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ABSTRACT Mobile crowd-sensing (MCS) is a data collection paradigm, which recruits mobile users with
smart devices to perform sensing tasks on a city-wide scale. In MCS, a key challenge is task allocation,
especially when MCS applications are time-sensitive, and the platform needs to consider task completion
order (since a worker may perform multiple tasks and different task completion orders lead to different
travel costs and response times, i.e., the times needed to arrive at the task venues), requirements of tasks
(such as deadline and required sensor) and workers heterogeneity. In other words, the task allocation
problem consists of multiple task completion order problems, which is challenging to solve due to the large
solution space. Therefore, in this paper, we first formulate the considered problem into two related integer
linear programming problems (i.e., assignment and task completion order problems) using a decomposition
technique in order to reduce the problem size and enable the use of diverse searching strategies. Then,
a deep Q-learning (DQN)-based algorithm, namely assignment DQN with a local search (A-DQN w/ LS),
is proposed to determine the task–worker assignments, which iteratively employs an asymmetric traveling
salesman (ATSP) heuristic to find the task completion orders of the workers. The local optimizer is applied
at the end of the A-DQN algorithm to deal with the computation time and local optima. Simulation results
show that the proposed method outperforms existing approaches under different sensing dynamics in terms
of total cost.

INDEX TERMS Deep reinforcement learning, mobile crowd-sensing, task allocation, tabu search.

I. INTRODUCTION
The recent advancement and proliferation in communica-
tion technologies and sensor-equipped portable smart devices
have enabled a noble data collection paradigm called mobile
crowd-sensing (MCS). MCS exploits the mobility of the
mobile users and their sensor-equipped smart devices (such
as smartphones or smartwatches) [1] to collect and share
dynamic real-time sensing information (e.g., information
about traffic, drainage, and road system during heavy rain,
noise quality, air pollution level, ambient context, or local
information) from their surroundings through the existing
communication networks (e.g., 3G, 4G, or 5G networks) [2].

The associate editor coordinating the review of this manuscript and
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Thus, it can achieve a remarkable level of spatial and tem-
poral coverage in the region of interest without significant
infrastructure and maintenance costs compared to traditional
static sensor networks. Due to these advantages of MCS,
it has been applied to diverse real-world applications such as
crowd counting [3], environmental monitoring [4], informa-
tion mapping [5], smart city [6], and intelligent transportation
systems [7].

In a typical MCS system, there are three main components:
the task requesters, the mobile workers or users, and the
MCS platform. The task requesters publish tasks of inter-
est to the MCS platform. The users (who are registered on
the platform) perform sensing tasks through smart devices
consciously (i.e., workers intentionally perform the sensing
tasks) or unconsciously (i.e., sensing tasks are performed by
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the smart devices without worker’s knowledge) in return for
some incentive, such as a monetary benefit or certain forms
of entertainment [8]. The service platform assigns sensing
tasks published by the requesters to suitable users or workers
according to the requirements of the applications and the
availableMCS resources. This task assignment process is one
of the key issues in MCS systems due to its significant effect
on the success of the MCS applications and the efficiency of
the platform.

Recently, a lot of studies have been done on MCS task
allocation [9]–[17]. Earlier studies (e.g., [9]–[11]) mostly
consider single-task allocation, i.e., one task is assigned to
a worker or a group of workers in each round of alloca-
tion, and assign tasks by estimating the probability of work-
ers visiting the task location during their daily routines,
which is resource-inefficient and impractical when tasks are
required to be completed within a deadline. Thus, in order to
make full use of the limited resources and to accommodate
deadline-sensitive MCS applications, recent studies consider
multi-task allocation, where a worker can perform multiple
tasks and needs to intentionally visit the venues to perform
them (e.g., [12]–[17]).

Assigning multiple tasks to a worker creates a new chal-
lenge for the platform, i.e., finding the task completion order
because different task completion orders or moving paths of
the workers lead to different traveling costs and response
times (defined as the times needed to arrive at the tasks’
locations). Specifically, the task assignment problem is com-
posed of several task completion orders or path-planning
problems. Therefore, the search space is very large, which
makes finding a good solution very difficult. However, this
has rarely been considered by existing works. In addition,
most of the existing works assume that the sensing duration of
the tasks is negligible, which may result in a failure of service
if tasks have non-negligible sensing duration.

