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Abstract
Improperly efficient solutions in the sense ofGeoffrion in linear fractional vector optimization
problems with unbounded constraint sets are studied systematically for the first time in this
paper. We give two sets of conditions which assure that all the efficient solutions of a given
problem are improperly efficient.We also obtain necessary conditions for an efficient solution
to be improperly efficient. As a result, we have new sufficient conditions for Geoffrion’s
proper efficiency. The obtained results enrich our knowledge on properly efficient solutions
in linear fractional vector optimization.

Keywords Linear fractional vector optimization problem · Efficient solution · Geoffrion’s
properly efficient solution · Improperly efficient solutions · Benson’s criterion

Mathematics Subject Classification 90C29 · 90C32 · 90C26

1 Introduction

The concept of efficiency plays a central role in vector optimization. Slightly restricted
definitions of efficiency leading to proper efficiencies in various senses have been proposed.
The aim of the existing concepts of proper efficiency is to eliminate certain efficient points
that exhibit an undesirable anomaly. An efficient solution is properly efficient in the sense
of Geoffrion [6] if there is a constant such that, for each criterion, at least one potential
gain-to-loss ratio is bounded above by the constant. Latter, this concept of proper efficiency
was extended by Borwein [2] and Benson [1] to vector optimization problems, where the
ordering cone can be any nontrivial closed convex cone. When the ordering cone is the
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nonnegative orthant, Benson’s properness is equivalent to Geoffrion’s properness, while
Borwein’s properness is in general weaker than Geoffrion’s properness. An efficient solution
that is not properly efficient is said to be improperly efficient.

Studied firstly by Choo and Atkins [4,5], linear fractional vector optimization problems
(LFVOPs) are interesting special nonconvex vector optimization problems. The importance
of these problems for practical applications were highlighted in [4, p. 203] and [17, Chap-
ter 9]. For vector optimization theory, where convex vector optimization problems were
studied intensively, LFVOPs are remarkable nonconvex problems having nontrivial qualita-
tive properties. Since any linear fractional vector optimization problem can be given explicitly
by several vectors and a matrix, LFVOPs provide us with a rich source of illustrative exam-
ples for analyzing many abstract concepts in nonconvex vector optimization. Observe that,
up to now, vector optimization problems with more than two connected components in the
efficient solution sets and vector optimization problems whose efficient solution sets are path
connected but not contractible are known only through LFVOPs. Thus, LFVOPs deserve
a special attention from researchers. The role of LFVOPs in vector optimization is similar
to that of linear complementarity problems in theory of variational inequalities. Numerical
methods for solving LFVOPs can be found in [14,17].

As observed by Choo and Atkins [4,5], the efficient solution sets of linear fractional vector
optimization problems do not have the nice linear properties as in the case of linear vector
optimization problems. Based on a theorem of Robinson [15, Theorem 2] on stability of
monotone affine variational inequalities, several results on stability and the efficient solu-
tion sets of LFVOPs were established in [19]. More information on linear fractional vector
optimization problems can be found in [10,18].

It is well known [3] that there is no difference between efficiency and Geoffrion’s proper
efficiency in LFVOPs with bounded constraint sets. In other words, such problems do not
have any improperly efficient solution. Hence, it is of great interest to investigate properness
of the efficient solutions LFVOPs with unbounded constraint sets. We believe that results in
this direction are useful from both theoretical and practical points of view. Recently, several
results on properly efficient solutions in the sense of Geoffrion of LFVOPs with unbounded
constraint sets have been obtained. In [11], sufficient conditions for an efficient solution
to be a Geoffrion’s properly efficient solution are obtained by a direct approach. In [9],
other sufficient conditions are proved by using Benson’s characterization for Geoffrion’s
properness. In [12], sufficient conditions for an efficient solution to be a Geoffrion’s properly
efficient solution are established by applying some arguments of Choo [3].

As shown in [8, Example 3.2], the Borwein properly efficient solution set of a LFVOP can
be strictly larger than the Geoffrion properly efficient solution set. Also, there are LFVOPs
having improperly efficient solutions in the sense of Borwein (see [8, Example 3.1]). Ver-
ifiable sufficient conditions for an efficient point of a LFVOP to be a Borwein’s properly
efficient solution can be found in [8].

