,0e cz z z    

With: ,0 1,0 2,0 ,0 ,0[ , ,..., ,..., ]T

c c c ci cNz                                  

* Repeatability 

At the iteration k ( k=1,2,3,…), calculate identification parameter vector k , eigenvalues ci,k , 

eigenvector ,i k , error matrix ,c kz , eigenvalue error vectors kz , ,

k k
j j

K M

   
 

 

    
   
       

, sensitivity 

,ij kS , sensitivity matrix kS , parameter vector 1k   according to the formulas set above. 

- Compare errors between 1k   and k  with allowed errors . 

- Check 1

1

k k

k

 







  ? If not satisfied: repeat calculation; If satisfied: stop calculating. 

Based on the received algorithms, the author has built the UFEM program to solve the problem of 

identifying the equivalent fixed depth of the frame - pile structure working according to three-

dimensional model in MATLAB language [18], [19]. UFEM has been tested for reliability [17]. 
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START

- Enter initial parameters ,

- Select identification parameter vector 
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Figure 4. UFEM program block diagram. 
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3. Results (Calculate by number) 

The numerical calculations below are performed to check the reliability of established algorithms 

and programs. Identify equivalent fixed depth of the structure (Figure 2, Figure 3), with 04 equivalent 

fixed depths of 04 different piles (therefore, there are 04 identification parameters). 

* Starting data: 

- Structure of frame - pile made of steel pipes, the size shown in figure 1, horizontal-section of bars 

on the ground type 377x12mm; pile section in soil 9m long, horizontal-section type 219x12mm; 

elastic modulus of steel: E=21000000 T/m
2
; Specific gravity of steel: / g  =7.8 T/m

3
.  

- Measurement vector (assumed): 

 1 2 3 4 5 6 7 8e e e e e e e e e          

[37.258 4032.649 4814.176 5277.911 5560.007 9242.009 10904.999 20061.865]                         (23) 

- The assumed eigenvalues  here are not actually true measurements, it is eigenvalues calculate for 

the bar-pile structure with a given equivalent restrain depth  

 1 2 3 4[ ] [1.00 1.00 1.00 1.00]T T

ttl l  l  l  l       (24) 

- Choose the allowable error: 0.5%  . 

* Calculation results: 

- Select the identification parameters as the equivalent restrain depth: 1 2 3 4[ ]T

ttl l  l  l  l .  

- Discrete FEM for structure. 

- Select initial parameters: 0 ,0 1,0 2,0 3,0 4,0[ ] [0.80 1.20 1.20 0.80]T T

ttl l  l  l  l        (m). 

- Solution of the problem: The solution of the problem when calculating iteration needs to focus on 

the values of vector (24) with allowed errors 0.5%  . The results of calculating the value of the 

identification parameters according to the iterative calculation steps are shown in table 1 and figure 5. 
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Figure 5. Identification parameter graph by calculation step. 

Solution of convergence problems after 17 steps calculated with the results:  

 1 2 3 4[ ] [0.984 0.974 1.003 0.976]T T

ttl l  l  l  l         (25) 
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Table 1. Identification parameters by calculation step. 

Calculation steps 

Identification parameters 

1 1( )θ l  2 2( )θ l  
3 3( )θ l  4 4( )θ l  

1 0.800 1.200 1.200 0.800 

2 0.846 1.136 1.142 0.840 

3 0.878 1.083 1.089 0.869 

4 0.902 1.047 1.041 0.890 

5 0.924 1.027 0.999 0.906 

6 0.946 1.018 0.950 0.919 

7 0.978 1.009 0.843 0.933 

8 0.981 0.925 0.977 0.963 

9 0.941 0.965 1.207 0.970 

10 0.953 1.138 1.147 0.940 

11 0.956 1.094 1.109 0.944 

12 0.959 1.062 1.075 0.948 

13 0.964 1.043 1.046 0.952 

14 0.970 1.031 1.019 0.955 

15 0.977 1.022 0.994 0.959 

16 0.987 1.011 0.959 0.964 

17 0.984 0.974 1.003 0.976 

4. Conclusions 

The solutions of the above problem converge on the values to be sought, the numerical anaytical data 

demonstrate reability of studied results, proving that the established algorithms and programs (UFEM) 

can be used to identify the equivalent fixed depth of the structure in three-dimensional model. 
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