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Abstract. Data encryption has become a vital mechanism for data protection.
One of the main challenges and an important target for optimization is the encryp-
tion/decryption speed. In this paper, we propose techniques for speeding up the
software performance of several important cryptographic primitives based on
the Residue Number System (RNS) and Finite Ring Neural Network (FRNN).
RNS&FRNN reduces the computational complexity of operations with arbitrary-
length integers such as addition, subtraction, multiplication, division by constant,
Euclid division, and sign detection. To validate practical significance, we compare
LLVM library implementations with state-of-the-art, high-performance, portable
C++ NTL library implementations. The experimental analysis shows the superior-
ity of the proposed optimization approach compared to the available approaches.
For the NIST FIPS 186-5 digital signature algorithm, the proposed solution is 85%
faster, even though the sign detection has low efficiency.

Keywords: Residue number system - Finite ring neural network - Encryption -
High-performance - Cryptographic primitives

1 Introduction

Security becomes commonplace in all modern computing areas and affects many
fields, including casual people communication, Internet of Things (IoT), analytics, self-
learning systems, cloud computing, etc. Advanced cryptographic algorithms provide key
mechanisms for data confidentiality, integrity, authentication, non-repudiation, etc.
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The cryptographic primitives are usually complex in terms of computational over-
head and memory usage. They are designed based on mathematical theory, elliptic
curves, Neural Networks (NNs), etc.

The high performance of cryptographic algorithms is important for numerous rea-
sons. The principal one is the computational cost in terms of execution time. They can
be executed by conventional computers, accelerated computing servers, and specialized
hardware devices. In many cases, they are implemented as software components.

Many approaches are used to optimize encryption operations. Neuromorphic com-
puting is concerned with emulating the neural structure and operation of the human brain.
The main goals are to create a device that can extract better features, learn, recognize,
classify, acquire new information, and even make a logical inference.

For instance, a single-chip prototype of the BrainScaleS 2, Intel Labs designed
Loihi, and IBM’s TrueNorth neuromorphic systems provide a proof-of-concept of a
spiking neural network application to learn neurons and synapses [13, 14]. They include
a hundred thousand neurons, each of which can communicate with thousands of others.

A Residue Number System (RNS) can achieve both fast computation and low power
consumption. It is parallel, adaptable, and fault-tolerant, meaning it can produce results
after components are failed [9, 10]. These properties allow for the successful development
of cybersecurity systems [11-18].

RNS is a number system that represents integers by the remainders of division
by several pairwise coprimes, called moduli. The arithmetic is called multi-modular
arithmetic. It is widely used for computation with arbitrary length integers, for instance,
in cryptography. It provides faster computation than with the usual numeral systems,
even when converting between numeral systems is taken into account. By decomposing
a large integer into a set of smaller integers, a large calculation is performed as a series
of smaller calculations that can be performed independently and in parallel. The number
of parallel elementary processes equals the number of RNS moduli.

In this paper, we propose a new optimization method RNS&FRNN of operations
with arbitrary-length integers based on RNS and Finite Ring Neural Network (FRNN).

This paper is organized as follows. Section 2 describes the main concept of
modular arithmetical operations. Section 3 introduces modular logical operations.
Section 4 presents the scaling of RNS numbers by RNS base extension and introduces
RNS&FRNN optimization method. Section 5 focuses on the experimental analysis. The
conclusions and future work are discussed in the last Sect. 6.

2 Modular Arithmetical Operations

2.1 Addition, Subtraction, Multiplication, and Division

In the RNS, arithmetic operations are performed on each residue, according to the
following general formula:

RNS
X o ¥ B (v 031l 12 032l - 160 0 3l (1)
where {p1, p2, ..., pn} is amoduli set of pairwise coprime numbers. “o” denotes the

operation of addition, subtraction, or multiplication.
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Integer numbers X and Y are defined in RNS as tuples (xi,x2,...,x,) and
1, Y2, - - -, Yn), Where x; represents the remainder of the division of X by pi, defined by
xi = |X|p,

However, an additional restriction is imposed on the multiplication operation, which

n
follows from the Chinese Remainder Theorem (CRT): X - Y < P, where P = [] pi.
Integer division can be performed by various methods [2—4]. The most' relzliable
algorithm is based on the scaling method. In this case, a dividend is an arbitrary number
in the range [0, P), and a divisor is any factorof P =p1 -p2 - ... py.
This division is similar to dividing by numbers belonging to a certain limited set,
which is faster than dividing by an arbitrary divisor (2).

X
X = {—J « By + %1, 2)
P1

where X is the dividend, and p; is the divisor.