So far, the improper efficient solutions in the sense of Geoffrion of LFVOPs with
unbounded constraint sets have not been studied. In the present paper, we will obtain some
sets of conditions which ensure that all the efficient solutions of a given problem are improp-
erly efficient. Thanks to these results, some classes of abnormal LFVOPs can be described
explicitly. Necessary conditions for an efficient solution to be improperly efficient will be also
established. On this basis, we get new sufficient conditions for Geoffrion’s proper efficiency.
It is worthy to stress that the statements and the proofs of our main results (see Theorem 3.1,
3.4, and 4.1 below) have no analogues in vector optimization theory. Each proof has some
original arguments.
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The outline of the remaining sections is as follows. Section 2 recalls some notations,
definitions, and lemmas. In Sect. 3, sufficient conditions for theGeoffrion improper efficiency
of a LFVOP are obtained. Section 4 establishes necessary conditions for an efficient solution
of a LFVOP to be improperly efficient in the sense of Geoffrion, and new sufficient conditions
for Geoffrion’s proper efficiency. Illustrative examples and comparisons of the last conditions
with the preceding ones in [11] are also provided in this section. Some concluding remarks
and two open questions are given in Sect. 5.

2 Preliminaries

The scalar product and the norm in the Euclidean space R
n are denoted, respectively, by

〈·, ·〉 and ‖ · ‖. Vectors in R
n are represented as rows of real numbers in the text, but they

are understood as columns of real numbers in matrix calculations. If A is a matrix, then AT

stands for the transposed matrix. The cone generated by a subset D of an Euclidean space is
denoted by cone D, i.e., cone D = {t x : t > 0, x ∈ D}. The closure of cone D is denoted by
cone D. As usual, the nonnegative orthant in Rm and the set of positive integers are denoted
respectively by Rm+ and N.

A nonzero vector v ∈ R
n is said to be [16, p. 61] a direction of recession of a nonempty

convex set D ⊂ R
n if x + tv ∈ D for every t ≥ 0 and every x ∈ D. The set composed by

0 ∈ R
n and all the directions v ∈ R

n\{0} satisfying the last condition, is called the recession
cone of D and denoted by 0+D. If D is closed and convex, then

0+D = {v ∈ R
n : ∃x ∈ D s.t. x + tv ∈ D for all t > 0}.

Lemma 2.1 (See [11, Lemma 2.10]) Let D ⊂ R
n be closed and convex, x̄ ∈ D. If {xk} is a

sequence in D\{x̄} with lim
k→∞ ‖xk‖ = +∞ and lim

k→∞
xk − x̄

‖xk − x̄‖ = v, then v ∈ 0+D.

Consider linear fractional functions fi : Rn → R, i = 1, . . . ,m, of the form

fi (x) = aTi x + αi

bTi x + βi
,

where ai ∈ R
n, bi ∈ R

n, αi ∈ R, and βi ∈ R. Let K be a polyhedral convex set, i.e., there
exist p ∈ N, a matrix C ∈ R

p×n, and a vector d ∈ R
p such that K = {

x ∈ R
n : Cx ≤ d

}
.

We assume that K is nonempty and bTi x + βi > 0 for all i ∈ I and x ∈ K , where
I := {1, · · · ,m}. Put f (x) = ( f1(x), . . . , fm(x)) and let

Ω = {
x ∈ R

n : bTi x + βi > 0, ∀i ∈ I
}
.

Clearly, Ω is open and convex, K ⊂ Ω , and f is continuously differentiable on Ω . The
linear fractional vector optimization problem given by f and K is formally written as

(VP) Minimize f (x) subject to x ∈ K .

Definition 2.2 A point x ∈ K is said to be an efficient solution (or a Pareto solution) of (VP)

if
(
f (K ) − f (x)

) ∩ ( − R
m+\{0}) = ∅.

The efficient solution set of (VP) is denoted by E . If bi = 0 and βi = 1 for all i ∈ I , then
(VP) coincides with the classical multiobjective linear optimization problem.

The next two lemmas will be used repeatedly in the sequel.

123



378 Journal of Global Optimization (2022) 82:375–387

Lemma 2.3 (See, e.g., [14] and [13, Lemma 8.1]) Let ϕ(x) = aT x + α

bT x + β
be a linear fractional

function defined by a, b ∈ R
n and α, β ∈ R. Suppose that bT x + β �= 0 for every x ∈ K0,

where K0 ⊂ R
n is an arbitrary polyhedral convex set. Then, one has

ϕ(y) − ϕ(x) = bT x + β

bT y + β
〈∇ϕ(x), y − x〉

for any x, y ∈ K0, where ∇ϕ(x) denotes the Fréchet derivative of ϕ at x.

The following lemma will be useful for proving Theorem 4.1. Since it also clarifies some
assumptions in Theorems 3.1 and 3.4, upon the suggestion of an anonymous referee, here
we give a direct proof.

Lemma 2.4 (See [12, Lemma 3.1]) For any i ∈ I and v ∈ 0+K, it holds that bTi v ≥ 0.

