®

Check for
updates

A Bufferless Non-exact Matching Hardware
Accelerator for Processing Large Non-uniform
Stream Data

Quang-Manh Duong®™, Quang-Kien Trinh, Dinh-Ha Dao, and Trung-Nguyen

Le Quy Don Technical University, Hanoi, Vietnam
manhdg@lgdtu.edu.vn

Abstract. Recently, problems related to big data processing are becoming more
and more popular and place great demands on the processing ability of the sys-
tems. The common feature of these problems is the need to find and compare data
patterns in a large input data stream in real-time. Algorithms for data processing
and pattern matching have been studied for a long time, including both exact and
inaccurate (non-exact) solutions, at the same time, the searching data type can
be uniform or heterogeneous (non-uniform). Among the proposed data process-
ing platforms, the solution using specialized hardware accelerators proved to be
superior in performance and power consumption compared to traditional solutions
that combining software and the computing power of the conventional CPUs. In
this study, we proposed a bufferless non-exact matching hardware accelerator for
processing large non-uniform stream data on reconfigurable hardware (FPGA)
combining pipeline architecture and a parallel processing approach. We analyzed
the evaluation of hardware resource utilization and the data searching speed on
different hardware chips, thereby giving the optimal solution for the hardware
design. Finally, we practically demonstrated a design on the Kintex 7-XC7K325T
FPGA device that performs pattern matching for shaping large raw input stream
data. The hardware implementation from hundreds to thousands of times faster
than that on software show the high applicability of the accelerator in practice.

Keywords: FPGA accelerator - Pattern matching - Parallel processing -
Pipelined architecture

1 Introduction

In recent times, the problem of dealing with big data, which is prominent among these is
the pattern matching problem, has become increasingly popular and has great practical
value. This problem has existed for a long time, starting from the classical problems
related to communication in computer networks, in which deciding the packet next hop
requires reliable and timely matching (of IP/MAC and other components) algorithms.
The next problems are safety and security in computer networks, requiring the system
to be able to detect malicious packets, computer viruses, etc., these are the premises for

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021
Published by Springer Nature Switzerland AG 2021. All Rights Reserved

N.-S. Vo et al. (Eds.): INISCOM 2021, LNICST 379, pp. 245-258, 2021.
https://doi.org/10.1007/978-3-030-77424-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77424-0_20&domain=pdf
https://doi.org/10.1007/978-3-030-77424-0_20

246 Q.-M. Duong et al.

the development of Network intrusion detection systems (NIDS) [1], is an important
research direction in the scope of Deep Packet Investigation (DPI) [2].

Many solutions have been introduced to solve such problems. In the early stage,
when there are not many options available, software solutions combined with the com-
puting power of a shared processor (CPU) are often applied. However, the number of
matching patterns was becoming larger and larger, accompanied by complex processing
algorithms, making the solution using the software to face many limitations: firstly, the
parallel computation on software is not effective; secondly, the bus size when using the
software is fixed and small, leading to time-consuming for matching; thirdly, memory
access speed on software is not high due to cumbersome architecture. Regarding the last
problem, the matching process itself does not take much time, but other backend work
is expensive, for example, retrieving a pattern requires a lot of memory-read operations
and sometimes has to go to level catches to get data. From the aforementioned analysis,
the solution using the software in combination with a conventional CPU may not be
suitable for problems that require intensive or real-time computing, thus dedicated hard-
ware solutions are a good alternative. However, hardware accelerators as well can assist
but not be a substitute for the whole system, and a combination of specialized hardware
and software solutions [3, 4] will be the complete approach to solve the DPI problems.

Let’s take a look at a few recent case studies on pattern matching used in DPI on
recently advanced hardware platforms. Wang et al. [5] proposed a pattern matching
algorithm based on a skip counting automata, implemented through a three-state CAM
(TCAM), which helps increasing effectiveness when the TCAM is used for regular
expression-based pattern matching; Hung et al. [6] presents an efficient GPU-based
multiple pattern matching algorithm for packet filtering, whereas Lin et al. [7] describe an
architecture utilizing CPUs and GPUs, implementing a Length-bounded Hybrid Pattern-
Matching Algorithm (LHPMA) for DPI. However, these approaches do not consider the
approximate matching (they allow false positive but not the random bit error rate), while
we are targeting the problem of big data where the preprocessing or data mining allows.