Participations of different types of workers, such as the
unmanned aerial vehicle (UAV) and human, also needs to be
taken into account, where tasks can request different types
of workers according to their preferences, incentives, and
location accessibility. The location accessibility of the tasks
means some task venues may be unsafe or risky for a human
worker. For instance, collecting information about drainage
systems and gas lines after a natural disaster (such as an
earthquake or flood) or monitoring waste removal sites to
identify hazardous materials.

Therefore, in this paper, a multi-task allocation problem
is considered under the following settings: tasks are diverse
(i.e., they may have different sensing durations, deadlines,
and required sensor types), and a task can be performed by
different types of workers (i.e., UAV and human workers).
The task completion order of a worker is a Hamiltonian cycle,
and finding the lowest-cost task completion order of a worker
is considered a traveling salesman problem (TSP).

One simple example for a better understanding of the
proposed problem is given below. Assume that eight tasks
(i.e., {t1, t2, .., t8}) are requested concurrently, and each of

FIGURE 1. An exemplary scenario of multi-task allocation. The dotted
blue lines show the possible task–worker assignments, whereas the solid
blue line segments show better task–worker assignments. The numbers
on the lines show the time needed for a worker to reach the task venue.

them is associated with a deadline and task duration, as shown
in Fig. 1. For instance, t2(19, 5) means t2 has a deadline
of 19 units of time, and the sensing duration is five units.
Registeredworkers (i.e.,w1, . . . ,w4) are recruited to perform
the tasks by visiting the venues. The number associated with
the worker is the demanded per-unit incentive with respect to
traveling distance. Moreover, task t4 requests a UAV worker
to perform the task due to preference or location accessibility.
Consider tasks t8, t1, and t4 where w2 is the nearest worker.
If w2 greedily selects t8 because it is closer than t1, then a
feasible task sequence for w2 is (t8, t1) according to travel-
ing time and sensing duration, leaving t4 without a worker
(t4 cannot be assigned to other workers as it has requested
for the UAV). On the other hand, if w4 is assigned to tasks t8,
w2 can be mapped to task sequence (t1, t4). However, if w2
performs t4 first, the valid time of performing t1 will expire
before the worker’s arrival due to the sensing duration of t4,
resulting in an infeasible solution.

As seen from the example, there are several possible com-
binations of task–worker assignments and a lot of possi-
ble orders of completing tasks assigned to a worker, which
exponentially increases as the number of tasks and workers
increases. In other words, the problem size and complexity
increase. Therefore, to reduce the problem size and complex-
ity, we employ a decomposition technique, which enables
separate optimization of task–worker assignments and task
completion orders of workers through iterative interactions.
Moreover, to address the problem, a deep Q-learning (DQN)-
based algorithm, which is called assignment DQN (A-DQN)
along with a local search (A-DQN w/LS), is proposed.
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Deep Q-learning is a reinforcement learning (RL) [18]
algorithm, which is an interactive learning technique and
has shown its success in solving complex optimization prob-
lems [19]. In RL, the agent tries out different actions in
each state, observes the reward, and decides on the action
that maximizes the cumulative reward. Moreover, in each
step, RL adds the expected reward from future states to
the reward of the current state, effectively influencing the
current decision towards a potential solution. As a result,
under a certain assignment, RL can decide which worker
selection will lead to a better solution. Therefore, A-DQN,
along with local search, can efficiently solve the considered
problem through iterative and local improvements, which
is verified by conducting numerical simulations. Specifi-
cally, the proposed method is compared with other MCS
approaches under various situations, using the total cost (the
sum of the traveling cost and sensing cost of all tasks) and
the CPU time as the measure of effectiveness, where A-DQN
w/ LS obtains better performance with a reasonable running
time.

