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Rotating structures can be easily encountered in engineering practice such as turbines, helicopter propellers, railroad tracks in
turning positions, and so on. In such cases, it can be seen as a moving beam that rotates around a fixed axis. �ese structures
commonly operate in hot weather; as a result, the arising temperature significantly changes their mechanical response, so studying
the mechanical behavior of these structures in a temperature environment has great implications for design and use in practice.
�is work is the first exploration using the new shear deformation theory-type hyperbolic sine functions to carry out the free
vibration analysis of the rotating functionally graded graphene beam resting on the elastic foundation taking into account the
effects of both temperature and the initial geometrical imperfection. Equations for determining the fundamental frequencies as
well as the vibration mode shapes of the beam are established, as mentioned, by the finite element method. �e beam material is
reinforced with graphene platelets (GPLs) with three types of GPL distribution ratios. �e numerical results show numerous new
points that have not been published before, especially the influence of the rotational speed, temperature, and material distribution
on the free vibration response of the structure.

1. Introduction

Recently, due to the development of science and technology,
new materials have been invented and widely applied in
engineering practice, in which, materials reinforced by
graphene platelets (GPLs) are one of the next-generation
structural forms. Graphene-reinforced materials have re-
markable characteristics such as a very high Young’s
modulus, great strength, and excellent thermal conductivity.
In addition to the low production cost, the material rein-
forced by GPL is a relatively good choice to fabricate details
and structures in a high load-bearing environment. As a
result, researchers worldwide are interested in the me-
chanical behavior of these structures. Yas and Rahimi [1]
carried out the thermal vibration analysis of functionally
graded porous nanocomposite beams reinforced by gra-
phene platelets using the Timoshenko beam theory and the
generalized differential quadrature method. Also, based on

the first-order shear deformation beam theory combined
with the differential quadrature method, Song et al. [2]
investigated the nonlinear free vibration of edge-cracked
graphene nanoplatelet- (GPL-) reinforced composite lami-
nated beams resting on a two-parameter elastic foundation
in thermal environments. Barati and Shahverdi [3] studied
the forced vibration problem of a nanocomposite beam
reinforced with different distributions of graphene platelets
in thermal environments using the development of a higher-
order refined beam element. Wang and his co-workers [4]
used a new Ritz-solution shape function and an improved
third-order shear deformation theory to capture the solution
for free and forced vibrations of a functionally graded
polymer nanocomposite beam reinforced with a low content
of graphene oxide and excited by a moving load with a
constant velocity. Mojiri and Salami [5] combined both
Timoshenko beam theory and generalized differential
quadrature method to examine the free vibration and
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dynamic transient response of a multilayer polymer nano-
composite beam resting on an elastic foundation reinforced
by graphene platelets nonuniformly distributed through the
thickness direction in a thermal environment. Mohamma-
dimehr et al. [6] also used Timoshenko beam theory to
conduct a vibration analysis of single-/three-layered micro
sandwich beams with porous core and graphene platelet-
reinforced composite face sheets under magnetic field and
elastic foundation. Liu [7] introduced an exact solution of
the vibrational characteristics of multilayer magnetic
nanocomposite beams reinforced by graphene nanoplatelets.
Nematollahi et al. [8] employed a higher-order laminated
beam model to find an analytical solution for the nonlinear
vibration behavior of thick sandwich nanocomposite beams
reinforced by functionally graded graphene nanoplatelet
sheets. Tabatabaei-Nejhada and colleagues [9] investigated
the out-of-plane vibration characteristics of laminated
functionally graded graphene platelets-reinforced composite
curved beams bonded by piezoelectric layers using the first-
order shear deformation theory. Manickam et al. [10] used
the trigonometric shear flexible beam theory and direct it-
erative procedure to explore the nonlinear flexural free vi-
bration behavior of size-dependent curved nano/
microbeams with reinforcement of graphene platelets. Based
on a refined higher-order shear deformation theory, Arshid
and Amir [11] used an analytical method to carry out a
vibration analysis of three-layered fluid-infiltrated porous
curved microbeams, which were integrated with nano-
composite face sheets reinforced by graphene platelets as
lightweight and high-stiffness reinforcements. Zhang et al.
[12] presented the vibration analysis of functionally graded
graphene platelet-reinforced porous beams resting on a
Winkler–Pasternak elastic foundation under a moving load
based on the Timoshenko beam theory. Arefi and Najafi-
tabar [13] investigated the buckling and free vibration be-
havior of sandwich beam, which is composed of a soft core
integrated with functionally graded graphene nanoplatelets-
reinforced composite face sheets. Recently, a variety of
studies and presentations of the mechanical response of FG
graphene plates with and without elastic foundations have
been published [14–22]. Furthermore, the works [23–32]
including further intriguing information on the mechanical
reaction of beam and plate structures can also be considered.