Proof By contradiction, suppose that there exist i ∈ I and v ∈ (0+K )\{0} satisfying bTi v <

0. Fix a point u ∈ K . The inclusion v ∈ (0+K )\{0} implies that u + tv ∈ K for every t > 0.
Meanwhile, the inequality bTi v < 0 yields bTi (u+ tv)+βi < 0 for t > 0 large enough. This
contradicts the condition bTi x + βi > 0 for all x ∈ K . The proof is complete. ��
Definition 2.5 (See [6, p. 618]) One says that x̄ ∈ E is a Geoffrion’s properly efficient
solution of (VP) if there exists a scalar M > 0 such that, for each i ∈ I , whenever x ∈ K
and fi (x) < fi (x̄) one can find an index j ∈ I such that f j (x) > f j (x̄) and Ai, j (x̄, x) ≤ M

with Ai, j (x̄, x) := fi (x̄) − fi (x)

f j (x) − f j (x̄)
.

Geoffrion’s properly efficient solution set of (VP) is denoted by EGe.

3 Sufficient conditions

One may call (VP) a pathological linear fractional vector optimization problem if all the
efficient solutions are improperly efficient in the sense of Geoffrion.

Theorem 3.1 Suppose that there exist k ∈ I and a vector v ∈ (0+K )\{0} such that bTk v = 0
and aTk v < 0. If bTj v > 0 all j ∈ I\{k}, then any efficient solution of (VP) is an improperly
efficient solution in the sense of Geoffrion.

Proof Let x̄ ∈ E be given arbitrarily. To obtain a contradiction, suppose that x̄ ∈ EGe. Then
there exists M > 0 such that for each i ∈ I , if x ∈ K and fi (x) < fi (x̄), then one can find
j ∈ I such that f j (x) > f j (x̄) and Ai, j (x̄, x) ≤ M , where the ratio Ai, j (x̄, x) has been
defined in Definition 2.5.

Since v ∈ (0+K )\{0}, the vector xt := x̄ + tv belongs to K for any t > 0. By the equality
bTk v = 0 one has

fk(xt ) = fk(x̄ + tv) = aTk (x̄ + tv) + αk

bTk (x̄ + tv) + βk

= aTk x̄ + αk

bTk x̄ + βk
+ aTk v

bTk x̄ + βk
t

= fk(x̄) + aTk v

bTk x̄ + βk
t .

(3.1)
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Since aTk v < 0, this implies that fk(xt ) < fk(x̄) for any t > 0. Hence, choosing i = k and
recalling the choice of M , we can find an index jt ∈ I\{k} such that f jt (xt ) > f jt (x̄) and
Ai, jt (x̄, xt ) ≤ M . The last inequality means that

fk(x̄) − fk(x̄ + tv) ≤ M( f jt (x̄ + tv) − f jt (x̄)). (3.2)

As jt ∈ I\{k} for every t > 0, by the Dirichlet principle we can find a sequence {t�}�∈N of
positive numbers tending to ∞ such that jt� = j for some fixed index j ∈ I\{k}.

Now, applying Lemma 2.3 to the linear fractional function f j , we have

0 < f j (x̄ + tv) − f j (x̄) = t
bTj x̄ + β j

bTj (x̄ + tv) + β j

〈∇ f j (x̄), v
〉

(3.3)

for all t > 0. Therefore, combining (3.2) with (3.1) and (3.3), we get

− aTk v

bTk x̄ + βk
≤ M

bTj x̄ + β j

bTj (x̄ + t�v) + β j

〈∇ f j (x̄), v
〉

(3.4)

for every � ∈ N. Since bTj v > 0, passing (3.4) to the limit as � → ∞ gives the inequality

− aTk v

bTk x̄ + βk
≤ 0, which contradicts the conditions aTk v < 0 and bTk x̄ + βk > 0. The proof

is complete. ��
Remark 3.2 Based on Theorem 3.1, one can construct infinite number of pathological
LFVOPs, where any efficient solution is an improperly efficient solution in the sense of
Geoffrion.

Using Theorem 3.1, we can revisit Example 2.6 from [11] as follows.

Example 3.3 Consider the problem (VP) with

K = {
x = (x1, x2) ∈ R

2 : x1 ≥ 0, x2 ≥ 0
}
,

f1(x) = −x2, f2(x) = x2
x1 + x2 + 1

.

One has E = {(x1, 0) : x1 ≥ 0}. To show that all the efficient points are improperly efficient
in the sense of Geoffrion by Theorem 3.1, it suffices to choose k = 1 and v = (0, 1).

Clearly, the above theorem can be applied only in the case where the objective function
of (VP) has at most one affine component. A natural question arises: Is it possible to obtain
sufficient conditions for the coincidence of the set of improperly efficient solutions with the
efficient solution set when (VP) has several affine criteria, or not? The next theorem provides
an answer to this question.