In our previous paper [20], although a similar problem
has been considered, it has limitations. First, a metaheuristic
approach, i.e., a memetic genetic algorithm for task allocation
(MGATA), is used to find the task–worker assignment, which
is more prone to fall into local optima since population-based
algorithms are easy to lose genetic diversity due to selection
pressure and genetic drift [21]. Second, one job is divided
into multiple tasks that have the same deadline, which is inef-
ficient in a large-scale platform where heterogeneous tasks
are published simultaneously. Third, the energy consumption
model of UAVs is not considered, whereas, in this paper,
we consider energy constraints of UAVs, i.e., a UAV should
be assigned to tasks if it can complete the tasks and return
with the available energy.

The main contributions of this paper are summarized as
follows:
• This paper decomposes the considered problem into
an assignment problem and a set of task completion
order problems to reduce the problem size and enable
diverse searching strategies. The assignment problem
and the task completion order problem are formulated
as integer linear programming (ILP) problems with the
aim of minimizing the total cost of performing tasks
subject to the constraints; deadline, required sensor,
required workers’ type, and the energy constraints of
the UAV.

• To solve the task assignment and routing problem,
a deep Q-learning-based algorithm called assignment
DQN with local search is proposed, where an asym-
metric traveling salesman (ATSP) heuristic is iteratively
employed to find the workers moving paths. Assign-
ment DQN (A-DQN) guides the algorithm towards the
best solution by maximizing the aggregated rewards,
whereas the local search handles the long training time
and locally searches the solution space for a better
option.

• To evaluate the proposed algorithm, simulations are
conducted using different experimental scenarios, where
A-DQN w/ LS shows its efficiency by achieving a lower
total cost than existingmethods. In addition, we compare
different DQN architectures and show the effects of
adding a local search with the DQN.

The rest part of this paper is organized as follows. Section II
discusses related works. The system model and problem for-
mulation are presented in Sections III and IV, respectively.
Section V describes the details of our proposed algorithm.
We show the results of the simulation in Section VI, and
Section VII concludes the paper.

II. RELATED WORKS
Recently, there have been a lot of studies onMCS task alloca-
tion, taking various task allocation scenarios into account. For
example, some studies have focused on single-task allocation
[9]–[11]. In these studies, one task is distributed at some point
of interest within the given sensing area, and the sensing
period is usually divided into equal-length cycles. The sens-
ing data are collected at each cycle by a subset of workers with
the aim of maximizing the spatial–temporal coverage. On the
contrary, we consider an MCS system where heterogeneous
time-constraint tasks are published concurrently, andmultiple
tasks can be assigned to a worker who needs to intentionally
visit the task venues to perform the tasks. Therefore, these
existing works are very different and cannot be applied to the
model considered in this work.

Another group of works has proposed task allocation
strategies considering multi-task allocation scenarios and
time-sensitive tasks. For example, the study in [12] proposed
a task allocation frameworkwith the goal of efficiently select-
ing a set of workers such that high-quality results are obtained
for each task within the given time. In [13], the authors
aimed to maximize the quality of interest (QoI) of each task
while minimizing its completion time. They took distance,
workers’ reputation, and confidence level into account to
calculate QoI, where the confidence level is calculated by
using the workers’ historical mobility. Guo et al. [14] devised
a multi-task assignment framework for two different sens-
ing environments: workers selection for time-sensitive tasks,
which requires workers to visit the task venue intentionally,
and delay-tolerant tasks, where workers are not required to
move purposefully. However, these studies do not consider
the task completion order or moving path of the workers,
which play an important role in satisfying the time-constraint
of the tasks.

A few studies have considered the worker’s task comple-
tion order. For instance, in [15], Gong et al. focused on max-
imizing the sum of tasks’ quality while taking the movement
path of the worker into consideration. Zhao et al. [16] wanted
to find a task allocation approach such that the total number of
completed tasks is maximized. They also consider tasks and
workers’ deadlines (i.e., workers should reach their destina-
tion before the deadline). The authors in [17] investigated the

95810 VOLUME 9, 2021



S. Akter et al.: Time-Constrained Task Allocation and Worker Routing in MCS

effect of time constraints on multi-task allocation, and aimed
to maximize the utility of the platform while considering the
worker’s working deadline and the task’s deadline. Above
mentioned studies consider the worker’s path or task com-
pletion order either as a simple path along with the workers’
daily route or as scheduling without any cycle.

