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Abstract
Buried pipeline is threatened from the soil displacement due to earthquake and other causes, which leads to the formation

of unexpected external forces such as bending moment. The problem can be worse with the appearance of defects, resulting

in the reduction in pipe capacity. The paper focuses on the overall problem of defected pipe crossing the strike-slip fault. A

full-scaled FE model can be very complicated with the large-scale and micro-scale levels corresponding to the strike-slip

fault and defect on pipe problems, respectively. To ease this difficulty, the macro and micro problems are solved separately

with two types of FE models and their corresponding databases. To be specific, one FE model is used for predicting

external moment due to strike-slip fault and the other is for predicting the moment capacity of defected pipe. Data-driven

models are consequently developed with artificial neural network (ANN) for each database generated from these types of

models: ANN1 evaluating moment capacity of defected pipe (R2 is 0.9943 on test set) and ANN2 predicting both moment

and axial force appeared in pipe due to strike-slip fault (R-squares are 0.9883 and 0.9929 on test set, respectively).

Consequently, the stress–strength analysis for the overall problem is solved. Accounting for the unavoidable uncertainty of

the models, the paper proposed an approach which assumes that the actual distribution of residual of a model is equivalent

to this of the test set. The distributions of residuals on test set of these ANNs are tested to be normally distributed and

generated by the conventional Monte Carlo simulation. To the end, the deterministic problem leads to the failure prob-

ability. The proposed framework has been investigated, and the final results on this selective parametric study are

reasonable.

Keywords Defected pipe � Bending capacity � Data-driven model � Finite element analysis � Strike-slip fault �
Model uncertainty

1 Introduction

Earthquake causes strike-slip (or normal) fault in soil, and

to its turn, this phenomenon leads to the bending moment

and axial force in buried pipeline. A conventional stress–

strength problem then merges with the desire of capturing

the behavior of the pipeline under such conditions. Various

studies have been developed including the analytical and

numerical methods to assess the stress, strain or internal

forces appeared in the pipes. The conventional approach is

modeling the problem with the 2D beam placed in elastic

spring soil [1–4]. The evolution in developing models for

this problem is mainly to deal with geometric [3] or

material nonlinearities [2, 4, 5]. Additionally, the nonlinear

properties of soil are sometimes taking into account as in

[6].

While the analytical method has a critical drawback of

hardly adapting to the increase in complexity of these

models, the finite element analysis (FEA) is able to solve

these difficulties and provides the insights into the non-

linear behavior of the model ([7–9]) such as local buckling

phenomenon [10, 11]. However, both analytical and FE

methods have the unify concern of simplifying their

models for practical applications. For instance, Karamitros

et al. [2] improve their previous study [1] for the sake of

simplicity; Trifonov and Cherniy proposed model which

applied adjustments on the previous models with additional
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strong assumptions [12]; and the formation of plastic hinge

is used in the FE analysis with commercial software for the

same purpose [13]. These studies are developed for intact

pipe only, which preserves the perfect geometric dimension

as newly manufactured. Unfortunately, the practical prob-

lem of pipeline fault crossing can be much more compli-

cated with the appearance of defects due to working in

corrosive environment.

The appearances of advert effect of corrosion are

focused in many studies. For instance, Folkman [14]

reported that the corrosion is secondly ranked as the most

common cause of pipe break. Similar to the buckling in

which the local defects are not affected much to the overall

structures, localized defects can be ignored from the macro

perspective where the internal forces (i.e., bending moment

and axial force) are formed based on the pipe and soil

interaction and their stiffness rather than governed by the

appearance of localized defects. However, pipe capacity,

specially the burst pressure for defected pipe [15–18], can

be seriously reduced with the occurrence of corrosion. And

thus, analyzing an intact pipe is insubstantial for this

scenario.

In practice, crossing a fault causes the appearance of the

bending moment and axial force in pipe with capacity

reduced by the localized reduction in wall thickness

[19–23]. Mondal and Dhar [19] use the Abaqus software to

establish the loci of bending defected pipe with the

appearance of axial load and internal pressure. Liu et al.

[20] provide a thorough investigation of behavior of

defected pipe under the bending moment with the incor-

poration of experiment and simulation. Safety assessment

of such structure is investigated regarding multiple defects

and their various shapes in [21]. Phan et al. [23] develop a

data-driven model based on FE database for such struc-

tures. This approach recently becomes popular ([24, 25])

because of (1) the convenience due to the reduction of

cumbersome work required for FEAs and (2) the avoidance

of rigid assumption made by analytical model. Further-

more, when experiment results are substantial, data-driven

models can provide quality predictions [26–28]. However,

a problem can be raised with the data-driven approach: the

difficulty in quantifying model uncertainty.