Theorem 3.4 Suppose that there exist i ∈ I and v ∈ (0+K )\{0} such that the following
conditions are satisfied:

(a) bTi v = 0 and aTi v < 0,
(b) for every j ∈ I\{i}, either bTj v > 0 or bTj v = 0 and aTj v ≤ 0.

Then, any efficient solution of (VP) is an improperly efficient solution in the sense of
Geoffrion.
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Proof Let v ∈ (0+K )\{0} and i ∈ I be such that the conditions (a) and (b) are fulfilled.
Suppose that x̄ ∈ E . Thanks to the characterization of Benson for the Geoffrion properly
efficient solutions (see [1, Theorem 3.4]), to have x̄ /∈ EGe we only need to show that

cone
(
f (K ) + R

m+ − f (x̄)
) ∩ (−R

m+
) �= {0}. (3.5)

Let {tk} be a sequence of positive numbers such that lim
k→∞ tk = +∞. Put τk = t−1

k and let

uk = 0Rm for k ∈ N. Define xk = x̄ + tkv for k ∈ N. By Lemma 2.3, for any � ∈ I and
k ∈ N, it holds that

τk
(
f�(xk) + uk� − f�(x̄)

) = τk
bT� x̄ + β�

bT� x
k + β�

〈∇ f�(x̄), x
k − x̄〉

= τk tk
bT� x̄ + β�

(bT� x̄ + β�) + tkbT� v
〈∇ f�(x̄), v〉.

So, setting yk� = τk
(
f�(xk) + uk� − f�(x̄)

)
and noting that τk tk = 1, one has

yk� = bT� x̄ + β�

(bT� x̄ + β�) + tkbT� v
〈∇ f�(x̄), v〉 (∀� ∈ I , ∀k ∈ N). (3.6)

The assumptions made on (VP) guarantee that bT� x̄ + β� > 0 for all � ∈ I and

∇ f�(x) = (bT� x + β�)a� − (aT� x + α�)b�

(bT� x + β�)2
(∀� ∈ I , ∀x ∈ K ). (3.7)

By (3.6), (3.7), and condition (a) we have

lim
k→∞ yki = aTi v

bTi x̄ + βi
< 0. (3.8)

Now, let j ∈ I\{i} be given arbitrarily. From (3.6) and (3.7) it follows that

ykj = 1

(bTj x̄ + β j ) + tkbTj v

〈 (bTj x̄ + β j )a j − (aTj x̄ + α j )b j

bTj x̄ + β j
, v

〉
(3.9)

for all k ∈ N. By condition (b) we have

lim
k→∞ ykj ≤ 0. (3.10)

Indeed, if bTj v > 0, passing (3.9) to the limit as k → ∞ gives lim
k→∞ ykj = 0. Next, suppose

that bTj v = 0 and aTj v ≤ 0. Then, from (3.9) we deduce that

lim
k→∞ ykj = aTj v

bTj x̄ + β j
≤ 0.

Thus, (3.10) is valid for every j ∈ I\{i}. Combining this fact with (3.8), we see that the
sequence {yk} with yk := (yk1 , y

k
2 , ..., y

k
m) for k ∈ N has a limit ȳ, and ȳ ∈ −R

m+\{0}. In
addition, since yk = τk

(
f (xk) + uk − f (x̄)

)
belongs to cone

(
f (K ) + R

m+ − f (x̄)
)
for all

k ∈ N, one has ȳ ∈ cone
(
f (K ) +R

m+ − f (x̄)
)
. This shows that (3.5) is valid and completes

the proof. ��
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Remark 3.5 Note that Theorem 3.4, which was proved by using a tool from [1], encompasses
Theorem 3.1. As it was shown in the proof of Theorem 3.4, if there are an index i ∈ I and a
vector v ∈ (0+K )\{0} satisfying (a) and (b), then (3.5) holds for any x̄ ∈ K .

Remark 3.6 Theorem 3.4 gives us a way to construct infinite number of pathological lin-
ear fractional vector optimization problems with more than one affine criterion, where any
efficient solution is improperly efficient in the sense of Geoffrion.

In [11, Example 4.7], a linear fractional vector optimization problemwith two affine citeria
and one fractional criterion, which has infinitely many improperly efficient solutions in the
sense of Geoffrion, was considered. Recently, in [9, Example 4.5], it was proved that all the
efficient solutions are improperly efficient in the sense of Geoffrion. By Theorem 3.4 we can
give a short proof for the last fact.