In contrast, in our work, the worker’s path is a Hamiltonian
cycle, and the lowest-cost path is obtained by solving a TSP
problem, which is more practical since workers perform tasks
in the real-world. Furthermore, we decompose the original
problem into several relatively simpler problems to reduce
the problem size and enable separate optimizations of differ-
ent problems, and employ an RL-based solution framework
to find the task–worker assignments along with the workers
moving paths.

III. SYSTEM MODEL
We assume that multiple jobs can be published at the same
time, and each job consists of multiple sensing tasks based
on the location. Let T = {1, . . . , |T|} andW = {1, . . . , |W|}
be the sets of tasks and workers, respectively. W contains
two types of workers: UAV (set of UAVs is denoted by W1)
and human (set of human workers is denoted by W2) where
|W| = |W1

| + |W2
|.

Each task j(j ∈ T) is associated with a location Lj, required
sensors set Rj, the time needed to perform the task ζj, pay-
ment for performing the task with respect to time ηj, sensing
frequency fj, size of the sensed data bj, required worker type
wj, and deadline dj, by which the assigned worker has to reach
the task venue and complete the task. We consider three types
of requirement for the worker: 1) some tasksmay require only
UAV (i.e., wj = 1), 2) some tasks may require only human
(i.e., wj = 2) and 3) some tasks may not have any specific
requirement, i.e., both UAV and human can perform the task
(wj = 0).

Each worker i(i ∈ W) has a description comprising the
current location li, available sensors set Ai, velocity Vi, base
payment with respect to distance pi, and worker type vi(vi ∈
{1, 2}). If the worker is a UAV (i.e., vi = 1), the description
contains additional specifications: energy consumption for
taking-off and landing E itl (which can vary depending on
the altitude and velocity of the worker), sensing and trans-
mitting eist , horizontal flying e

i
f , and hovering eih. Further-

more, the worker description of a UAV also contains battery
capacity eiR.

IV. PROBLEM FORMULATION
The considered task–worker assignment problem contains
a set of workers’ path-planning problems, which makes it
very complex to solve. Therefore, we decompose the original
problem into an assignment problem (i.e., the main problem)
and a set of task completion order problems (i.e., subprob-
lems) by employing a decomposition technique similar to one
from [20]. In this section, the main problem and the subprob-
lems are formulated as two ILP problems where the main

objective is achieved through iterative interactions between
them. Specifically, the main problem assigns workers to tasks
and passes assignments to the subproblems. Each subproblem
minimizes its own total cost and returns the sum of all the
workers’ total costs to the main problem, which then assesses
the current assignment.

To incorporate the current positions of the workers (since
workers will visit task venues following the Hamiltonian
cycle), we first introduce a dummy task set Td , which is gen-
erated based on the registered workers’ information. Specif-
ically, the number of elements in the dummy task set is the
same as the worker set, i.e., Td = {1, . . . ., |W|}. Location,
required worker type, and required sensors of each dummy
task j are the same as the current location, worker type, and
available sensors of worker i, respectively, i.e., Lj = li,
wj = vi, and Rj = Ai where j = i. In addition, for each
dummy task j(j ∈ Td ), task duration ζj, sensing frequency
fj, and data size bj are set to 0, whereas deadline dj is set to
a large positive number. Now, let us define a task set T′ that
contains the sets of dummy tasksTd and actual tasksT, where
T′ = {1, . . . .|T′|} and |T′| = |Td | + |T|.