The dividend is represented by the residues X lﬂs(xl, X2, ...,Xn), and the divisor
is one of the moduli p;. x; is the residue of the division. In the first step of scaling, it is
necessary to subtract the residue from the dividend (3):

RNS ’ ’ ’
X'= (xl,xz, a5 .,x,,) = (|x1 ~ %l |m’ |x1 = Ixilp,

) @

Xn — |Xilp,

°y

pate?

In the second step, the division of X’ by p; is carried out directly by (4):
FJ - (. , 4)
P Pn

where ‘pl_l ‘ is the multiplicative inversion of p;.
pi
At the end of the second stage, the residue x; modulo p; remains unknown, which
can be found using the base extension (Sect. 4).

|
Xn |P1

-1
X1 ’Pl

g ey

P2

p2 Pn

2.2 Euclidean Division

Euclidean division is carried out using the approximate division method. The essence
of the approximate method for calculating the positional characteristic to compare and
restore the positional notation of the numbers in RNS. It is based on the relative values
of the numbers to the full range determined by CRT.

We have:

B
Pi

X = ‘Zn E Pi_l

i=1 Di

3 (&)
P

n
where P = [] p;, pi is the RNS moduli, ‘P;'
i=1
relative to p;, P; = 5’_.

is the multiplicative inversion of P;
pi
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To overcome this difficulty, it is necessary to compare the current iteration values
with the previous ones in the RNS. It allows to correct determining a larger or smaller
number. The overflow of the dynamic range in the RNS can be used to make the decision
“more — less™.

In the first iteration, the dividend is compared with the divisor, and at the other
iterations, the doubled values of the divisors ¢;Y < g;4+1Y are compared. In each new
iteration, the current value is compared with the previous one.

The number of iterations required depends on the divisible and divisor values. Suc-
cessive application of this operation leads to the formation of a sequence of integers
Yo < ... < Yg, > Ygnt1-

Let the case Yg, > Yg,41 be fixed at n + 1 iterations, which corresponds to an
overflow of the RNS range, i.e., ¥Yg,4+1 > P and X < ¥g,4. This completes the process
of generating interpolation of the quotient by a binary series or by a set of constants in
the RNS.

The process of approximating the quotient can be carried out by comparing only
doubled neighboring approximate divisors. An important issue when implementing the
function F () is the accuracy of the coefficients.

It should also be noted that the number of characters in the fractional part should
be twice as much as the number of characters in the RNS range. The modular num-
bers’ division based on the approximate method of comparing numbers consists of the
following steps (see Algorithm 1).

In this case, when the divisor has the minimum value and the dividend has the
maximum, the threshold A; is more than zero. It reduces the number of iterations when
dividing a large divisible and a small divisor.

Algorithm 1. Euclidean division in RNS.

RNS RNS
Input: X — (x4, %3, ..., %), Y — (¥, Y2, -, ), F(X).
Output: w = I%J, y = |Xly.

Step 1. We calculate the approximate values of the divisible F(X) and the divisor
F(Y) and compare them. If F(X) < F(Y), then the division process ends and the quo-

tient EI = 0. If F(X) = F(Y), then the division process ends, and the quotient is equal

to unity. If F(X) > F(Y), then a higher degree 2* is searched for by approximating the
quotient with a binary code.

Step 2. We select the constant 2% (the highest power of the series), multiply it by the
divisor F;(X) = X2* and introduce it into the comparison scheme. The constants
2/mod p;, where i = 1,1, 1 < j < log, P are previously stored in the memory.

Step 3. We find 4; = F(X)— F,(Y). If in the sign digit 4; is “1”, then the corre-
sponding degree of the series is discarded, if it is “0”, then in the adder of the quotient
we add the value of a member of the series with this degree, that is 2%,

Step 4. We find F, (Y), and check the term of the series with a degree 2%,

Step 5. We find 4, = A;— F; (Y) and perform the actions in accordance with para-
graph 4.

Step 6. Similarly, we check all the remaining members of the series of the pre-zero
degree. The resulting residue 4; = 4;_; — F;_;(Y) = 0.
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X1 +x, with coefficients g; =+ g, calculates the rank of the number r4. Then the modular
n—1

network modulo p; calculates the value ai|Bilp, .- In the second stage, x; = |X \[,j is
i=1

calculated using the computational model (11).