In the scope of this study, we primarily focus on the solution using reconfigurable
hardware (FPGA) [8-12], considering their powerful computation capability and flexible
customization capability, which are suitable for problems that have strict requirements
in latency and bandwidth. Although the computation speed is not compared with ASIC
[13], current FPGA devices are adequately powerful enough to solve problems with
large bandwidth and their logical resources are sufficient for implementing massive
parallel processing. The outstanding feature of FPGA compared to ASIC is that it allows
for rapid development, can be easily reconfigured, and is much more cost-effective.
Recent reports [14—17] show that the FPGA-based accelerators are capable to handle
not only high bandwidth (i.e., up to 400 Gbps [18, 19]) for network packet parser and
classification but can easily adapt to rapidly changing and development of the network
protocols. The majority of prior arts are consistent in the view that classical signature-
based approaches, e.g., Aho-Coasick DFA [20] in conjunction with additional techniques
such as the Bloom filter (BF) [21] and Locality Hashing (LSH) [22] are extensively
and practically applied [23]. Nonetheless, applying inference-based (Machine Learning)
and Neural Network [24, 25] also are merely proposed, which may pave the way for
revolutionalized approaches for solving modern big data problems.

A Bufferless Non-exact Matching Hardware Accelerator for Processing Large 247

In this work, we also focus on the matching problems applied for non-deterministic
input stream patterns (i.e., raw binary stream) as opposed to network traffic where the
flow of data is segmented/formatted into packets/frames. Besides we also consider a very
practical application scenario that has not been covered in most of the previous work.
First, the matching is done in a non-exact manner, i.e., the matched is considered with
a certain variable permitted error threshold. Second, the design is targeted for memory-
constrained devices, i.e., there is no buffering for a gigabit-level stream bandwidth but
only a small on-chip cache (a few tens of Kb) serving as the interface elastic buffers'.

The main contributions of this work are summarized as follows:

e A parallel pipelined architecture of a bufferless non-exact matching hardware accel-
erator for processing large non-uniform stream data on reconfigurable hardware
(FPGA).

e An in-depth analysis based on implementation results on parallelism strategy and
technological feasibility and limitation for applying the FPGA-based pattern matching
accelerators.

e On-board demonstration of the proposed FPGA implementation using the proposed
design that achieves processing speed hundreds of times higher (approximately can
up to 945 times faster) on our available Digilent NETFPGA CML board (Kintex
7-XC7K325T) than on the equivalent software implementation.

The rest of this paper is organized as follows. Section 2 introduces the hardware
design of the data searching accelerator. Section 3 proposes a design evaluation on
dedicated reconfigurable hardware (FPGA) and gives discussions on further improve-
ments. Section 4 presents the practical verification of the proposed design on the Kintex
7-XC7K325T FPGA device. Section 5 concludes the paper.

2 Hardware Design of Data Searching Accelerator

2.1 The Data Matching Problem

In recent years, with the development of transmission technologies, the transmission
speed, as well as the data flow, have increased dramatically, so the problem of searching
data in a large input data stream becomes more and more urgent. There are two main
solutions in big data processing architecture: batch processing and stream-based pro-
cessing, and stream-based processing is normally chosen when it is necessary to have
an immediate response to the event in which data is just generated.

The requirement for big data processing problems in general, as well as the streaming
processing problem is that the time of processing must be very short. The amount of
data to be processed increases rapidly while the processing ability of the software is
limited by the performance of the processors. The viable solution to this problem is to
transfer high-speed and real-time responses to specialized hardware. Processed data will
be stored for data visualization, data reporting, or data analysis later. In this work, we

I Dye to confidential agreement, we could not go into detail or name of the specific application,
but the common technical aspects are described.