In practice, some structures can be involved in the ro-
tational movements such as turbines, helicopter propellers,
railroad tracks in turning positions, and so on. �us, it can
be seen as a moving beam that rotates around a fixed axis.
Due to the presence of additional centrifugal force when
participating in the rotation, these beam structures have
much nonidentical mechanical behavior compared to
conventional beams. Khosravi et al. [33] employed the
Timoshenko beam theory and von Kármán type of kine-
matic assumptions to explore the effect of uniform tem-
perature elevation on the vibration response of the rotating
composite beam reinforced with carbon nanotubes. Timo-
shenko beam theory and von Kármán type of kinematic
assumptions were also employed by Kiani et al. [34] to study
the buckling behavior of an anisotropic rotating annular
plate under a uniformly compressive load on both inner and

outer edges. Arvin et al. [35] investigated the free vibration
treatment of pre- and post-buckled rotating functionally
graded beams by using the Euler–Bernoulli beam theory.
Furthermore, the works [33, 35–37] including further in-
triguing information on the mechanical reaction of beam
and plate structures with rotating motion can also be
considered. A study of the free vibration of a beam rotating
around a fixed axis was recently published [38]; however, it
only considered the porous FGM material.

From the short review above, one can see that there are
no works dealing with the mechanical behavior of a func-
tionally graded GPL-reinforced composite (FG-GPLRC)
beam resting on an elastic foundation, in which the whole
structure is embled in a temperature environment, and
rotating around one fixed axis. In addition, the initial
geometrical imperfection is taken into calculations. So, this
work aims to solve this problem using the finite element
method combined with the new shear deformation theory-
type hyperbolic sine functions, which do not require any
shear correction factor but still simulate accurately the
mechanical responses of structures. By the numerical results,
this paper aims to clearly show the free vibration behavior of
the structure taking into account the effect of temperature;
thus, there will be special features that have not been
mentioned by any work. In addition, the data play an im-
portant role in the design and use of GPL-reinforced
structures. For example, functionally graded materials with
varying microstructures from one material to another one
and microstructure sizes ranging over several orders of
magnitude may not be adequately modeled using classical
continuum mechanics alone but are likely more accurately
analyzed using nonclassical continuum mechanics as well as
spatial variation (readers can see more in [39]). �is study is
only concerned with calculating large-scale structures
without taking into account the macro level for structures
based on continuous mechanics theory, in order to meet the
required accuracy.

�e rest of this paper is organized as follows. Finite
element formulations for free vibration analysis of the ro-
tating FG-GPL beam are clearly presented in Section 2.
Verification problems are introduced in Section 3. Nu-
merical data and discussions are given in Section 4. Section 5
draws out some main important novel investigations of this
paper.

2. FiniteFormulationofRotatingFG-GPLBeam

�is work concentrates on the vibration response of the
rotating FG-GPL beam with the rotational speed ζ, in which
the endpoint of the beam is distance r from a fixed axis Z.
�e beam contains an initial geometrical imperfection. �e
beam operates in a uniformly distributed thermal envi-
ronment and is supported by a multiple-parameter elastic
medium with kw and ks as shown in Figure 1. �e di-
mensions of the beam are the length L, width b, and the
thickness h.

�e beam is made from NL GPLRC layers, with the
assumption that the GPL reinforcements are randomly
oriented and uniformly dispersed with the volume ratio
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VGPL. In general, three kinds of volume fraction distribution
are considered as follows: uniformly distributed GPL type
(designated as U), functionally graded type (designated as X
and O), and layer-wise graded type (designated as X and O).
�e volume ratio GPL (VGPL) for the layer k is defined by the
following formula [40]:

V
(k)
GPL � V

∗
GPL: U − GPLRC,

V
(k)
GPL � 2V

∗
GPL

2k − NL − 1




NL

: X − GPLRC,

V
(k)
GPL � 2V

∗
GPL

1 − 2k − NL − 1




NL

 : O − GPLRC,

(1)

where k� 1−NL and V∗GPL is the total GPL volume fraction,
which is calculated as

V
∗
GPL �

WGPL

WGPL + ρGPL/ρm(  1 − WGPL( 
, (2)

where ρGPL and ρm are the mass densities of GPLs andmatrix
and WGPL is the total GPL weight fraction.