Each set of moduli of the modular code is characterized by an orthogonal basis,
due to which, for the base extension, it is necessary to recalculate the basis B;,i =
1, n+ 1. To recalculate them, the input data are: orthogonal basis B,-,f' = 1,n, the
moduli p1, p2, ..., p, and the values of the extended modulo p;. Since P; = P'/p; and
P; are coprime, we can calculate the orthogonal basis of the extended system as follows

’ P’ ’_
B = —.|P,. ! (13)
Pi Pi
To calculate it on a NN basis, it is necessary to calculate two constants: }é . and
Jpi

P; = ﬂ:. Thus, the NN architecture can be presented as following (Fig. 2).

The proposed algorithm has lower computational complexity compared to the known
methods. However, the method involves multiplying pre-calculated constants. These
constants are usually known in advance.

5 Experimental Results

We perform experimental analysis on CPU 2.7 GHz Intel Core i5, RAM 8 GB 1867 MHz
DDR3, macOS High Sierra version 10.13.6 operating system. We use NTL, a high-
performance, portable C++ library version 11.4.3, and LLVM’s OpenMP runtime library
version 10.0.0. RNS moduli are generated as a sequence of decreasing consecutive
coprime numbers starting from p; = 32,749, ..., pags = 29,789, and L = |—10g2 P-|.
One million random values of X and Y are generated using RandomBnd() function, an
NTL routine for generating pseudo-random numbers. Execution time 7" of arithmetic
and logical operations are measured in microseconds (us). The number of threads is
four. The results are presented in Table 1.

First, we measure the relative performance of each operation independently. The
speedup of RNS&FRNN is between 9,954 and 25,888 for the addition, 12,348 and 31,385
for the subtraction, 13,193.9 and 318,203 for multiplication, 15,353.5 and 140,290 for
division by constant, and 17,815.5 and 40,359.7 for Euclid division, varying n and L.
RNS sign detection performance is between 4.5 and 15 times lower.

Now, let us compare the performance of NIST FIPS 186-5 digital signature algorithm
with two implementations. It is based on the operation of multiplying the point of an
elliptic curve over GF (g) by a scalar, the most time-consuming operation, where ¢ is a
prime number.

Different approaches for computing the elliptic scalar multiplication are introduced.
Well-known Montgomery approach is based on the binary method, where scalar multi-
plication is defined to be the elliptic point resulting from adding value to itself several
times. It performs addition and doubling in each iteration.

Let us evaluate the mathematical expectation of the number of additions and
doubling.
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Table 1. Execution time of operations on NTL 11.4.3 (binary) and RNS&FRNN (RNS) (us).