248 Q.-M. Duong et al.

designed an FPGA-based accelerator that processes and search for data from large input
streaming data using pipelined architecture and parallel data processing. The problems
of data searching can be solved thanks to the mentioned advantages of FPGA technology,
including the working frequency is large enough to processing high-speed data flows
with small latency; hardware-based parallel computing capability is the basis for data
processing acceleration; flexible reconfiguration ability ensure to adapt to changes in the
data flow structure.

2.2 The Architecture of the Design

In this paper, we propose a hardware design then evaluate parameters to optimize the
data searching speed and resource utilization. The main part of the design is a parallel
searching block called Matching Engine (ME) as shown in Fig. 1.

[
Pattern 0
: Comparator Matcho
i 0 o o s
3 Position
Matching Word E >
: =
Error threshold z Match
L. g .
=]
=
»| Comparator [MatchN-1 [&
Pattern N-1 N-1 -
~ N Matching element
/ ~
M-1
/ ~ =
/ ~ - Matching element
/ Comparator i ~ o 0
Pattern 0 _
Hamming | Hamming .| Threshold Match 0
Matching Word Distance | Weight | Checker -
Error threshold f

Fig. 1. Block diagram of matching engines

Input streaming data to ME is compared with pre-configured data patterns with
comparators, each ME contains N such blocks. The comparator computes the required
parameters such as Hamming distance, Hamming weight and compares the last param-
eter with the permitted deviation threshold. Finally, the Priority Encoder will decide
whether to select the current data or not (by the Match signal at the output of the ME), in
case the data is selected, its position in the streaming data (Position signal) will be stored.
To accelerate the searching process, we arranged an array of MEs with the described
working principle, i.e. having (NxM) comparators working simultaneously (in parallel).

A Bufferless Non-exact Matching Hardware Accelerator for Processing Large 249

Design of the Non-exact Comparator

For the reason that the error threshold is permitted, the comparator in this architecture is
designed for signature-based matching and in the scope of circuit design. Other algorith-
mic enhancements are considered at other design layers. Each comparator works with
two vectors of the same size x and y as shown in Fig. 2, where y is the sample binary bit
string and x is the binary bit string to be compared. First, the Hamming Distance (HD)
block calculates the distance between the two vectors x and the vector y, the output of this
block is a binary vector, and also the input of the Hamming Weight (HW) block, which
has the function of counting the number of bit 1 and the output represents the number
of different positions between the original two input vectors. The comparator sets an
initial fixed threshold value E (Error threshold), depending on which the comparison is
classified as either an exact comparison (E = 0) or non-exact (inaccurate) comparison

(E £ 0).

| |
| |
Pattern i Hamming | Hamming | Threshold
— ™ Distance | Weight | Checker
Hamming : Hamming : Threshold
Matching word Distance | Weight | Checker Match i
| |
| |
| |
Error threshold > Hamming | Hamming | Threshold
Distance | ‘Weight | Checker
| |
N e

Pipeline stages

Fig. 2. Pipeline structure to calculate the hamming distance

We focused on the architectural optimizing for comparators to accelerate the com-
putation speed for the overall ME block. In the case of exact matching, the comparator
will perform a direct comparison of two input vectors, if they matched, then conclude
the correct search result and vice versa, hence there is no need to use HW blocks, which
greatly reduces resources and speeds up the computation. However, since the matching
problem allows for a certain error threshold, in the case of non-exact matching, it is
necessary to optimize the design for the bit error computation block.

Based on the above analysis, a tree adder structure capable of automatically adjusting
the input data size is selected for the bit error computation. The first stage of the tree
adder is optimized using the 6-input LUT of the FPGA Series 7, at the second stage,
the two results are added together and moved to the following stage. This process is
repeated until the final result is computed, using the inter-stage pipeline technique to
ensure timing optimization with the number of the used adder stage is [log2([L/6])] in
total.

250 Q.-M. Duong et al.

The threshold checker is used to filter the input data by comparing them to a threshold
value which can be set at run time. In practice, small Hamming distance values are of
interest (since the input data is quite close together), large values are not considered to
save processing time as well as memory during filtering the results. To ensure the best
possible performance, ME and all design elements are described and optimized by the
hardware description language (HDL) with the primary task of creating a customizable
(extensible) design to apply for different problems. Accordingly, the parameters of the
design can be generically configured. The model of the structure of comparison data and
related parameters is described in Fig. 3.