�is work employs the modified Halpin–Tsai model, and
the GPLRC’s effective Young’s modulus is estimated by [40]

E �
3
8

 
1 + ζLηLVGPL

1 − ηLVGPL
Em +

5
8

 
1 + ζTηTVGPL

1 − ηTVGPL
Em, (3)

where Em is Young’s modulus of matrix and ηL and ηT are
calculated as

ηL �
EGPL/Em(  − 1
EGPL/Em(  − ƛL

,

ηT �
EGPL/Em(  − 1

EGPL/Em(  − ƛT

,

(4)

in which EGPL is Young’s modulus of GPLs and ƛL and ƛT are
GPL geometry factors taking the following forms:

ƛL � 2
aGPL

bGPL
 

bGPL

tGPL
 ,

ƛT � 2
bGPL

tGPL
 ,

(5)

where aGPL, bGPL, and tGPL are the GPL length, width, and
thickness, respectively. �e mass density ρ, thermal ex-
pansion coefficient α, and Poisson’s ratio ] of GPLRCs are
calculated according to the formula presented in [40].

�ere have been numerous shear deformation theories
to explore the mechanical behavior of beam structures, in
which each one includes its advantages. Recently, there is a
new type of shear deformation theory that has been de-
veloped and employed widely called hyperbolic sine func-
tions [41, 42]. So, this paper also aims to use this new theory
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Figure 1: �e model of the rotating FG-GPL beam with the initial geometrical imperfection. (a) General view. (b) xOz view. (c) Cross-
sectional view.
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to establish the finite element formulations of free vibration
problems of rotating FGM beams. �erefore, the displace-
ment field at any pointM (x, z) in the beam has the following
expression:

U1(x, z) � U1m(x, y) − z
zU3b

zx
− f(z)

zU3s

zx
,

U3(x, z) � U3b + U3s + U3imp(x),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

in which U1m is the displacement in the x-direction at the
neutral axis and f(z) � z − h sinh(z/h) + z cosh(1/2).

�e expressions of longitudinal displacement ℘x, shear
displacement ξxz, and thermal displacement ℘T of the beam
are calculated as

℘x �
zU1

zx
�

zU1m

zx
− z

z
2
U3b

zx
2 − g(z)

z
2
Uzs

zx
2

+
dU3imp

dx

z U3b + U3s( 

zx

�
zU1m

zx
+ z −

z
2
U3b

zx
2  + g(z) −

z
2
U3s

zx
2 

+
dU3imp

dx

z U3b + U3s( 

zx

� ℘1m + z℘1b + g(z)℘1s + ℘1imp

ξxz �
zg(z)

zz

zU3s

zx
�

zg(z)

zz
ξ13s

℘T � α T − T0(  � αΔT,

(7)

in which ΔT is the temperature difference T compared to
room temperature T0, and the strain components are
expressed as

℘1m �
zU1m

zx
,

℘1b � −
z
2
U3b

zx
2 ,

℘1s � −
z
2
U3s

zx
2 ,

℘imp �
dU3imp

dx

z U3b + U3s( 

zx
.

(8)

Assuming the material operates within an elastic limit,
according to the Hook law, the normal stress Ξx , thermal
stress ΞT, and shear stress Θxz are expressed as follows:

Ξx � E℘x,

ΞT � E℘T,

Θxz �
E

2(1 + ])
ξxz.

(9)

�e elastic energy of the FGM beam is calculated as

ΠE
�
1
2


V
ΞTx℘xx + ΘT

xzξxz dV

�
1
2


V

℘T1mE℘1m + ℘T1mzE℘1b + ℘T1mg(z)E℘1s + ℘T1mE℘1imp

℘T1bEz℘1m + ℘T1bEz
2εxb + ℘T1bEzg(z)℘1s + ℘T1bEz℘1imp

℘T1sEg(z)℘1m + ℘T1sε
T
xsEzg(z)εxb + ℘T1sE(z)g

2
(z)℘1s + ℘T1sEg(z)℘1imp

℘T1xmpE℘1m + ℘T1xmpEzεxb + ℘T1impEg(z)℘1s + ℘T1impE℘1imp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

dV

+
1
2


V

zg(z)

zz
 

2
E

2(1 + ])
ξT
13sξ13s

⎛⎝ ⎞⎠dV.

(10)

�e energy of the elastic foundation is defined as

ΠF
�
1
2

b
L

kw U3b + U3s( 
2

+ ks

z U3b + U3s( ( 

zx
 

2
⎛⎝ ⎞⎠dx. (11)

When the FGM beam involves rotational movement
around one fixed axis with the speed ζ, the potential energy
of the beam generated by this rotational movement is cal-
culated as [43, 44]
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Πζ �
1
2


L

Pζ(x)
z U3b + U3s( 

zx
 

2
⎛⎝ ⎞⎠dx, (12)

in which the centrifugal force Pζ is defined as [43]

Pζ �
1
2


S
ρ(z)ζ2 r(L − x) +

1
2

L
2

− x
2

   dS. (13)

�ework done by temperature acting in the longitudinal
direction of the GPLR beam is defined as

Πther �
1
2


V
ΞT

z U3b + U3s( 

zx
 

2
⎛⎝ ⎞⎠dV. (14)

�e kinetic energy expression of the beam is calculated as

Πk
�
1
2


V
ρ(z)

z _U1

zt
 

T
z _U1

zt
  +

z _U3

zt
 

T
z _U3

zt
 ⎛⎝ ⎞⎠dV.