Example 3.7 ( [11, Example 4.7]; see also [9, Example 4.5]) Consider problem (VP) with
m = 3, n = 2,

K = {
x = (x1, x2) ∈ R

2 : x1 ≥ 0, x2 ≥ 0
}
,

f1(x) = −x1 − x2, f2(x) = x2
x1 + x2 + 1

, f3(x) = x1 − x2.

One has E = {
x = (x1, x2) : x1 ≥ 0, x2 ≥ 0, x2 < x1 + 1

}
. To show that all the efficient

points are improperly efficient in the sense of Geoffrion by Theorem 3.4, it suffices to choose
i = 1 and v = (1, 1).

Remark 3.8 Examples 3.3 and 3.7 show that, for a linear fractional vector optimization prob-
lem, the set of properly efficient points may not be dense in the set of the efficient points. So,
density results on the line of Arrow-Barankin-Blackwell theorem may not be available for
LFVOPs.

4 Necessary conditions

Necessary conditions for (VP) to have at least one improperly efficient solution in the sense
of Geoffrion are given in the following theorem, whose proof relies on some results of [1,3]
and a compactification procedure.

Theorem 4.1 If (VP) has an improperly efficient solution x̄ in the sense of Geoffrion, then a
vector v ∈ (0+K )\{0} exists such that at least one of the following properties is valid:

(c) There is an index i ∈ I such that bTi v = 0 and aTi v ≤ 0;
(d) 〈∇ f j (x̄), v〉 = 0 for every j ∈ I .

Proof Suppose that x̄ ∈ E is a Geoffrion’s improperly efficient solution. Then, by Benson’s
characterization for Geoffrion’s efficiency, (3.5) holds. Fix any nonzero vector

w ∈ cone
(
f (K ) + R

m+ − f (x̄)
) ∩ (−R

m+
)
.

Then, w ≤ 0 and we can find a sequence

{wk} ⊂ cone
(
f (K ) + R

m+ − f (x̄)
) ∩ (−R

m+
)

converging to w as k → ∞. For each k, select vectors xk ∈ K , uk ∈ R
m+ and a number

τk ≥ 0 such that wk = τk
(
f (xk) + uk − f (x̄)

)
. If τk = 0 for all k belonging to an infinite
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subset ofN, then there is subsequence of {wk} consisting of just the zero vector. This implies
that w = 0, which is impossible. So, replacing the sequence {τk} with a subsequence, we
may assume that τk > 0 for all k.

First, let us show that the sequence {xk} is unbounded. By contradiction, there is ρ > 0
such that ‖x̄‖ ≤ ρ and ‖xk‖ ≤ ρ for all k ∈ N. Define

Kρ = {
x = (x1, . . . , xn) ∈ K : −ρ ≤ xi ≤ ρ

}

and observe that Kρ is a nonempty compact polyhedral convex set. Consider the linear
fractional vector optimization problem

(VP)ρ Minimize f (x) subject to x ∈ Kρ.

Since x̄ is an efficient solution of (VP), it is an efficient solution of (VP)ρ . So, by the
compactness of Kρ and the result of Choo [3, p. 218] we can assert x̄ is a properly efficient
solution of (VP)ρ in the sense of Geoffrion. Hence, thanks to Benson’s characterization for
Geoffrion’s efficiency [1, Theorem 3.4], we have

cone
(
f (Kρ) + R

m+ − f (x̄)
) ∩ (−R

m+
) = {0}. (4.1)

On one hand, since wk = τk
(
f (xk) + uk − f (x̄)

) ∈ cone
(
f (Kρ) +R

m+ − f (x̄)
)
for k ∈ N,

we can assert that w ∈ cone
(
f (Kρ) + R

m+ − f (x̄)
)
. On the other hand, w ∈ (−R

m+
)\{0}.

Clearly, the last two inclusions contradict (4.1).
We have thus proved that the sequence {xk} is unbounded. Replacing {xk} with a subse-

quence (if necessary), we may assume that ‖xk‖ → +∞ as k → ∞, and xk �= x̄ for all k.

Without loss of generality, we can assume that the unit vectors vk := xk − x̄

‖xk − x̄‖ converge to

some v with ‖v‖ = 1 as k → ∞. By Lemma 2.1, one has v ∈ 0+K . Putting tk = ‖xk − x̄‖,
we get xk = x̄ + tkvk for k ∈ N. Using the equality wk = τk

(
f (xk) + uk − f (x̄)

)
and

Lemma 2.3, we have

wk
� = τk

[ bT� x̄ + β�

t−1
k

(
bT� x̄ + β�

) + bT� vk
〈∇ f�(x̄), v

k〉 + uk�

]
(∀� ∈ I ).