< L 5
Matching s
word 1 <
-
Matching word | s |
Matching Matching
word M-1 word 0

Fig. 3. Structure of the matching data

The set of design parameters includes the parameters related to the input data structure
(length of matching word L, number of patterns N, length of symbol S); parameters
related to the design architecture (number of matching elements M, number of pipeline
stages C, system frequency F); parameter related to the searching type (exact or non-exact
searching - error threshold E).

3 Design Evaluation on FPGA

We conduct the design evaluations of computation speed and resource utilization accord-
ing to the parameter groups presented in Sect. 2.2, including the group of parameters
involving the input data structure (L, N, S); the group of parameters related to the design
architecture (M, C, F) and the parameter involving the searching method (E). These
evaluations were made on the 2016.4 Xilinx Vivado software version.

3.1 Evaluation on the Impact of Parameters Related to the Input Data Structure

In this sub-section, we have chosen some representative and active FPGA families from
Xilinx, including the low-cost (Artix-7), the best price/performance (Kintex-7), the
performance-optimized (Virtex-7) solutions to evaluate the resource utilization when
changing the length of matching word L. The graph represents the resource utilization
is shown in Fig. 4 with fixed parameter set (M = 8, C = 2, F = 100 MHz).

A Bufferless Non-exact Matching Hardware Accelerator for Processing Large 251

Artix-7_XC7A100T O Kintex-7_XC7K325T = BZynq-7000_XC7Z045F 1 Virtex-7_XC7V485T

60
50
40
30

20 22581520
14.17

10.20

10

RESOURCE UTILIZATION OF LUT (%)

L =128 bit

FPGA DEVICES

Fig. 4. Number of LUTs utilized on different FPGA devices and lengths of matching word with
fixed parameter set (M = 8, C = 2, F = 100 MHz, E # 0)

The evaluation results obtained show that with the same length of the matching
word LUT resource utilized on different FPGA series decreases from Artix-7 to Virtex-
7, which can predict through the hardware resources available on these chips announced
by the manufacturer. However, the most expected result is the effect of the matching
word length on resource consumption, which makes a significant difference in considered
cases. For example, when the length value increased from 32 bits to 128 bits, the number
of LUTs utilized in the Kintex-7 XC7K325T FPGA device almost doubled (8.56% vs
15.2%), thus reducing the length of matching word is an aspect that needs more attention.

3.2 Evaluation on the Impact of Parameters Related to the Design Architecture

Furthermore, we evaluated resource utilization on the same Kintex-7 device
(XC7K325T) with different values of the number of matching elements M ranging from
2 to 32. Evaluations are conducted in both exact searching (E = 0) as well as non-exact
searching (E > 0), the corresponding results of different utilized resources are shown in
Fig. 5.

Theoretically, as the M value increases, the number of concurrent operations, as well
as the number of logical resources utilized increases accordingly, the number of LUT
utilized reaches the maximum value when the number of matching elements M = 32
(correspondingly 256 simultaneous comparisons), which accounts for less than 50%, an
indication that the design is completely feasible on this FPGA platform. The analysis is
evaluated in both cases of exact matching and non-exact matching.

In the case of the exact matching, there is no need to compare the results against a
given error threshold, the Hamming weight block is omitted, resulting in a consequential
decrease in the number of utilized logic resources. The graph showing the correlation
between the percentages of utilized LUT in both cases is shown in Fig. 5. The difference
in logic resource consumption is insignificant when the number of matching elements

252 Q.-M. Duong et al.

Bexact,L=64 Bexact,L=128 non-exact, L =64 [Mnon-exact, L =128

— 50]
= o
g ® -
: 40 :..:
2 o 8
o 30 b S
: AN RS-
ST =
-

= %
o 15 =
& =)
@] -
2 o
o« "

NUMBER OF MATCHING ELEMENTS

Fig. 5. The resource utilization for the cases of exact matching and non-exact matching evaluated
on Kintex-7 XC7K325T with a fixed parameter set (C = 2, F = 100 MHz)

is small (M = 2; 4) and becomes quite large (about 25%) when M increases to the
maximum value (M = 32). Based on the shape of the charts it is possible to comment
that the LUT count grows in qua quasi-exponential manner and the parameter M has a
significant influence on resource utilization.