(15)

To establish the equilibrium equation of the FGM beam,
this paper employs Hamilton’s principle as follows:

δ
t2

t1

Πk
− ΠE

− ΠF
− ΠRo

 dt � 0. (16)

Herein, this paper employs a two-node beam element, in
which each node has five degrees of freedom:

ue � 
2

i�1

U1m

U3bi

U3si

zU3b

zx
 

i

zU3s

zx
 

i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (17)

where the displacements at each point in the beam element
are approximated through Lagrange and Hermite interpo-
lation functions Ni and Hi.

U1m � 
2

i�1
NiU1mi � Nuue,

U3b � 

2

i�1
HiU3bi + Hi+1

zU3b

zx
 

i

  � Hbue,
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2

i�1
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zU3s
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zU3b
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2

i�1

zHi
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U3bi +
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zU3b

zx
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zU3s

zx
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2
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zHi

zx
U3si +
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zx

zU3s
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  � Hsxue,

z
2
U3b

zx
2 � 

2

i�1

z
2
Hi

zx
2 U3bi +

z
2
Hi+1

zx
2

zU3b

zx
 

i

  � Hb2xue,

z
2
U3s

zx
2 � 

2

i�1

z
2
Hi

zx
2 U3si +

z
2
Hi+1

zx
2

zU3s

zx
 

i

  � Hs2xue.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Equation (18) can be shortened in the matrix form as
follows:

u �

U1m

U3b

U3s

zU3b

zx
 

zU3s

zx
 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

Nu

Hb

Hs

Hbx

Hsx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ue � Hue. (19)

�e strains are defined according to the nodal dis-
placement as follows:
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℘1m �
zU1m

zx
�

zNu

zx
ue � Buue,

℘1b � −
z
2
U3b

zx
2 � −Hb2xue � Bbue,

℘1s � −
z
2
U3s

zx
2 � −Hs2xue � Bsue,

℘1imp �
z U3b + U3s( 

zx

dU3imp

dx
�

dU3imp

dx
Hb + Hs( ue � Bimpue,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ13s �
zU3s

zx
� Hsxue.

(20)

Now, the expression of the elastic energy of the beam
element is calculated as

ΠE
e �

1
2
uT

e 
V

BT
u EBu + BT

u zEBb + BT
u g(z)EBs + BT

u EBimp

BT
b EzBu + BT

b Ez
2Bb + BT

b Ezg(z)Bs + BT
b EzBimp

BT
s Eg(z)Bu + BT

s Ezg(z)Bb + BT
s Eg

2
(z)Bs + BT

s Eg(z)Bimp

BT
impEBu + BT

impEzBb + BT
impEg(z)Bs + BT

impEBimp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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impEBimp
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+
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HT

sxHsx
⎛⎝ ⎞⎠dVue.

(21)

Equation (21) can be shortened in the matrix form as

ΠE
e �

1
2
uT

e K
E
e ue. (22)

�e energies of the centrifugal inertia force and
the elastic foundation are calculated, respectively, as
follows:
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ΠF
e �

1
2
uT

e b
L

kw Hb + Hs( 
T Hb + Hs(  + ks Hbx + Hsx( 

T Hbx + Hsx(  dx ue �
1
2
uT

e K
F
e ue,

ΠR
e �

1
2
ue b

L
PΘ(x) Hbx + Hsx( 

T Hbx + Hsx(  dx ue �
1
2
uT

e K
R
e ue.

(23)

�e energy due to thermal strain is calculated as

Πther �
1
2
uT

e b
L

EαΔT Hbx + Hsx( 
T Hbx + Hsx(  dx ue �

1
2
uT

e K
ther
e ue. (24)

�e kinetic energy of the FGM beam element is defined
as follows:

Πk
e �

1
2


V

_u
T
e ρ(z) _ue dV �

1
2

_u
T
e 

V
HTH dV  _ue �

1
2

_u
T
e Me(  _ue, (25)

where Me � 
V
ρ(z)(HTH)dV is the element stiffness

matrix.
By substituting equations (21)–(23) into (16), the

equation to obtain the fundamental frequency, as well as the
vibration mode shapes of the rotating FGM beam, can be
expressed as follows:


e

KE
e + KF

e + KR
e − Kther

e  − ω2


e

Me

⎧⎨

⎩

⎫⎬

⎭ 
e

ψe � 0.