(a) Addition, Subtraction, and Multiplication

n L Addition Subtraction Multiplication
Binary RNS | Binary/RNS | Binary RNS | Binary/RNS | Binary RNS | Binary/RNS
15 1225 99,548 10 9,954.8 105,076 |8 13,134.5 118,745 9 13,1939
30 450 110,852 | 10 11,085.2 126,619 |8 15,8274 194,619 9 21,624.3
45 | 675 103,665 8 12,958.1 111,137 |8 13.892.1 198,589 10 19,8589
60 900 108,377 | 10 10,837.7 116,266 |8 14,533.3 322,731 8 40,341.4
75 1,124 | 113,044 8 14,130.5 115830 |9 12,870 392,779 10 39,2779
90 1,349 | 114,060 8 14,2575 120,409 |8 15,051.1 510.666 63,833.3
105 | 1,573 | 116,498 9 12,9442 123482 | 10 12,348.2 604,474 9 67,163.8
120 | 1,797 | 168,430 9 18,7144 180,615 | 10 18,061.5 727,589 9 80,843.2
135 12,021 | 167,513 8 20,939.1 179,552 |8 22,444 827,077 8 103,384.6
150 12245 | 172,927 8 21,6159 185494 |9 206,104 973,639 10 97,363.9
165 | 2469 | 172,716 9 19,190.7 218,787 |8 27,3484 1,140,607 9 126,734.1
180 | 2,693 | 180,369 9 20,041.0 231,800 |8 28,975 1,328,500 8 166,062.5
195 12917 | 186,132 9 20,681.3 199,568 | 10 19,956.8 1,397,494 9 155,277.1
210 | 3,140 | 186,433 9 20,714.8 211,051 |8 26,3814 1,602,832 8 200,354.0
225 | 3,364 | 187,804 9 20,867.1 209,095 |9 23,232.8 1,757,143 9 195,238.1
240 | 3,587 | 201,887 8 25,2359 221,684 |9 24.631.6 1,936,657 8 242,082.1
255 | 3,810 | 201.556 8 25,1945 243480 |10 24,348 2,117,587 8 264,698.4
270 | 4,033 | 233,000 9 25,888.9 241572 |8 30,196.5 2,208,706 9 2454118
285 | 4256 | 215.689 |10 21,568.9 282472 |9 31,385.8 2,545,628 8 318,203.5
(b) Division by constant, Euclid division, and Sign detection
n L Division by constant Euclid division Sign detection
Binary RNS | Binary/RNS | Binary RNS | Binary/RNS | Binary | RNS | Binary/RNS
15 1225 122,828 8 15,353.5 171,928 21.491.0 1 9 0.11
30 | 450 168,685 9 18,742.8 182879 |9 20,319.9 1 8 0.13
45 | 675 145,610 9 16,178.9 178,155 10 17,815.5 1 9 0.11
60 | 900 174,282 8 21,785.3 201,592 10 20,159.2 1 9 0.11
75 1,124 | 198,819 8 24,8524 183,151 |9 20,350.1 1 9 0.11
90 | 1,349 | 220,280 9 24.475.6 191,398 | 8 23,924.8 1 9 0.11
105 | 1,573 | 244,787 9 27,198.6 194943 | 8 24,367.9 1 9 0.11
120 | 1,797 | 319,813 8 39,976.6 251,513 | 8 31,439.1 1 8 0.13
135 12,021 | 334,435 9 37,159.4 252916 | 9 28,101.8 1 15 0.07
150 |1 2,245 | 362,685 8 45335.6 266,925 | 9 29,658.3 1 10 0.10
165 | 2,469 | 407,955 9 45,328.3 262,714 | 8 32,839.3 1 9 0.11
180 | 2,693 | 439,295 10 43,929.5 282,383 | 8 35,2979 1 9 0.11
195 12917 | 451,525 9 50,169.4 287426 | 8 35,9283 1 9 0.11
210 | 3,140 | 461,168 9 51,240.9 283955 |9 31,550.6 2 10 0.20
225 | 3,364 | 486,675 10 48,667.5 285,086 | 8 35,635.8 1 8 0.13
240 | 3,587 | 504,493 9 56,054.8 332445 |10 33,2445 1 9 0.11
255 | 3,810 | 537,938 10 53,793.8 331,538 |9 36,837.6 1 10 0.10
270 1 4,033 | 1,262,615 9 140,290.6 363.237 | 9 40,359.7 1 10 0.10
285 | 4,256 | 553,609 61,512.1 355,031 | 10 35,503.1 2 9 0.22
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Doubling can be expressed as:

1 loga =1 i _ (Mog, ¢] — 2)2Mtoe241 4 2
[log; 4] 2 o=

2Tiog2 4] ~[loggl -2 ad

Addition can be expressed as:

[log, fﬂ |-|0g2 q] o |_10§2 q]
Z Flogz q = -2fleedl =t = 2 (s)

2 flogz q] 2 [ogy 4] '
where Cjf = ﬁ
Using the projective Jacobian coordinates for the case when Z # 1 and a = -3, it

takes 16 multiplications to add points, and 8 multiplications to double a point.
Statistical analysis of the algorithm demonstrates that the mathematical expectation
of number of modular multiplications is about

—|—]0g22 d <16+ ([log, | —2) -8 = 16log, g — 16 (16)

The execution time of the modular multiplication can be estimated as a sum of one
multiplication and one addition; hence, T;;, = (16[log2 q—| — 16) (Mpin + Agin), where
Mpiy, is the execution time of the multiplications and Ag;, is the execution time of the
addition.

To assess the RNS implementation of the algorithm, first, we consider the RNS to
binary T¢ and binary to RNS Tg conversion times (Table 2).

The modular multiplication of an elliptic curve point by a scalar in RNS requires
one multiplication, one addition, n(n — 1)/4 divisions by a constant, and one operation
for determining the sign of a number, where n is the number of moduli.

The execution time of the RNS implementation can be estimated as

nn—1)

Trys = (16[1og; ¢ |q — 16) (MRNS + Arns + DCrys + SRNS) +2(Tc + Tk),

where Mgps is the execution time of multiplication of two numbers in RNS, Arns
is the execution time of addition in RNS, DCgys is the execution time of the division

by constant in RNS, Sgys is the execution time of the sign detection, T¢ is the time of
binary to RNS conversion, and TE is the time of RNS to binary conversion.

Thus, for ¢ = 2! — 1, n = 75, Ty, and Tgys are estimated, in the
worst case, as Tp;, = (16-511—16) - (392,779+ 113,044) = 4,127,515,
680, Trys =  (16-511—16) - (1048+75-(75—1)/4-8+49) +

2 - (384,687, 100 4 685,935, 110) = 2,232,040, 738. Therefore, Tgj,/Trns =~ 1.85
times.
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