It follows that

wk
� ≥ τk

[ bT� x̄ + β�

t−1
k

(
bT� x̄ + β�

) + bT� vk
〈∇ f�(x̄), v

k〉
]

(∀� ∈ I ).

So, one has

τ−1
k wk

� ≥ bT� x̄ + β�

t−1
k

(
bT� x̄ + β�

) + bT� vk
〈∇ f�(x̄), v

k〉 (∀� ∈ I ). (4.2)

(Observe that the standing assumption bTi x + βi > 0 for all i ∈ I and x ∈ K implies that

t−1
k

(
bT� x̄ + β�

) + bT� vk = t−1
k [bT� (x̄ + tkv

k) + β�] = t−1
k [bT� xk + β�] > 0

for k ∈ N.) According to Lemma 2.4, we have bT� v ≥ 0 for all � ∈ I . Thus, either bT� v > 0
or bT� v = 0.

Let I1 = {� ∈ I : w� < 0} and I2 = {� ∈ I : w� = 0}. As w ∈ (−R
m+
)\{0}, we have

I1 ∪ I2 = I and I1 �= ∅.
Concerning the sequence of scalars {τk}, there are two possibilities: (i) {τk} is bounded;

(ii) {τk} is unbounded;
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If the sequence {τk} is bounded, it must have a convergent subsequence, which is denoted
again by {τk}. First, consider the situation where lim

k→∞ τk = τ̄ with τ̄ > 0. For each index

� ∈ I , if bT� v > 0, then passing the inequality in (4.2) to the limit as k → ∞ gives

τ̄−1w� ≥ bT� x̄ + β�

bT� v
〈∇ f�(x̄), v〉.

This forces 〈∇ f�(x̄), v〉 ≤ 0. If bT� v = 0, we also have 〈∇ f�(x̄), v〉 ≤ 0. Indeed, if it
happens that 〈∇ f�(x̄), v〉 > 0 then, by letting k → ∞, we get from (4.2) the inequality
τ̄−1w� ≥ +∞, which is impossible. So, we have proved that 〈∇ f�(x̄), v〉 ≤ 0 for every
� ∈ I . If there exists some �̄ ∈ I with 〈∇ f�̄(x̄), v〉 < 0, by using Lemma 2.3 we can show
that f�̄(x̄ + tv) < f�̄(x̄) and f�(x̄ + tv) ≤ f�(x̄) for every � ∈ I , where t ∈ (0,+∞) is
chosen arbitrarily. Since x̄ + tv ∈ K , we get x̄ /∈ E , contrary to our assumption. Therefore,
we must have 〈∇ f�(x̄), v〉 = 0 for every � ∈ I . Thus property (d) in the formulation of our
theorem is valid. Now, suppose that lim

k→∞ τk = 0. Select any index � ∈ I1. If bT� v > 0, then

by letting k → ∞ we obtain from (4.2) the absurd inequality

−∞ ≥ bT� x̄ + β�

bT� v
〈∇ f�(x̄), v〉.

Hence, we must have bT� v = 0. If 〈∇ f�(x̄), v〉 > 0, then the right-hand-side of the inequality
in (4.2) tends to +∞, while the left-hand-side of that inequality tends to −∞ when k → ∞.
This is impossible. So, one has 〈∇ f�(x̄), v〉 ≤ 0. Since

〈∇ f�(x̄), v〉 = (bT� x̄ + β�)aT� v − (aT� x̄ + α�)bT� v

(bT� x̄ + β�)2

and bT� v = 0, the last inequality implies that aT� v ≤ 0. For every � ∈ I2, the inequality
in (4.2) gives us nothing. Anyway, we have proved that if lim

k→∞ τk = 0, then property (c) in

the formulation of our theorem is valid.
If {τk} is unbounded, by considering a subsequence (if necessary), we may assume that

lim
k→∞ τk = +∞. For each index � ∈ I , if bT� v > 0, then passing the inequality in (4.2) to the

limit as k → ∞ gives

0 ≥ bT� x̄ + β�

bT� v
〈∇ f�(x̄), v〉.

This forces 〈∇ f�(x̄), v〉 ≤ 0. If bT� v = 0, thenwemust have 〈∇ f�(x̄), v〉 ≤ 0. Otherwise, the
inequality in (4.2) would yield 0 ≥ +∞, which is impossible. Therefore, 〈∇ f�(x̄), v〉 ≤ 0
for every � ∈ I . If there exists some �̄ ∈ I with 〈∇ f�̄(x̄), v〉 < 0, by using Lemma 2.3
and arguing as above, we get x̄ /∈ E , contrary to our assumption. Thus property (d) in the
formulation of our theorem must hold.