(26)

Equation (26) shows that all constituents relating to
rotational movement, elastic foundation, and initial geo-
metrical imperfection are presented in the equation for
finding the fundamental vibration behavior of the FGM
beam, and this is completely different from conventional
beam structures; therefore, this makes the computation
more complicated in comparison with previous works. By
looking at the established calculation formulas, the reader
may see that the approach employed in this work is based
on the theory of shear strain hyperbolic sine functions,
which does not require shear correction. �e reason is that
the shear correction factor is dependent on the structure’s
material, and it is difficult to predict its value precisely;
therefore, the theory utilized in this study will more ac-
curately explain the structure’s reaction than the first-order
shear strain theory. Furthermore, the separation of z-axis
displacement into two components related to bending
(U3b) and shear (U3s) allows the mechanical response of the
beam to be precisely described. Because the shear strain
theory used in this study has fewer components than

higher-order shear strain theories, it takes less time to
compute.

Boundary conditions are defined by the following
expressions:

(i) Simply supported (denoted as S):

u0 � 0,

wb � 0,

ws � 0.

(27)

(ii) Clamped (denoted as C):

u0 � 0,

wb � 0,

ws � 0,

zwb

zx
� 0,

zws

zx
� 0.

(28)

In this work, three boundary conditions are con-
sidered for calculations of FGM beams.

(iii) Fully clamped beam: C-C.
(iv) Fully simply supported beam: S-S.

One side is clamped, the other side is free: C-F.
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3. Verification Problems

Firstly, this section introduces five examples to evaluate the
reality of the proposed approach and mechanical models,
where the numerical results of these examples are compared
with those of other exact works.

Example 1. At first, this example collates the natural fre-
quency of the homogeneous beam subjected to the axial
compressive load. Geometrical and material characteristics
are the length L, cross section b× h, L/h� 100, E� 380GPa,
]� 0.3, and ρ� 3960 kg/m3. �e structure is subjected to an
axial compressive load N0, whereN � (N0L

2/π2EI0) � 0.6.
�e nondimensional fundamental frequency is normalized
by the formula ω � ω

����������
(ρbhL4/EI0)


(I0 � bh3/12). �e data

obtained from this example, exact expressions [45, 46], and
FEM modeling [47] are presented in Table 1, when this
example calculates using a variety of different meshes. It can
be observed that when the mesh size increases, the numerical
results ensure the necessary convergence. �e results in this
work with the 8-element mesh size are different from the
data of the same mesh size used in [47]. �e cognition is that
reference [47] employed Timoshenko’s first-order shear
deformation theory. So, for the 8-element mesh, the accu-
racy is fine; thus, this mesh size is going to be used for all the
following related explorations.

Example 2. �e natural frequency of the FG-GPLRC beam
generated from this case is then compared to the finite el-
ement method (FEM) [3], which utilized a refined beam
theory. �e geometry and material specifications are de-
scribed in [3], with L/h� 10 and WGPL � 1% for a uniformly
GPL-reinforced beam. �e nondimensional fundamental
frequencies ω � ωL2 ��������

ρmA/EmI


are compared, where
A� b.h, I� b.h3/12. Table 2 shows the calculation and
comparison results, which demonstrate that as the mesh size
increases, the results converge to a frequency value that is
near to the frequency calculated using the finite element
approach [3] (based on a refined beam theory which is
different from the beam theory used in this work). �is
shows that the approach employed in this study ensures the
requisite level of dependability.

Example 3. Next, the fundamental frequency of the fully
simply supported Al/Al2O3 beam resting on Win-
kler–Pasternak elastic foundation is considered.

Geometrical and material characteristics are the length L,
thickness h, L/h� 100, width b, Em � 70GPa, ρm � 2702 kg/
m3, Ec � 380GPa, and ρm � 396 kg/m3. Two elastic founda-
tion parameters are normalized as follows:

Kw �
K1L

4

EmI
,

Ks �
K2L

2

EmIπ2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(29)

with

I �
bh

3

12
. (30)

�enondimensional fundamental frequency of the beam
is defined as follows:

ω⌢ � ω1
L
2

h

���ρm

Em



. (31)

Table 3 shows the comparative first fundamental fre-
quency of the beam obtained from this work and the an-
alytical method [48]. It can be seen that with 8 elements, the
reliability is acceptable; thus, this work will use this mesh for
all the following related investigations.