Predictably, the resource utilized in non-exact searching is greater than in exact
searching since the last one does not require the bit error counter. For example, with
the same number of matching elements M = 32, non-exact searching requires 2.5 times
more logical resources than an exact searching, which poses the need for optimization
of the bit error calculator (HW block) to reduce the utilized hardware resources. In this
study, we propose an HW block designed for the matching word of length L = 128 bits,
so four design schemes for Hamming weight counter have length 128 x 1; 64 x 2; 32
x 4, and 16 x 8 respectively (see Fig. 6).

Among the designs mentioned, the one that uses four blocks with a 32-bit com-
putational string length gives the best results, which can be explained based on the
characteristics of the 7 series FPGA chips that are optimal for 6-input LUT.

A Bufferless Non-exact Matching Hardware Accelerator for Processing Large 253

126x1 [0 1 0 1 0 1.10 1 0 1

64x2 [0 1 0.1 0

16x8

Fig. 6. Design diagram of the hamming weight counter

3.3 Performance Evaluation

The Actual Time of the Pattern Matching Process

In this section we calculate and examine the change of actual time spent on the non-exact
pattern matching process, Tacwal, calculated by the difference of theoretical time Tgesired
and setup time Tsewp (slack) on FPGA chip series. On each FPGA chip series at this
time, we choose a typical device, all the time-related figures are given in Table 1.

Table 1. Actual time spent on the non-exact pattern matching process

M=38 Artix-7 Kintex-7 Zyng-7000 | Virtex-7 Kintex ultrascale
Device XC7A100T | XC7K325T | XC7Z045F | XC7V485T | XCKU095
Actual time (ns) | 13.16 9.12 8.93 9.00 6.91

Desired time (ns) |20 20 20 20 20

Slack time (ns) 6.84 10.88 11.07 11.01 13.09

Maximum Bandwidth and Comparison with Software Implementation
The data processing speed of the design (bandwidth - BW) depends on parameters
including the length of symbol S, the number of matching elements M, and the system
frequency F according to the formula BW = S x M x F. The maximum bandwidth
of the board circuit is estimated based on the maximum value of the mentioned above
parameters and depends greatly on the type of FPGA chip.

Here, we calculated the bandwidth based on the core of the design, therefore the actual
value of the BW which can be achieved depends on the type of communication between

254 Q.-M. Duong et al.

the FPGA board and the computer and this is merely a technical issue. Theoretically, the
design can achieve a maximum bandwidth of up to 39.36 Gbps on the Kintex Ultrascale
FPGA series (XCKU095). XC7K325T FPGA board for practical verification of the
proposed design can achieve the maximum bandwidth of 10.53 Gbps corresponding to
the set of parameters (M = 48, L = 128, N = 8, S = 2, E # 0), which about 945 times
higher than the equivalent implementation on software, the actual bandwidth can reach
a higher value by employing a larger device. The graphs of the maximum bandwidth,
as well as the maximum clock frequency on the different series of FPGA, are shown in
Fig. 7.

39.36
40 r 160
144.70 —éc
— 35 r 140 __
£ 112.02 111.17 z
I} . .
% 30 109.67 Y - 120 §
E 25 - 100 2
= 75.99 8
2 20 - 80
z 16.01 &
g 15 12.55 -6 =
2
2 10 L 40 é
é <
S 5| 2 L 20 =
0 l'.'-'_'.'-'_'.'-'_"'l. L
XC7A100T XC7K325T XC72045F XC7v485T XCKU095
Artix-7 Kintex-7 Zynq-7000 Virtex-7 Kintex Ultrascale

FPGA DEVICES

Fig. 7. The maximum bandwidth and the maximum frequency of the design on the different
FPGA devices with a fixed set of parameters M =48, L =128, N=8,S =2,E #0)

3.4 The Multilayer Optimizing Solutions to Improve the Overall Performance
of the Searching System

In this study, our solutions related to the matching core design and optimizing them for
data searching belong to the under solution layer. In this solution layer, we have proposed
aparallel pipelined architecture of a bufferless non-exact matching hardware accelerator,
and evaluations of the impact of the various parameters on searching performance have
been fully conducted in Subsects. 3.1, 3.2, and 3.3. For a general data searching problem,
design proposals often target such matching cores.