Each UAV is battery-operated and consumes energy for
traveling through task venues and performing tasks. Let
E ijf ,E

ij
h , and E ijc denote the energy consumption for flying

horizontally, hovering, and communication, respectively. For
each task j, E ijf ,E

ij
h and E ijc of UAV i(i ∈ W2) are calculated

in (1)-(3):

E ijf = cij × eif (1)

E ijh = ζj × e
i
h (2)

E ijc = eist (bj × fi × ζj) (3)

where cij is the traveling distance between the location of
worker i and task j. Definitions for other notations used in
problem formulation are presented in Table 1.
Decision variables used in the problem formulation are

defined as follows:

yij =

{
1, if worker i is assigned to task j
0, otherwise

(4)

xijk =


1, if worker i visits task k right after

visiting task j.
0, otherwise

(5)

The main problem is minimizing the total cost of all
workers, where Mi denotes the total cost of worker i. Then,
the main problem can be expressed as:

min
∑
i∈W

Mi (6)

subject to :
∑
j∈T′

yij ≥ 0, ∀i ∈W (7)

∑
i∈W

yij = 1, ∀j ∈ T, T ⊆ T′ (8)

yij = 1, ∀j ∈ Td , ∀i ∈W, j = i,Td ⊆ T′ (9)
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TABLE 1. Model parameters.

|Rj ∩ Ai| + (1− yij) ≥ 1, ∀j ∈ T′ (10)

(wj−vi)yij=0, ∀j ∈ T′, ∀i ∈W, wj ∈ {1, 2}
(11)

The total cost Mi of worker i is defined as the sum of the
traveling cost and the sensing costs of the tasks assigned to the
worker. Therefore,Mi of each worker i is obtained by solving
the corresponding subproblem, i.e., the task completion order
problem. The subproblem is converted to an asymmetric
traveling salesman problem (ATSP) by adding sensing costs
with the traveling costs. Specifically, we calculate the cost
of visiting task k from j as the sum of the sensing cost and
traveling cost. The sensing cost can be different for each
task, which makes the cost of the path between tasks j and
k different depending on the direction. For example, assume
that a worker performs two tasks: t1 and t2. Sensing duration
(ζj) and sensing payment per unit time (ηj) of task t1 are
10 and 4, respectively, whereas for t2 they are 20 and 3,
respectively. The distance between t1 and t2 is 1 unit, and
the worker’s base payment per unit distance (pi) is 30. Then,
the cost of traveling to t2 from t1 is 70 (30× 1+ 10× 4) and
from t2 to t1 is 90, which is asymmetric. Therefore, the ith

subproblem, i.e., worker i’s task completion order problem,
is formulated as:

minMi =
∑
j∈Ti

∑
k∈Ti

(
(pi × cjk )+ (ζk × ηk )

)
xijk (12)

subject to :
∑
k∈Ti

xijk = 1, ∀j ∈ Ti (13)

∑
j∈Ti

xijk = 1, ∀k ∈ Ti (14)

ui0 = 1 j ∈ Ti (15)

2 ≤ uij ≤ |Ti|, ∀j ∈ Ti (16)

uij − u
i
k + 1 ≤ (|Ti| − 1)(1− xijk ),

∀j, k ∈ Ti \ 0 (17)
(ui
j′=k

)−1∑
j′=1

[
cj∗k∗

Vi
+ ζj∗

∣∣∣∣
j∗|uij∗=j

′,k∗|uik∗=j
′+1

]
≤ dk − ζk ,

∀k, j∗, k∗ ∈ Ti \ 0 (18)

E itl +
∑
j∈T′

∑
k∈T′,j6=k

(
E jkf + E

ij
h + E

ij
c

)
xijk ≤ eiR,

i ∈W \W2 (19)

where uij is the number of tasks performed by worker i on the
way to task j.