Example 4. �is example considers the fundamental fre-
quency of the fully simply supported beam with an initial
geometrical imperfection. �e beam contains geometrical and
material parameters L� 288.7 h, h� 0.02m, b� 0.04m,
E� 971GPa, and mass density ρ� 2300kg/m3. An initial im-
perfection of the beam is expressed as wim(x) � J0 sin(πx),
where J0 is the amplitude of the imperfection. �e nondi-
mensional fundamental frequency and the initial imperfection
coefficient ς0 are normalized as follows:

ω∗∗ � ω1

�����

12ρL
4

Eh
2



,

ς0 �
J0
L

.

(32)

�e numerical results obtained from this example and
the pseudo-arclength continuation technique [49] in the
case of increasing gradually the value of ς0 are presented in

Table 1: First three nondimensional fundamental frequencies (ω) of the beam subjected to the axial load N � 0.6.

Boundary
condition

Vibration
mode

Exact
[45]

Exact
[46]

FEM with 8
elements [47]

�is work
4

elements
6

elements
8

elements
10

elements
12

elements

S-S
1 6.24 — 6.24 6.247 6.243 6.242 6.242 6.241
2 36.40 — 36.41 36.505 36.402 36.383 36.377 36.375
3 85.81 — 85.93 61.891 85.924 85.768 85.721 85.703

S-C
1 — 13.01 13.01 13.018 13.006 13.003 13.003 13.003
2 — 47.35 47.38 47.493 47.356 47.323 47.313 47.309
3 — 101.54 101.73 101.053 101.630 101.450 101.384 101.358
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Table 2: �e dependence of the first nondimensional fundamental frequency (ω) of the FG-GPLRC beam on the mesh size.

Method
Element numbers

2 3 4 5 10 12 20 30 35
�is work 19.7928 19.7559 19.7488 19.7468 19.7454 19.7454 19.7454 19.7454 19.7454
[3] 20.8610 20.7961 20.7846 20.7814 20.7794 20.7793 20.7792 20.7792 20.7792

Table 3: �e first nondimensional fundamental frequency (ω⌢) of the beam resting on Winkler–Pasternak elastic foundation,
Kw � 10, Ks � 1, S-S.

a/h� 100

n Mode Analytical method [48]
�is work

6 elements 8 elements 10 elements 12 elements 14 elements

Without elastic foundation
Kw � 10
Ks � 0

0
1 5.483 5.483 5.483 5.483 5.483 5.483
2 21.933 21.931 21.924 21.922 21.921 21.921
3 49.350 49.389 49.318 49.296 49.288 49.284

1
1 4.221 4.220 4.220 4.220 4.220 4.220
2 16.884 16.884 16.879 16.877 16.876 16.876
3 37.989 38.030 37.975 37.958 37.952 37.949

2
1 3.852 3.851 3.851 3.851 3.851 3.851
2 15.407 15.408 15.403 15.402 15.401 15.401
3 34.666 34.707 34.657 34.641 34.635 34.633

With elastic foundation
Kw � 10
Ks � 1

0
1 6.015 6.014 6.014 6.014 6.014 6.014
2 22.445 22.442 22.436 22.434 22.433 22.433
3 49.858 49.891 49.824 49.803 49.796 49.792

1
1 5.008 5.007 5.007 5.007 5.007 5.007
2 17.666 17.664 17.660 17.659 17.658 17.658
3 38.77 38.801 38.753 38.738 38.732 38.729

2
1 4.752 4.752 4.752 4.752 4.752 4.752
2 16.316 16.315 16.311 16.310 16.310 16.309
3 35.577 35.606 35.564 35.550 35.545 35.543

0 0.5 1 1.5 2
8

10

12

ω∗
∗

14

16

18

ϛ0 (10–3)

This work
[28]

Figure 2: �e dependence of the first nondimensional fundamental frequency of the beam with the initial geometrical imperfection on the
imperfection coefficient ς0.
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Figure 2. An excellent match can be seen between the nu-
merical findings and the outcome.

Example 5. Finally, this example presents a verification
problem of the cantilever rotating beam with the rotational
speed χ. Let us consider a beam with the following geometrical
and material properties: the length L, thickness h� b� L/100,
r� 0, E� 70GPa, and mass density ρ � 2700 kg/m3. �e
nondimensional fundamental frequency ωi is defined as follows:

ωi � ωiL
2

����
12ρ
Eh

2



. (33)

�e first three nondimensional fundamental frequencies
of the rotating beam with different values of the rotational
speed ratio ξ � L2Θ

�������
12ρ/Eh2


obtained from this example,

an exact solution [50], an isogeometric analysis [43], and a
new dynamic modeling method (DMM) [51] are presented
in Table 4.