Apparently, quantifying model uncertainty is practically

desired for engineering applications [29]. In general, sta-

tistical tools and probability method are powerful in

assessing the uncertainty of the models. Various attempts

have been made to observe the performance of model

including the uncertainty. Amaya-Gómez et al. [18] have

validated 22 models with the ratio of predict/experiment of

about 70–80 percent and coefficient of variances of up to

0.31. Keshtegar et al. [17] have revealed a significant high

mean absolute error of more than 30 models compared to

experiment and simulation results. Using the validation

metrics such as coefficient of determination, R2, mean

absolute error, MAE, or mean square error on the train and

test set is the conventional approach to evaluate the per-

formance of the developed model. Given that the actual

value of the prediction is unknown, these metrics provide

an approximation for model error and uncertainty [23–28].

To limit the phenomenon of quality—decrease of the data-

driven models, Phan et al. [30] have illustrated the effect of

the out-of-boundary prediction which is analogous to

extrapolations if the inputs are out of their max–min ranges

established by the database. Along with the observation on

evaluation metrics, this is a practical approach to limit the

uncertainty and error of the model [23–25, 31]. However,

none of the aforementioned studies regards to the combi-

nation of multiple models and the uncertainty of this

incorporation.

In this paper, the stress–strength analysis of the defected

pipe under the strike-slip fault is focused based on two

constituent ANN models: The first one, ANN1, predicts the

moment capacity of defected pipe and the other, ANN2,

estimates the internal forces appeared due to the fault

including the bending moment and corresponding axial

force. To quantify the model uncertainty, the paper pro-

posed a framework using the residual values on test set as

the alternative for the actual residuals. Once this assump-

tion is applied, the final predicted variables are failure

probability, Pf, of the structural system. The conventional

Monte Carlo simulation (MCS) is chosen due to the sim-

plicity and reliability of this method in assessing the failure

probability. Finally, various case studies are investigated as

the selective parametric study.

2 Materials and methods

2.1 Modeling the interested structures with FE

2.1.1 The moment capacity of defected pipe with axial
load

As aforementioned, two models are established in this

study. In the first model, the moment capacity of a defected

pipe, Mcap, coupled with the combination of the axial force,

N, is considered. The inputs of this model can be catego-

rized as: pipe dimensions, defect dimensions and material

properties. The pipe dimensions are pipe diameter, D, and

wall thickness, t, which are normalized to the ratio of t/D.

With the randomness of defect dimensions (Fig. 1a), the

common assumption is to idealize it to be a squared and

sharp-edge defect as in Fig. 1b ([15, 19, 21, 32]). This

assumption leads to the defect dimensions which are depth

of defect, d, length of defect, l, and width of the defects,

warc. Additionally, ratio of moment in x- and y-axis, My/Mx,
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is added accounting for the out-of-bending-plane scenarios.

The input designated as a presented the direction of

moment along the x-axis; if Mx is positive, then a is 0, and

a is p if Mx is negative.

The bilinear model for pipe material is chosen in this

study with the elastic state preceded by the hardening state

([20, 33–36], Fig. 2). The inputs within the material groups

are the yield stress/strain (ry/ey) and the ultimate stress/

strain (ru/eu). Summary of these inputs is given in Table 1.

Consequently, the defected pipe is then modeled in

AbaqusR as provided in Fig. 3. The study inherits the

results from our preliminary study [23] with the quarter

model (Fig. 3a) suggested in [19]. This model includes a

system of symmetric constrains at across and along the

pipe. At the cut across the defect, the symmetric constrain

has U3 = UR1 = UR2 = 0, where U3, UR1, UR2 are the

longitudinal displacement and rotations to the x- and y-

axis, respectively. Other two constrains are applied along

the cuts through the pipe center with U1 = UR2 = UR3 = 0.

The applied moment is placed at the other end of the pipe

with the multiple points constrain (MPC).

Due to the symmetric property, the quarter model is only

applicable for the cases where the defect is located in the

bending plane (i.e., the most severe situation). To increase

the range of the data-driven models, the half model has

been implemented with only symmetric constrain across

the cut section (Fig. 3b). The C3D8R element type is used

for these models with elements surrounding the defect that

are densely divided.

These models are validated with results of analytical

methods proposed by Zheng et al. [37] and Chen et al. [38],

and the results are given in Fig. 4. It is worth to remind that

models of Zheng et al. and Chen et al. use plastic-perfect

material. With the use of the ultimate tensile strength as the

flow stress, these models are over-estimated compared to

the bilinear model chosen in this study. Additionally, the

appearance of the samples with defects located out of the

bending plane leads to the under-estimation of the analyt-

ical models. This is observed in Fig. 4b where only pipe

with defect in the bending plane is shown, and most of data

points are above the 1:1 line, which indicates the effect of

difference in the material models to the prediction of pipe

capacity. This provides a validation of the present FE

model to analytical models where the differences may exist

but the overall predictions are acceptable.