Summing up, we have proved that, for the chosen vector v ∈ (0+K )\{0}, at least one of
the properties (c) and (d) is valid. ��

The following corollary is immediate from Theorem 4.1.

Corollary 4.2 If x̄ ∈ E and there does not exist any v ∈ (0+K )\{0} such that either prop-
erty (c) or property (d) in the formulation of Theorem 4.1 is valid, then x̄ ∈ EGe.
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In comparison with the sufficient conditions for an efficient solution of (VP) to be a prop-
erly efficient solution in the sense of Geoffrion which were given in [9,11,12], Corollary 4.2
adds a quite new set of conditions. We will present a detailed comparison of Corollary 4.2
with the main results of [11], omitting the analyses of the relationships between this result
and the results in [9,12].

Fix a point x̄ ∈ E . Following [11], we consider the next three regularity conditions:
{
There exist no (i, j) ∈ I 2, j �= i, and v ∈ (0+K )\{0} wi th

〈∇ fi (x̄), v〉 = 0 and
〈∇ f j (x̄), v

〉 = 0,
(4.3)

{
There exist no (i, j) ∈ I 2, j �= i, and v ∈ (0+K )\{0} such that

bTi v = 0, 〈∇ fi (x̄), v〉 ≤ 0,
〈∇ f j (x̄), v

〉
> 0,

(4.4)

and
⎧
⎪⎨

⎪⎩

There exist no triplet (i, j, k) ∈ I 3, where i, j, k are pairwise

distinct, and v ∈ (0+K )\{0} wi th 〈∇ fi (x̄), v〉 < 0,
〈∇ f j (x̄), v

〉 = 0,

〈∇ fk(x̄), v〉 > 0.

(4.5)

The first main result of [11] is stated as follows.

Proposition 4.3 (See [11, Theorem 3.1]) Suppose that m = 2. If (4.3) and (4.4) are satisfied,
then x̄ ∈ EGe.

For m = 2, the regularity condition (4.3) is equivalent to saying that there does not exist
any v ∈ (0+K )\{0} such that property (d) in the formulation of Theorem 4.1 is valid. For any
v ∈ (0+K )\{0} and i ∈ I , if bTi v = 0, then 〈∇ fi (x̄), v〉 ≤ 0 if and only if aTi v ≤ 0 (see the
proof of Theorem 4.1). So, for m = 2, if there does not exist any v ∈ (0+K )\{0} such that
property (c) in the formulation of Theorem 4.1 is valid, then the regularity condition (4.4)
is satisfied. Therefore, for m = 2, the result in Corollary 4.2 is weaker than the result in
Proposition 4.3.

The second main result of [11] reads as follows.

Proposition 4.4 (See [11, Theorem 3.2]) In the case where m ≥ 3, if the conditions (4.3)–
(4.5) are satisfied, then x̄ ∈ EGe.

Fix any value m ≥ 3. Clearly, if (4.3) is satisfied, then there does not exist any vector
v ∈ (0+K )\{0} such that property (d) in the formulation of Theorem 4.1 is valid. Now,
if there does not exist any v ∈ (0+K )\{0} such that property (c) in the formulation of
Theorem 4.1 is valid, then the regularity condition (4.4) is satisfied. Since the regularity
condition (4.5) is not required for the assertion of Corollary 4.2, we can conclude that the
latter and Proposition 4.4 are incomparable results. In fact, they are very different each from
other. Note that the verification of the assumptions of Corollary 4.2 is simpler than checking
those of Proposition 4.4.

Let us illustrate the applicability of Corollary 4.2 by using it to revisit some examples in
[11], which were analyzed by the results recalled in Propositions 4.3 and 4.4.

Example 4.5 ( [5, Example 2]; see also [11, Example 4.1]) Consider problem (VP) with

K = {
x = (x1, x2) ∈ R

2 : x1 ≥ 2, 0 ≤ x2 ≤ 4
}
, f1(x) = −x1

x1 + x2 − 1
, and f2(x) =

−x1
x1 − x2 + 3

. One has E = {
(x1, 0) : x1 ≥ 2} ∪ {(x1, 4) : x1 ≥ 2

}
. Since 0+K = {v =
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(v1, 0) : v1 ≥ 0}, b1 = (1, 1), and b2 = (1,−1), there does not exist any v ∈ (0+K )\{0}
such that property (c) is valid. As shown in [11], if x̄ ∈ E and if 〈∇ f j (x̄), v〉 = 0 for all
j ∈ J , then v = 0. So, there does not exist any v ∈ (0+K )\{0} such that property (d) is
valid. Hence, by Corollary 4.2 we have x̄ ∈ EGe for every x̄ ∈ E .