Table 4: �e dependence of the first three nondimensional fundamental frequencies (ωi) of the cantilever rotational beam on rotational
speed ξ.

Vibration mode Method
Rotational speed ratio ξ

ξ � 0 ξ � 3 ξ � 6 ξ � 12

ω1

�is work 3.5161 4.6790 7.0734 12.6098
Exact [50] 3.5160 4.7973 7.3604 13.1702
DMM [51] 3.5160 4.7973 7.3604 —

Isogeometric [43] 3.5118 4.7733 7.3276 —

ω2

�is work 22.0247 23.1197 26.1110 36.4500
Exact [50] 22.0345 23.3203 26.8091 37.6031
DMM [51] — — — —

Isogeometric [43] — — — —

ω3

�is work 61.6254 62.7602 66.0242 77.4512
Exact [50] 61.6972 62.9850 66.6840 79.6145
DMM [51] — — — —

Isogeometric [43] — — — —

ω4

�is work 120.647 121.843 125.348 138.295
Exact [50] 120.902 122.236 126.140 140.534
DMM [51] — — — —

Isogeometric [43] — — — —
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Figure 3: �e dependence of the first five natural frequencies of the rotating U-GPLRC beam on the GPL weight fractions, c0 � 0.001,
K∗w � 20, K∗s � 5. (a) S-S. (b) C-C.
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4. Numerical Results

Now, this section presents the vibration analysis of the
rotating porosity FGM beam resting on Win-
kler–Pasternak elastic foundation under the pre-axial
compressive load, in which the initial geometrical im-
perfection is taken into account. Let us consider a beam

with the following geometrical and material character-
istics: the length L, cross section b × h, thickness h, L/
h � 10, aGPL � 2.5 μm, bGPL � 1.5 nm, tGPL � 2.5 μm, EGPL �

1.01 TPa, ]GPL � 0.186, αGPL � 5.10− 6 1/K, ρGPL �

1062 kg/m3, Em � 3.0 GPa, ]m � 0.34, αm � 60.10− 6 1/K,
and ρm � 1200 kg/m3. �e imperfection of beam is
w0(x) � M0 sin(πx), in which M0 is the amplitude of
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Figure 4: �e dependence of the first four natural frequencies of the rotating X-, U-, and O-GPLRC beams on the GPL weight fractions,
c0 � 0.001, K∗w � 20, K∗s � 5. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4.
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imperfection and the imperfection ratio is c0 � M0/L. �e
nondimensional fundamental frequency and other pa-
rameters are calculated as follows:

ω∗i � ωiL

���ρm

Em



,

K
∗
w �

kwL
4

Dm

,

K
∗
s �

ksL
2

Dm

,

ϕ � L
2ζ

�����
12ρm

Emh
2
0



,

Dm �
Emh

3
0

12
.

(34)

4.1. Effect of the GPL Weight Fractions. Firstly, this section
examines the effect of the GPL weight fractions on the
vibration behavior of the GPLR beam. �e beam has L/
h � 10, imperfection ratio c0 � 0.001, two elastic foun-
dation parameters K∗w � 20, K∗s � 5, distance ratio a/L � 1,
rotational speed ϕ � 5, and ΔT � 30K. We change the
GPL weight fractions so thatWGPL obtains the values in a
range of 0–0.5%. �e first five nondimensional fre-
quencies of the rotating U-GPLRC beam depending on
WGPL with two boundary conditions are presented in
Figures 3, and 4 presents the dependence of the first five
nondimensional frequencies on WGPL of the X- GPLRC,
U-GPLRC, and O-GPLRC beams. One can see the
following.

When increasing the GPL weight fractions WGPL, the
frequencies of the structure rise as the GPL weight grows.
WGPL, in turn, determines the first five frequencies of the

beam in a nonlinear manner. However, it is much more
obvious when looking at the higher frequencies, since there
is a nonlinear relationship between these dependence on the
WGPL coefficient.

When increasing the coefficient WGPL, the X- GPLRC
beam has the highest natural frequency, and the O-GPLRC
beam has the lowest frequency. �is proves that the law of
material distribution affects the mass and stiffness of the
GPLR beam at the same time; as a result, the frequencies of
this beam are different.

4.2. Effect of Temperature. �is section investigates the effect
of the temperature on the free vibration response of the beam.
Consider a beam with L/h� 10, c0 � 0.001, and two elastic
foundation parameters K∗w � 20, K∗s � 5. We change the
acting temperature on the beam so that ΔT varies from 0 to
400K.�e dependencies of the first five natural frequencies of
the beam on the temperature with two cases of boundary
conditions S-S and C-C are shown in Figure 5. Figure 6
presents the dependence of the first four natural frequencies
of the beam on the temperature with three cases of material
distribution for S-S boundary. �e first natural frequency of
the beam depending on the WGPL ratio is presented in Fig-
ure 7. �e numerical data point out the following.