2.1.2 Pipe crossing the transverse fault

In the second model, the interested variables are the forces

appeared due to the applied strike-slip fault in a buried pipe

(Fig. 5). To be specific, these forces are the peak moment,

Mpeak, and the corresponding axial force, Ncor. Analogous

to the overall buckling phenomenon where the appearance

of the defects or holes can be ignored, the defect on pipe in

this case is assumed to have minor effect to Mpeak and Ncor.

Consequently, the amount of displacement, the relative

stiffness and the interaction of the pipe and soil are the

main factors for the formation of Mpeak and Ncor.

To simulate the fault, the soil in a half space horizon-

tally displaces parallel to the fault trace. Meanwhile, the

remaining soil space is stable. Under this displacement, the

soil can be considered as the continuous springs along the

pipe with Winkler foundation model. The springs belong-

ing to the moving part are moving with a quantity of

f. Such fault displacement, f, which establishes a b angle to

the pipe, can be decomposed to fx and fy corresponding to

x- and y-axis. This type of model is widely used in both

analytical (e.g., [1–3, 12, 39]) and numerical (e.g.,

[4, 13, 40–42]) methods due to its simplicity.

Fig. 1 The simplified model for

corroded pipe problem

Fig. 2 Bilinear material model for steel
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The AbaqusR as in Fig. 6 used in this study with the

pipe–soil interaction (PSI) element is widely used to cap-

ture the soil effect on pipe. Two rigid surfaces are attached

to one end of the PSI elements, and one of them will be

displaced with a quantity f and angle b to the horizontal

axis. A 1000-m-length pipe is attached to the other side of

the PSI elements by 2D pipe-type elements, PIPE21. The

middle 100 m length of the pipe is densely divided into 200

and 2000 elements for pipe with diameter larger and less

than 200 mm, respectively. The rest of the pipe is also

divided into 200 elements if D is larger than 200 mm and

2000 elements if D is less than 200 mm.

The springs represented for soil are commonly consid-

ered to be linearly elastic as issued in ASCE standard [43].

In this study, soil properties are simplified with four vari-

ables, including: transverse horizontal direction yield force,

PT; transverse horizontal direction yield displacement, yT;

axial direction yield force, Pa; and axial direction yield

displacement, ya (Fig. 7).

Fig. 4 Comparison of FE model versus analytical models in [37, 38] for a all databases and b the cases that defects are in the bending plane only

Table 1 Collected properties of

metal materials
Material ry

(MPa)

ru
(MPa)

ey
–

eu
–

E1

(MPa)

E2

(MPa)

Reference

Steel, X42 290 415 0.0014 0.1036 207,143 1223 [20]

Steel, X52 375 468 0.0018 0.2230 208,333 420 [33]

Steel, X60_1 452 542 0.0021 0.043 215,238 2200 [34]

Steel, X60_2 414 600 0.0020 0.095 207,000 2000 [34]

Steel, X65 464.5 563.8 0.0022 0.061 211,136 1689 [35]

Steel, X70_1 508 667 0.0024 0.095 211,667 1717 [36]

Steel, X70_2 523 701 0.0025 0.095 209,200 1924 [36]

Steel, X80 524 685 0.0025 0.078 209,600 2132 [36]

Fig. 3 The finite element model for ANN1 predicting defected pipe capacity
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The FE model is validated with results from Talebi et al.

[3] to observe the difference in calculating peak moment

and peak axial force. It can be seen that the two models are

well matched and the critical trend of the increase in peak

forces within the change in the fault displacement can be

observed (Fig. 8).

2.2 Developing data-driven models

The conventional ANN, which is widely used in the liter-

ature for the regression problems as in [25, 44, 45], is

chosen in this study for developing data-driven models. For

the sake of simplicity, the fundamental of this machine

learning model is not discussed in detail. Instead, discus-

sion on the input system, boundaries, post-training pro-

cesses, observation on the described statistics and the

statistical tests on residual is focused. The first ANN

model, ANN1, aims to predict moment capacity of defected

pipe (i.e., Mcap), and the second model, ANN2, targets to

estimate the internal forces (both Mpeak and Ncor) in pipe

due to transverse fault.

Obviously, the inputs of the stress–strength problem are

the union of these from constituent models. The input will

be categorized as: pipe dimensions, defect dimensions, soil

properties and strike-slip fault properties groups. Pipe

dimension inputs (D and t) and material inputs (ry, ey, ru
and eu) are the two groups that will be shared between the

ANN models. Defect dimension group (d, l, warc, a and My/

Mx) will be used in ANN1 only. The inputs in the soil

properties group (Pa, ya, Pt, yt) and strike-slip fault group

(fx and fy) will be needed for prediction with ANN2.