However, a data searching system generally has different multiple design layers, to
get the best performance, all of the design layers must be improved and optimized.
Although located at different layers, the general purpose of the solutions is saving
resource utilization and accelerating the data processing and in practice, these two cri-
teria are often achieved simultaneously. Sometimes, a good solution at the upper layer,
i.e. the system design level, can solve a lot of problems, including problems related to
the matching core. Therefore, optimal solutions at the system design level should be

A Bufferless Non-exact Matching Hardware Accelerator for Processing Large 255

fully considered, which is also the future development direction of the research besides
matching core improvement solutions.

Based on the analysis and preliminary survey of recent studies on similar problems
shown in Sect. 1 of this paper, two groups of solutions are viable for the system design
level, the first is the applying of classical algorithms in conjunction with additional
techniques such as Bloom Filter and Locality-Sensitive Hashing to reduce the size of
the data in comparison and matching processes. Some typical studies can be outlined
for instance: Prya et al. [21] present a combined hierarchical approach based on an
all-length Bloom filter for the source prefix field and an H-trie data structure for the
destination prefix field; Lim et al. [22] extend the tuple pruning algorithm for traffic
filtering; Ahmandi et al. [23] introduced a k-stage pipelined Bloom filter to improve
power efficiency.

The second group of solutions deals with an area of interest recently, using Artificial
Intelligence combined with Machine Learning techniques to create Neural Networks
that help classify the raw (non-uniform) data from the input, which can significantly
reduce the amount of data to be processed on the hardware. Neural Networks can be
completely constructed on software platforms while some stages in the network requiring
intensive-computation can be transferred to hardware for acceleration. Zhou et al. [24]
proposed a network based on 10-30 neurons for the traffic classification task in which
the difference in accuracy when using neurons 30 and 10 is negligible, compared the
Naive Bayesian method with the Feed-Forward Neural Network model and found that
the latter method proved more effective. Zelina et al. [25] proposed a packet-size-based
classification model using early detection which classifies the flow based on the first
few packets, in which the first 6 packets of the flow were used to train the NN model
and classify 5 applications (SSH, Skype, HTTP, POP3, Bittorrent) with an average of
60-70% accuracy.

The solution groups related to the system design level presented above are potential
options for us in improving the overall searching system, for example, hashing data
before comparing, using Bloom Filters or Neural Networks to classify and reduce the
size of raw data at the input of the searching system. These solutions will be considered
and applied in upcoming studies.

4 The Practical Verification of the Matching Core

We finally evaluated the effectiveness of the accelerator core via a real-world application.
Specifically, the core has to perform in-exact matching with a variable threshold and has
matched for different types of data with a total of 512 patterns. During the practical
experiment on the Kintex-7 XC7K355T FPGA device, the input of the non-uniform
data flow is pushed down to the FPGA board via AXI protocol to perform the searching.
The design will adjust accordingly according to the values of the general parameters
outlined as mentioned above in Subsect. 2.2.

With specific design parameters, the test results show the number of utilized resources
including 54% of LUT, 1% of memory elements, and 33% of RAM (Fig. 8).

256 Q.-M. Duong et al.

CORE_GENO.PR_INTERNAL_CORE_Inst 160614

CORE_MODE_GEN.PR_CORE_THR_01 140302
CONFIG_VECTOR_inst w2 | [
Lot o ws12 -

=l

ARBITER_inst Lo | =

Leaf Cels

H
)

oo

i

i
i B

Fig. 8. Resource utilization on Kintex7-XC7K355T FPGA device for a matching core including
peripherals with a fixed set of parameters (F = 100 MHz, L = 128, M = 8, N =512, E # 0)

(a) (b)

Fig. 9. Design verification on digilent NETFPGA CML board (Kintex7-XC7K355T FPGA) (a)
and the bit view of the data before and after processing (b)

The process of searching the data transmitted from the computer to the FPGA board
(Fig. 9a) gave accurate results, confirming the correctness of the design, but the band-
width was limited to about 800 Mbps. This can be partly explained by the non-uniform
data type at the input leading to bit-by-bit processing, and the rest due to the bandwidth
limitation of the Ethernet 1 Gbps port. Figure 9b shows a bit-view image of the data
before processing (top image) with a chaotic arrangement and after processing (bottom
image), which has been arranged in order and formatted.