As the temperature increases, the natural frequencies
for all three cases of material distribution decrease. At
different temperatures, the natural frequency of the
X-GPLRC beam has the largest natural frequency, while
the natural frequency of the O-GPLRC beam has the
smallest value.

Interestingly, drawn from Figure 7, there exists a value of
temperature for any value of the WGPL coefficient the first
natural frequency of the beam does not change; in other
words, there exists a value of temperature whose first natural
frequency of the beam does not depend on the ratio of the
graphene material, called ΔTcr.
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Figure 5: �e dependence of the first five natural frequencies of the rotating U-GPLRC beam on ΔT, c0 � 0.001, K∗w � 20, K∗s � 5. (a) S-S.
(b) C-C.
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For the three material distribution cases of beams, the
X-GPLRC beam has the largest value of ΔTcr and approxi-
mately 620K, the O-GPLRC beam has theminimum value and
approximately 480K, and the value of ΔTcr for the U-GPLRC
beam is approximately 550K. �is rule means that, before and
after this temperature, the variation of the first natural fre-
quency depends on the change in the WGPL ratio.

4.3. Effect of Rotational Speed. To understand the effect of
the rotational speed on the free vibration response of the
beam, changing the value of ϕ in a range of 0 to 15, the

dependencies of the first five natural frequencies of the
O-GPLRC and U-GPLRC beams are shown in Figure 8.
Figure 9 shows the dependence of the first four natural
frequencies of the X-GPLR beam on the rotational speed
and the WGPL ratio. Figure 10 presents the first natural
frequency of the X-GPLR beam on temperature with dif-
ferent values of the rotational speed and the WGPL ratio.
One can see the following.

As the speed of rotation of the beam increases, the
stiffness of the beam increases due to the influence of the
inertial force component, so the natural frequency of the
beam increases. �e inertia impact on the rotation speed is
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Figure 6: �e dependence of the first four natural frequencies of the rotating X-, U-, and O-GPLRC beams on ΔT, c0 � 0.001, K∗w � 20,
K∗s � 5. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4.
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only noticeable when the rotation speed coefficient is less
than 2, but when ϕ> 2, the natural frequency of the beam
changes strongly.

As the speed of rotation increases, the value of ΔTcr also
increases, i.e., the temperature value, so that the first natural
frequency of the beam independent of the graphene content
also increases.

4.4. Effect of Elastic FoundationParameters. Finally, this work
considers the effect of the elastic foundation parameters of the

GPLRC beam on the free vibration response of the structure.
Let k∗w increase gradually from 0 (no elastic foundation) to 100,
and k∗s gets the values from 0 to 10.�e dependence of the first
natural frequency of the beam on the elastic foundation pa-
rameters and the WGPL ratio is plotted in Figure 11. �is
numerical result shows that when increasing the stiffness co-
efficient of the elastic foundation, the natural frequency of the
beam increases. In addition, the elastic foundation also affects
the value of ΔTcr; when the stiffness coefficient of the elastic
foundation increases, the value of ΔTcr also increases, but the
increase of ΔTcr is not much.
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Figure 7: �e dependence of the first natural frequency of the beam on temperature and the WGPL ratio (S-S), a/L� 1, ϕ � 5, c0 � 0.001,
K∗w � 20, K∗s � 5. (a) X-GPLRC. (b) U-GPLRC. (c) O-GPLRC.
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Figure 9: Continued.
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5. Conclusions

�is work firstly uses the finite element method combined
with the new shear deformation theory-type hyperbolic sine
functions to investigate the free vibration analysis of rotating
FG-GPLRC beams resting on two-parameter elastic foun-
dations in the thermal environment, in which the initial
geometrical imperfection is taken into account. �e nu-
merical results point out that

(i) With the increase of the weight fractions WGPL,
the natural frequency of the beam increases, and
the first five natural frequencies of the beam de-
pend nonlinearly on the WGPL ratio.

(ii) As the temperature increases, the natural frequency
of the GPLRC beam decreases, and there exists a
value of temperature so that the natural frequency of
the beam does not depend on the proportions of the
graphene material.
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Figure 9: �e dependence of the first four natural frequencies of the X-GPLRC beam on the rotational speed and the WGPL ratio (S-S),
a/L� 1, c0 � 0.001, K∗w � 20, K∗s � 5.
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(iii) When the speed of rotation of the GPLRC beam
increases, the natural frequency of the beam in-
creases; however, when the rotational speed is small,
the natural frequency increases slightly, and the
natural frequency increases significantly when the
rotational speed is high.
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