Fig. 5 Pipeline crossing transverse fault

Fig. 6 The finite element model for ANN2 predicting the internal forces in pipe

Fig. 7 Force–displacement

perfectly plastic properties of

soil springs
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Illustration of inputs used for each data-driven model is

given in the ‘‘input block’’ in Fig. 10. It is worthy noted

that the ANN1 requires the axial load, N, which will be

extracted from the corresponding axial load, Ncor—an

output of the ANN2. The interaction between these two

data-driven models is consequently required where the

output of a model is used as the input of the other. For the

overall valid prediction, boundaries of each input must be

the intersection of those from Databases 1 and 2. This

interaction will be discussed further in Sect. 2.3.

The model training process is implemented conven-

tionally with the databases which are divided into train and

test sets with the ratios of 0.8 and 0.2, respectively. The

error (MSE in this paper) of model on the train set is used

as the loss function, and the evaluation metrics on the test

set are used for observing the performance of the models

on unfamiliar inputs. Additionally, the distributions of the

residuals on test sets of ANN1 and ANN2 are investigated

and statistically tested to confirm the validation of conse-

quent MCS implementation with known distributions.

2.3 Combinations of data-driven models
for the stress–strength analysis with model
uncertainties

As above discussion, a problem will arise with the com-

bination of models for pipe capacity and internal forces in

pipes because each model has error or uncertainty itself.

Once a set of inputs is fed for the ANN, the predicted

output is a deterministic value. However, the error of such

prediction statistically occurs and the quantity is depending

on the accuracy of the data-driven model. Assuming that

the residuals of models are obtained and followed any type

of distribution, the interested variables can be considered as

the random variables: eMcap, eMpeak and eNcor in Eqs. 1, 2 and

3, respectively. These random variables have the

corresponding means and standard deviations: Mcap,mean,

Mcap,std; Mpeak,mean, Mpeak,std; Ncor,mean, Ncor,std.

eMcap ¼ rand Mcap;mean;Mcap;std

� �

¼ Mcap;pred þ ercap
¼ Mcap;pred þ rand rcap;mean; rcap;std

� �

ð1Þ

eMpeak ¼ rand Mpeak;mean;Mpeak;std

� �

¼ Mpeak;pred þ erpeak
¼ Mpeak;pred þ rand rpeak;mean; rpeak;std

� �

ð2Þ
eNcor ¼ rand Ncor;mean;Ncor;std

� �

¼ Ncor;pred þ ercor
¼ Ncor;pred þ rand rcor;mean; rcor;std

� �

ð3Þ

where Mcap;pred, Mpeak;pred and Ncor;pred are the moment

capacity of the defected pipe predicted with ANN1,

moment capacity and corresponding axial load of the

defected pipe predicted with the ANN2, respectively; ercap,

erpeak and ercor are random residuals of moment capacity of

defected pipe, peak moment and axial load in pipe,

respectively; rcap;mean and rcap;std are the actual mean and

standard deviation of residual of ANN1 predicting Mcap,

respectively; rpeak;mean and rpeak;std are the actual mean and

standard deviation of residual of ANN2 predicting Mpeak,

respectively; and rcor;mean and rcor;std are the actual mean

and standard deviation of residual of ANN2 predicting Ncor,

respectively.

Given that the actual distributions of residuals are

unknown, an assumption is made in this paper that: ‘‘The

distribution of the actual residual and the distribution of

residual on the test set are equivalent.’’ With this

assumption, the distributions of the actual residuals can be

replaced by the residuals found from the test set. Once this

assumption is set, the conventional stress–strain problem

can be solved by conventional reliability methods such as

FORM or Monte Carlo simulation (MCS) (e.g., [46–48]).

In this paper, the conventional MCS is implemented where

the distributions of the inputs are known for generating a

substantial number of trials to figure out the failure prob-

ability (Fig. 9).

Fig. 8 Validation on the fault displacement versus peak bending moment and axial force of the present study with Talebi et al. [3]

1546 Neural Computing and Applications (2022) 34:1541–1555

123



The framework of the paper is given in Fig. 10. The

molecular blocks are the ‘‘input block,’’ the ‘‘internal force

block’’ and the ‘‘capacity block.’’ The ‘‘input block’’ simply

deals with synchronizing and providing usable inputs for

developed models in the ‘‘internal force block’’ and ‘‘ca-

pacity block.’’ Because inputs for each data-driven models

should be within their boundaries ([23–25]), checking

operations are placed before feeding inputs to ANN1 and

ANN2 models. Consequently, the residual distributions on

the test set of these models are found and statistically tested

to find their distributions for further MCS implementations.