5 Conclusion

In this paper, we have proposed a design for the data matching accelerator implemented
on reconfigurable hardware (FPGA) due to its outstanding technological advantages.

A Bufferless Non-exact Matching Hardware Accelerator for Processing Large 257

Design parameters were considered to evaluate the resource utilization and the data
searching speed. As a case study, an implementation on the Kintex 7-XC7K325T FPGA
device has been conducted, using the exact and non-exact searching method.

The solutions to improve the search speed can be using multiple parallel comparators
or reducing the size of the input data, the last one is the premise for applying data hashing
algorithms to reduce the size of the matching patterns, thereby speeding up the data
searching on the hardware. In addition to such improvements of the hardware design,
other promising solutions are the applications of classical data searching algorithms in
conjunction with Bloom filter, Locality-Sensitive Hashing, or Neural Networks to reduce
the size of the input data stream and we will consider their adoption for improvement of
the design in the future work.

Acknowledgment. This research is funded by the Vietnam National Foundation for Science and
Technology Development (NAFOSTED) under grant number 102.01-2018.310.

References

1. Huang, N.F, Hung, H.W,, Lai, S.H., Chu, YM., Tsai, W.Y.: A GPU-based multiple-pattern
matching algorithm for network intrusion detection systems. In: Proceedings of the 22nd
International Conference on Advanced Information Networking and Applications (AINA),
pp. 62-67 (2008)

2. Thinh, T.T., Hieu, T.N., Van Quoc, D, Kittitornkun, S.: A FPGA-based deep packet inspection
engine for network intrusion detection system. In: 9th International Conference on Electri-
cal Engineering/Electronics, Computer, Telecommunications and Information Technology,
Phetchaburi, pp. 1-4 (2012). https://doi.org/10.1109/ECTICon.2012.6254301.

3. Fiessler, A., Hager, S., Scheuermann, B., Moore, A.W.: HyPaFilter — a versatile hybrid FPGA
packet filter. In: Proceedings of the ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (2016)

4. Fiessler, A., Lorenz, C., Hager, S., Scheuermann, B., Moore, A.W.: HyPaFilter+: enhanced
hybrid packet filtering using hardware assisted classification and header space analysis.
IEEE/ACM Trans. Netw. 25, 3655-3669 (2017)

5. Wang, F,, Hong, Y., Jin, J.: Research on regular expression data packet matching algorithm
based on three state content addressable memory. Int. J. Simul. — Syst. Sci. Technol. vol.
16(5A) p. 8.1-8.5 (2015)

6. Hung, C.-L., Lin, C.-Y., Wu, P.-C.: An Efficient GPU-based multiple pattern matching algo-
rithm for packet filtering. J. Sig. Proc. Syst. 86(2-3), 347-358 (2016). https://doi.org/10.1007/
s11265-016-1139-0

7. Lin, Y.S., Lee, C.L., Chen, Y.C.: Length-Bounded hybrid CPU/GPU pattern matching
algorithm for deep packet inspection. Algorithms 10(16), 1-13 (2017)

8. Baker, Z.K., Prasanna, V.K.: Time and area efficient pattern matching on FPGAs. In: FPGA,
pp. 223-232 (2004)

9. Clark,C.R.,Lee, W., Schimmel, D.E., Contis, D., Kone, M., Thomas, A.: A hardware platform
for network intrusion detection and prevention. In: Proceedings of Workshop on Network
Processors and Applications, pp. 136—145 (2005)

10. Clark, C.R., Schimmel, D.E.: Efficient reconfigurable logic circuits for matching com-
plex network intrusion detection patterns. Proceedings of International Conference on Field
Programmable Logic and Applications, pp. 956-959 (2003)

https://doi.org/10.1109/ECTICon.2012.6254301
https://doi.org/10.1007/s11265-016-1139-0

258

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

Q.-M. Duong et al.