Example 4.6 ( [7, p. 483]; see also [11, Example 4.3]) Let us consider problem (VP) where
n = m = 3,

K = {
x ∈ R

3 : x1 + x2 − 2x3 ≤ 1, x1 − 2x2 + x3 ≤ 1,
−2x1 + x2 + x3 ≤ 1, x1 + x2 + x3 ≥ 1

}
,

and

fi (x) =
−xi + 1

2

x1 + x2 + x3 − 3

4

(i = 1, 2, 3).

Here one has

E = {(x1, x2, x3) : x1 ≥ 1, x3 = x2 = x1 − 1}
∪{(x1, x2, x3) : x2 ≥ 1, x3 = x1 = x2 − 1}
∪{(x1, x2, x3) : x3 ≥ 1, x2 = x1 = x3 − 1}

and 0+K = {v = (τ, τ, τ ) ∈ R
3 : τ ≥ 0}. Obviously, there is no v ∈ (0+K )\{0} satisfying

property (c). We have

∇ f1(x) = 1

p(x)

(
−x2 − x3 + 1

4
, x1 − 1

2
, x1 − 1

2

)
,

where p(x) :=
(
x1 + x2 + x3 − 3

4

)2

. Select any x̄ = (x̄1, x̄2, x̄3) ∈ E with

x̄1 ≥ 1, x̄2 = x̄3 = x̄1 − 1.

Then, it holds that 〈∇ f1(x̄), v〉 = 5τ

4p(x̄)
> 0 for any v = (τ, τ, τ ) with τ > 0. Since

the data of the problem under consideration is symmetric w.r.t. the variables x1, x2, x3, this
implies that, for any x̄ ∈ E , there does not exist any v ∈ (0+K )\{0} such that property (d)
is valid. Therefore, by Corollary 4.2 we have E = EGe.

The number of criteria in the next linear fractional vector optimization problem can be
any integer m ≥ 2.

Example 4.7 ( [7, pp. 479–480]; see also [11, Example 4.3]) We consider problem (VP)

where n = m, m ≥ 2,

K =
{
x ∈ R

m : x1 ≥ 0, x2 ≥ 0, . . . , xm ≥ 0,
m∑

k=1

xk ≥ 1
}
,

and

fi (x) =
−xi + 1

2
∑m

k=1
xk − 3

4

(i = 1, . . . ,m).
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Here we have

E = {(x1, 0, . . . , 0) : x1 ≥ 1}
∪{(0, x2, . . . , 0) : x2 ≥ 1}
. . . . . . . . .

∪{(0, . . . , 0, xm) : xm ≥ 1}.

Note that bi = (1, . . . , 1) for all i ∈ I , and 0+K = R
m+. So, if bTi v > 0 for any v ∈

(0+K )\{0}. Hence, there is no v ∈ (0+K )\{0} satisfying property (c). Setting q(x) =(
m∑

k=1

xk − 3

4

)2

, one has

∇ fi (x) = 1

q(x)

(
xi − 1

2
, ...,−

∑

k �=i

xk + 1

4
, ..., xi − 1

2

)

for any x ∈ K , where the expression −
∑

k �=i

xk + 1

4
is the i−th component of ∇ fi (x).

Especially, for any x̄ ∈ E , where x̄ = (x̄1, 0, . . . , 0) and x̄1 ≥ 1, we get

∇ f1(x̄) = 1

q(x̄)

(
1

4
, x̄1 − 1

2
, ..., x̄1 − 1

2

)
.

Clearly, all the components of ∇ f1(x̄) are positive. So, for every v ∈ 0+K\{0}, one has
〈∇ f1(x̄), v〉 > 0. Since the data of the problem in question is symmetric w.r.t. the variables
x1, . . . , xn , this implies that, for any x̄ ∈ E , there does not exist any v ∈ (0+K )\{0} such
that property (d) is valid. Hence, by Corollary 4.2 we can assert that E = EGe.

5 Conclusions

New results on proper efficiency in the sense of Geoffrion in linear fractional vector optimiza-
tion have been obtained in this paper. Namely, we have established two sets of conditions
guaranteeing that all the efficient solutions of a given problem are improperly efficient. Nec-
essary conditions for an efficient solution to be improperly efficient are also given. As a
by-product, we have a quite new set of sufficient conditions for Geoffrion’s proper efficiency.
Our results complement the preceding ones in [9,11,12].

The following open questions seem to be interesting. Note that the second question was
asked in an equivalent form in [12, Question (Q1)].

Question 1: How to narrow the gap between the necessary conditions in Theorem 4.1
and the sufficient conditions in Theorem 3.4?

Question 2: Can one find any problem of the form (VP), where the set of improperly
efficient solutions is nonempty and it is a proper subset of E, or not?
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