The procedure will be terminated if the type of distribution

for the residuals cannot be found (i.e., fail the statistics

tests). If the tests are satisfied, the first MCS, MCS1, is

conducted with n values of samples to obtain eMpeak and

eNcor from Mpeak, Ncor and their corresponding residuals.

eNcor is then normalized by No in Eq. 4 and sent to ANN1 as

input to generate n 9 Mcap by the second MCS, MCS2.

Consequently, n values of Mcap and Mpeak are compared

and the probability of failure, Pf, is finally found with the

failure counting process. Given that ANN1 and ANN2 are

obtained, the pseudo-code for the process is also provided

in the following.

Fig. 9 Predicted values of ANN

models and corresponding

uncertainties

Fig. 10 Flowchart of incorporating ANN models accounting for the model uncertainties
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3 Results

3.1 Performance of proposed data-driven
models

As aforementioned, two databases, designated as Database

1 and Database 2, have been developed in this study.

Database 1, developed for ANN1 model predicting Mcap,

contains up to 778 samples. Meanwhile, Database 2 with

358 samples is for ANN2 to predict Mpeak and Ncor. Some

features are normalized to increase the range of models. To

be specific, t, l and warc are normalized with D and d, N and

My are divided into t, No, Mx, respectively.

A wide range of pipes from 100 to 1219 mm are

included in Database 1 with the ratio of wall thickness to

outer diameter from 0.0113 to 0.100. Meanwhile, Database

2 contains only intact pipes from 100 to 1200 mm with the

earlier discussion/assumption that: the localized defects on

pipe have no effect on the formation of moment in the

strike-slip fault problem. With this assumption, the defect

dimension inputs (d, l,warc) and location inputs (a and My/

Mx) only appeared in Database 1. The maximum depth of

defect in this database is up to 80% of the wall thickness

(i.e., holes are not formed).

Pipe materials in this study are steel with various grades

ranging from X42 to X80 (Table 1). Properties of soil

spring are only in Database 2 with the ranges referred from

[42]. The normalized axial force (i.e., N/No in Database 1

and Ncor/No in Database 2) in Database 2 is much narrower

than in Database 1 (with [- 0.1371, 0.2752] compared to

[- 0.8070, 0.9120], respectively). Consequently, ranges of

N/No are used as the boundaries for the overall problem. To

the end, moment capacity of defected pipe, Mcap, in

Database 1 ranges from 0 (or failure due to the axial load)

to 13.58 MNm compared to Mpeak in Database 2 which

ranges within [3.64 9 10–4, 8.55] MNm. Details of the

input boundaries for ANN1, ANN2 and overall problem are

given in Tables 2, 3 and 4, respectively.

Once generated, Databases 1 and 2 are divided into the

train and test sets with the ratio of 0.8/0.2. Consequently,

Databases 1 and 2 have 622/156 and 286/72 samples for

train/test sets, respectively. Because there is no strict rule

for finding a proper ANN configurations, various ANN

architectures have been tried with the aim to minimize the

loss function (MSE in this study). The process of selecting

the best configurations for a machine learning models can

be found in many other studies such as [23] or [24] and not

provided in this study for the sake of simplicity. The final

ANN1 and ANN2 models both have five hidden layers; each

layer contains 32 nodes and a bias node (as other con-

ventional ANN [49]). With different numbers of output(s),

ANN1 has slightly less weights than that of ANN2 with

4673 versus 4706 trainable parameters, respectively. The

batch size and total epochs for these ANNs are equal to 10

samples and 104 epochs. The required training times to

develop these models are 380 s for ANN1 and 261 s for

ANN2.

Input: Deterministic: D, t/D, d/t, l/D, warc/D, σy,  σu, εy, εu, α, My/Mx,  fy/D,  fx/D, Pa, ya, Pt, capr , peakr , orcr .

Output: Pf

Begin

Step 1: n ← 106

Step 2: Input A ← 1×[D, t/D, σy,  σu, εy, εu, fy/D,  fx/D, Pa, ya, Pt, yt];

Step 3: 1×[Mpeak,pred, Ncor, pred] ← ANN2 and Input A; 

Step 4: MCS1: n×[Mpeak, Ncor]← Eq.2, 3 and capr ;

Step 5: No ← Eq.4 and D, t, σu;

Step 6: Input B ← n×[Deterministic: D, t/D, d/t, l/D, warc/D, σy, σu, εy, εu, α, My/Mx; Random: Ncor, pred/No];  

Step 7: n ×Mcap,pred ← ANN1 and Input B;

Step 8: MCS2: n ×Mcap ← Eq.1, n ×Mcap,pred, peakr and orcr ;

Step 9: f=0;

Step 10:  For i in [1:n]:

If the ith Mcap < the ith Mpeak:

f = f + 1;

End

Step 11: Pf = f/n

End

∼ ∼

∼
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After the training process, observation of ANN1 and

ANN2 model performance on the train and test sets is

shown in Fig. 11 and Table 5. It can be seen from Fig. 11

that both models are appropriate for predicting the inter-

ested variables where the data points densely scattered

around the 1:1 line. It indicates the minor differences of

predicted compared to the simulated values.