Sourdis, I., Pnevmatikatos, D.: Pre-decoded CAMs for efficient and high-speed NIDS pattern
matching. In: 12th Annual IEEE FCCM, April 2004

Clark, C.R., Schimmel, D.E.: Scalable pattern matching for high speed networks. In: 12th
Annual IEEE FCCM, April 2004

Liu, R.T., Huang, N.F., Chen, C.H., Kao, C.N.: A fast string-matching algorithm for network
processor based intrusion detection system. ACM Trans. Embed. Comput. Syst. 3(3), 614-633
(2004)

Pus, V., Kekely, L., Korenek, J.: Low-Latency modular packet header parser for FPGA.
In: Proceedings of the 9th ACM/IEEE Symposium on Architecture for Networking and
Communications Systems. Austin, Texas, pp. 77-78 (2012)

Benacek, P, Pus, V., Kubdtovd, H.: P4-to-VHDL: automatic generation of 100 Gbps
packet parsers. In: Proceedings of the IEEE 24™ Annual International Symposium on
Field-Programmable Custom Computing Machines (2016)

Benacek, P., Pus, V., Korenak, J., Kekely, M.: Line rate programmable packet process-
ing in 100Gb networks. In: Proceedings of tthe 27th International Conference on Field
Programmable Logic and Applications, Ghent, Belgium (2017)

daSilva, J.S., Boyer, F.-R., Langlois, J.M.P.: P4-compatible high-level synthesis of low latency
100 Gb/s streaming packet parsers in FPGAs. In: Proceedings of the 26t ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA 2018), February 2018.
Monterey, California

Attig, M., Brebner, G.: 400 Gb/s programmable packet parsing on a single FPGA. In:
Proceedings of the ACM/IEEE Seventh Symposium on Architectures for Networking and
Communications Systems. pp. 12-23 (2011)

. Pus, V., Kekely, L., Korenek, J.: Design methodology of configurable high performance

packet parser for FPGA. In: Proceedings of the 17 International Symposium on Design and
Diagnostics of Electronic Circuits and Systems. Warsaw, Poland (2014)

Kumar, S., Turner, J., Williams, J.: Advanced algorithm for fast and scalable deep packet
inspection. In: Proceedings of the ACM/IEEE Symposium on Architecture for Networking
and Communications systems. San Jose, CA (2006)

Priya, A.G.A., Lim, H.: Hierarchical packet classification using a bloom filter and rule-priority
tries. Comput. Commun. 33(10), 1215-1225 (2010)

Lim, H., Kim, S.Y.: Tuple Pruning Using Bloom Filter for Packet Classification, pp. 48-58.
IEEE, Micro (2010)

Ahmadi, M., Wong, S.: K-Stage Pipelined bloom filter for packet classification. In: Proc.
International Conference on Computational Science and Engineering. Vancouver, Canada,
pp. 64-70 (2009)

Zhou, W., Dong, L., Bic, L., Zhou, M., Chen, L.: Internet traffic classification using feed-
forward neural network. In: Proceedings of the International Conference on Computational
Problem-Solving (2011)

Zelina, M., Oravec, M.: Early Detection of Network Applications using Neural Networks.
IEEE, Elmar (2011)

	A Bufferless Non-exact Matching Hardware Accelerator for Processing Large Non-uniform Stream Data
	1 Introduction
	2 Hardware Design of Data Searching Accelerator
	2.1 The Data Matching Problem
	2.2 The Architecture of the Design

	3 Design Evaluation on FPGA
	3.1 Evaluation on the Impact of Parameters Related to the Input Data Structure
	3.2 Evaluation on the Impact of Parameters Related to the Design Architecture
	3.3 Performance Evaluation
	3.4 The Multilayer Optimizing Solutions to Improve the Overall Performance of the Searching System

	4 The Practical Verification of the Matching Core
	5 Conclusion
	References