The validation metrics in Table 5 reinforce the intuition

in Fig. 11 with R2 in all cases of around 0.99. Compared to

the mean values of Mcap (1.4025 MNm, Table 2) and Mpeak

(1.305 MNm, Table 3), the errors are consistently less than

0.3 MNm on both train and test sets. The error on Ncor is

maximum at RMSE = 0.7959MN on the test set (Table 3).

The general complexity of the developed models is

implicitly measured via the time required to implement a

million-sample prediction on Core i5-8250U processor and

16 GB RAM computer. A total of ten case studies are

conducted with the mean of time required to predict 106

input samples for ANN1 and ANN2 which are slightly equal

at 10.6375 s and 9.7546 s, respectively. Further observa-

tions on computing time for the overall process in Fig. 10

are given in Table 8.

The residuals of interested variables are given in

Table 5. It is focused on the test set whose distribution is

assumed to be equivalent to the actual distribution of the

residuals. The mean values of all residuals (rmean) are close

to zero, implying the bias does not occur. It is under-

standable that the residual standard deviations (rstd) are

almost equal to the RMSE in all cases. Histograms of

residuals are provided in Fig. 12, illustrating the concen-

tration of these values around the zero locations.

The statistical normal tests on the residuals are imple-

mented with conventional methods proposed by D’Agos-

tino [50, 51] and Kolmogorov–Smirnov [52]. The null

hypotheses for all the tests are: ‘‘The residual follows the

normal distribution.’’ The p-values of these tests are

Table 2 Descriptive statistics of the generated Database 1 (778

samples)

Variable Mean Standard deviation Min Max

D 541.7509 425.0669 100.0000 1219.0000

t/D 0.0419 0.0266 0.0113 0.1000

d/t 0.5049 0.2406 0.0000 0.8000

l/D 0.1585 0.0998 0.0000 0.3937

warc/D 0.1887 0.0913 0.0000 0.4154

ry 446.8618 80.5888 290.0000 524.0000

ru 582.7224 97.6295 415.0000 701.0000

ey 0.0021 0.0004 0.0014 0.0025

eu 0.0776 0.0218 0.0430 0.1036

a 2.2656 1.4100 0.0000 p

N/No* 0.0067 0.1722 - 0.8070 0.9120

My/
Mx**

0.4195 1.8228 - 10.0000 10.0000

Mcap 2,987,963 3,652,569 0.0000 13,580,000

*N in ANN1 and Database 1 will be equal to Ncor in ANN2 and

Database 2 which is normalized with No where:

No ¼ pru D
2

� �2� D�2t
2

� �2
� �

ð4Þ

**The ratio added to observe the cases where defects are out of

bending plane

Table 3 Descriptive statistics of

the generated Database 2 (358

samples)

Variable Mean Standard deviation Min Max

D (mm) 666.9218 325.6226 100.0000 1200.0000

t/D 0.0276 0.0179 0.0053 0.0750

ry 448.5000 83.5036 290.0000 524.0000

ru 555.4676 93.2509 415.0000 685.0000

ey 0.0019 0.0004 0.0014 0.0025

eu 0.0775 0.0433 0.0394 0.2230

fy/D -4.3960 3.9072 2 24.3840 0.000

fx/D -0.3684 3.8848 2 15.9020 10.0000

Pa (N) 37,736 18,560 12,260 75,000

ya (mm) 3.0528 1.3330 1.5000 5.0000

Pt (N) 567,234 258,669 200,000 1,000,000

yt (mm) 38.7701 27.8544 6.7000 100.0000

Ncor/No* 0.0383 0.0746 2 0.1371 0.2752

Mpeak 1,958,532 2,062,205 364 8,550,000

Ncor 5,227,779 8,222,423 - 12,700,000 25,300,000

*Ncor in ANN2 and Database 2 will be equal to N in ANN1 and Database 1 which is normalized with No in

Eq. 4
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consistently close to zero with the maximum value of

3.1171 9 10–4 (Table 6) larger than 0.01. Consequently,

the conclusion can be claimed that: ‘‘The null hypotheses

cannot be rejected with the confidence level of 0.99.’’

These tests are the fundamentals for obtaining eMcap, eMpeak

and eNcor as in Eqs. 1, 2 and 3 by randomly generated these

variables by MCSs (i.e., MCS1 and MCS2 in Fig. 10). The

comparison of the structure capacity and external force

then can be made for each trial to record the number of

failure.

Table 4 Summarized

boundaries of the stress–

strength analysis with ANNs

Variable Min Max Variable Min Max

D (mm) 100 1200 ya (mm) 1.5 5

t/D 0.0053 0.075 Pt (N) 200,000 1,000,000

ry (MPa) 290 524 yt (mm) 6.7 100

ru (MPa) 415 685 t/D 0.0113 0.1

ey 0.0014 0.0025 d/t 0 0.8

eu 0.0394 0.223 l/D 0 0.3937

fy/D - 24.384 0.0278 a 0 p

fx/D - 15.902 10 N/No (or Ncor/No) - 0.1371 0.2752

Pa (N) 12,260 75,000 My/Mx - 10 10

Fig. 11 Comparison of results from the ANN1 (a: Mcap) and ANN2 (b: Mmax; c: Ncor) versus FE simulation
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3.2 Failure assessment accounting for model
uncertainties

In this section, the framework in Fig. 10 is conducted with

a control case given as Case 0 of Table 7. The control case

is a pipe made of X42 steel with D = 762 mm and

t = 10 mm. The defect is located in the bending plane

(My = 0), and this flaw is up to 20% of the wall thickness

with ratios of length and width of defect to pipe diameter of

0.2 and 0.4, respectively. The fault angle b is p/4 or fx/D

Table 5 Validating metrics of proposed ANN model versus other models

Model Prediction timea

(second)

Output Unit Metric on R2 MAE RMSE rmean rStd

ANN1 10.6375 Mcap (MNm) Train set 0.9973 0.098221 0.187824 0.005769 0.187736

(MNm) Test set 0.9943 0.166144 0.289127 0.008182b 0.289011b

ANN2 9.7546 Mpeak (MNm) Train set 0.9986 0.046472 0.074232 0.005134 0.074054

(MNm) Test set 0.9883 0.159260 0.254812 0.037552c 0.252029c

Ncor (MN) Train set 0.9989 0.173498 0.264635 - 0.016733 0.264105

(MN) Test set 0.9929 0.541692 0.795936 - 0.097199d 0.789978d

aMean predicting time from 10 cases 9 106 samples in each case (Table 5; brcap,mean and rcap,std;
crpeak,mean and rpeak,std;

drcor,mean and rcor,std

Fig. 12 Histograms of residual of outputs: a–c
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and fy/D are equal at 1. The negative signal in fy/D indicates

the reversed displacement direction described in Fig. 6.

The transverse soil springs have yield force at PT = 0.537

MN, and this value of axial direction Pa is 0.01226 MN.

The Mpeak,pred and Ncor,pred/No are obtained from ANN2 for

this case of 0.71440 and 0.0313, respectively. The value of

Ncor,pred/No is then used along with other required inputs

for ANN1. It is calculated that the moment capacity of the

defected pipe, Mcap,pred, is 1.84725 MNm. With pipe

capacity which is almost triple the external force, the

deterministic approach claims a safe status. However, with

the appearance of model uncertainties, the failure proba-

bility of the structure, Pf, is 0.00253. To obtain this prob-

ability, each MCS in Fig. 10 is implemented with 106

trials.

Comparing the control Case 0 to Cases 1–9, a selective

parametric study of the problem is conducted. In Case 1,

pipe diameter D decreases to 500 mm, while other absolute

inputs are the same. (The relative inputs changed due the

change of normalized value D.) This change leads to

reduction of Mcap,pred from 1.8475 MNm to 1.02611 MNm

and Mpeak,pred from 0.71440 MNm to 0.56304 MNm.

Meanwhile, relative external force, Ncor,pred, increased

from 0.03130 to 0.04117. Consequently, the failure prob-

ability of the pipe jumped up to 0.12724.

In the cases where both Mcap,pred and Mpeak,pred are

increased, failure probability, Pf, may increase or decrease

depending on the changing quantities of these moments.

For instance, if the wall thickness is double from 10 to

20 mm (Case 2), Mcap,pred raises to 2.18546 MNm. How-

ever, the increase in pipe stiffness with thicker wall leads to

the triple ofMpeak,pred to 2.4954 MNm. To the end, the pipe

is predicted to have 80.758 percent of failure.

Analogously, if the defect is propagated deeper from 0.2

to 0.5 to wall thickness, the failure probability is 0.01428

(Case 3). In Case 4, if the defect is out of the bending plane

with an angle of b = p/4, Mcap,pred is slightly increased to

1.89197 MNm and thus Pf is reduced to 0.00159.

The improvement in pipe material from X42 steel to

X80 steel in Case 5 is an interesting case. The use of higher

grade leads to the lower reliability of the pipe. In this case,

Mcap,pred is significantly increased to 2.18095 MNm.

However, the dramatic increase of Mpeak,pred from 0.71440

MNm to 3.78329 MNm causes exploding of Pf to 99.999%.

This phenomenon is likely due to the higher stiffness of

X80 at the hardening state E2 = 2132 MPa compared to

this of X42 (E2 = 1223 MPa) as in Table 1.

In Case 6, the absence of soil axial displacement, fx/D,

leads to the significant increase of Pf to 0.01504. Mean-

while, if b is constant and the quantity of the fault dis-

placement is triple, the failure probability slightly increases

to 0.00717 (Case 7). This illustrates the positive effect of fx/

D to the safety of the pipe.

Besides, the increase of Pa from 0.012260 MN to 0.02

MN is positively correlated with the improvement of

Mcap,pred to 1.85088 MNm (Case 8). Along with the dra-

matic reduction ofMpeak,pred to 0.03547 MNm and the axial

force increase to 0.04095 MN, the failure probability in this

case is zero. In Case 9, if the stiffness of the soil is

improved in the transverse direction from 0.53700 MN to

0.80000 MN, the structure is likely to be broken with Pf of

up to 0.93655. This is because the hard soil will reduce the

anchor length of pipe. Consequently, the external moment

is concentrated within a shorter length with the same

displacement.

Additional information on the time required for imple-

menting Cases ID 0–9 is given in Table 8. Along with the

overall time to conduct the process in Fig. 10, the

decompositions are also provided. The components are:

predicting times of ANN1, ANN2 (not included in the

overall estimation) and other necessary steps such as gen-

erating random data for MCSs, assessing the failure prob-

ability, etc. It generally takes 14.6544 s for conducting the

overall problem which assesses the failure probability of

defected pipe under strike-slip fault. Because only one

prediction on ANN2 is required to obtain Mpeak,pred and

Ncor,pred, running time for ANN2 is not included in the

overall assessment. On average, predicting with 106 ANN1

predictions accounts for 72.59% to the total computing

time (step 7 in the pseudo-code). The remaining steps 1–6

and 8–11 in the pseudo-code take 27.41% the total time

(i.e., 4.0169 s on average).

4 Conclusion and discussion

The paper proposed an approach for the stress–strength

problem of the defected pipe under the strike-slip fault.

ANN1 and ANN2 models have been developed based on

Database 1 (778 samples) and Database 2 (358 samples)

from FEAs, respectively. The validating metrics on train

and test set are investigated with the R2s of around 0.99,

and errors (i.e., MEA and RMSE) are substantially low.

Table 6 Test for goodness of fit of output residuals to follow normal

distributions

Residual Test method p-value

ercap D’Agostino [50, 51] 2.0524 9 10-14

Kolmogorov–Smirnov [52] 0.0000 9 10-1

erpeak D’Agostino [50, 51] 1.6854 9 10-5

Kolmogorov–Smirnov [52] 8.2681 9 10-24

ercor D’Agostino [50, 51] 3.1171 9 10-4

Kolmogorov–Smirnov [52] 3.5229 9 10-18
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Additionally, the model uncertainties of the overall

prediction are accounted for with the assumption that the

actual distribution of models residuals and this on test set

are equivalent. Consequently, MCS can be conducted with

the randomness of outputs extracted from residuals on the

test set. The uncertainty of ANN1 is presented via residual

mean, rcap,mean = 0.0082 MNm, and standard deviation,

rcap,std = 0.2890 MNm. Meanwhile, means and standard

deviations of ANN2 are rpeak,mean = 0.0376 MNm,

rpeak,std = 0.2520 MNm for predicting the peak moment

and rcor,mean = - 0.0972 MN, rcor,std = 0.7898 MN for the

corresponding axial force. The transformation of deter-

ministic input to the probability of failure at the end of the

overall model reflexes the uncertainty of models in terms of

probability.

Simultaneously, time complexity of constituent models

and the overall model is observed based on the running

time of the overall model and constituent models. The

acceptable overall running time (around 14.64 s, including

the MCS1 and MCS2) on a computer with low-medium

power indicates the practical application of the proposed

framework.

Based on the quantification of model uncertainty, the

selective parametric study is also provided revealing the

hidden relationship between inputs and output. For

instance, the stiffness of pipe is important to the formation

of the external forces, and the increase in the transverse

yield force leads to more severe scenario.

The paper can be extended with the expansion of

number of the samples for each database. The main

purpose of this improvement is to widen the boundaries

naturally set by the minimum and maximum of each input.

For example, other materials can be included, or the normal

fault crossing problem can be additionally considered. The

proposed method and the parametric study also suggest

some further works on an optimization. But the increase in

pipe dimensions not only improves moment capacity but

also causes a larger external forces due to the increase in

pipe stiffness.
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