Equation (6) represents the objective function of the formu-
lation. Constraints (7) and (8), respectively, ensure that work-
ers perform a non-negative number of tasks, and each task is
assigned to exactly one worker. Equations (8) and (9) together
ensure that each worker is assigned to exactly one dummy
task that has the same location as that worker. Inequality (10)
ensures that the task is assigned to the worker who has all
the required sensors. Constraint (11) ensures that the task is
assigned to an appropriate worker who matches the task’s
required worker type. Equation (12) is the objective function
of the task completion order problem of worker i. Constraints
(13) and (14) make sure that each task is visited exactly
once. Subtour formation in the trajectories of the worker is
prohibited by constraints (15), (16), and (17) together fol-
lowing the Miller-Tucker-Zemlin (MTZ) subtour elimination
method [22]. The set of subtour elimination constraints and
inequality (18) combined make sure the worker assigned to
each task reaches the task venue before the task start time.
Constraint (19) ensures that the total energy consumption of
a UAV does not exceed its battery capacity.

The original problem comprises two different optimiza-
tion problems, which contains two different decision vari-
ables, i.e., yij and xijk . Thus, the total number of variables
is |W| × |T′| + |W| × |T′| × |T′|, and the total number
of 0-1 combinations in the problem is 2|W|×|T

′
|+|W|×|T′|×|T′|;

for large values of tasks |T| and workers |W|, the space
complexity of the original problem becomes extremely high.
Therefore, we reduce the problem size by decomposing the
problem into the main problem and a set of subproblems,
where the main problem and the subproblems are solved
separately. After decomposition, the assignment problem
(i.e., the main problem) and each subproblem (the ATSP
problem) contain |W|× |T′| and |Ti|× |Ti| variables, respec-
tively, whereas the maximum value of |Ti| can be |T| + 1.
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However, the decomposed problem still contains a large solu-
tion space. Assume that a worker can perform a total of |T|
tasks. Then, there will be 2|T|+1 ways to assign a worker,
and (|T| + 1)! different possible orders for completing the
tasks for each worker (in the worst-case scenario). Thus, for
all workers |W|, the total number of possible solutions will
be (2|T

′
||W|(|T| + 1)!, which increases exponentially with

the increase in the numbers of tasks and workers. Further-
more, each subproblem and the main problem are formulated
as an ATSP problem and an assignment problem, respec-
tively, where both of them are well-knownNP-hard problems.
Therefore, the above-formulated problem is also an NP-hard
problem.

V. DRL-BASED TASK ALLOCATION FRAMEWORK
In this section, a deep reinforcement learning (DRL)-based
task assignment algorithm is proposed to assign |T| sensing
tasks to |W| workers (i.e., people or UAVs) such that the
total cost is minimized and the given constraints are satisfied.
Fig. 2 illustrates the framework of the proposed strategy. First,
the deep Q-learning algorithm or deep Q-network (DQN)
takes the task and worker sets as input, trains the agent for a
given number of episodes while maximizing the cumulative
reward, and outputs the best solution, i.e., the task–worker
assignment. Then, the local search takes the best solu-
tion obtained by the DQN as input and finds the final
task–worker assignment, which is the final output. In other
words, the DQN guides the algorithm towards a better solu-
tion, and the local search locally optimizes it. Adding a local
optimizer at the end of the DQN saves training time since it
needs a lot of training steps to find the best solution [18], [23].

For the rest of this section, we first present the envi-
ronment design, including state, action, and reward. Then,
the DQN-based task allocation scheme with Q-network train-
ing is described in detail.

FIGURE 2. Framework of the proposed approach.

A. MDP MODEL
Generally, RL problems can be regarded as a Markov Deci-
sion Process (MDP) in which the next state is determined by

the current state and the action taken on it [24]. Therefore,
we formulate the task–worker selection problem as an MDP
defined by the tuple < S,A,R > following the interaction
model between the MCS server and the environment. At each
step t , the agent observes state s ∈ S, takes action a ∈ A,
moves to the next state s′, and receives reward r ∈ R.

1) STATE AND ACTION SPACES
In this work, the MCS server is the agent, and task–worker
assignment matrix S ∈ B|T|×|W| represents the state of the
environment. If worker i is selected to perform task j, Si,j = 1;
otherwise, Si,j = 0. The task–worker assignment matrix is
converted to a one-dimensional vector, which is denoted by s,
and the size of the state space is 2|s|.

The action is assigning a worker to a task. Note that a
task needs to be first determined for the worker assignment.
Thus, the action consists of two phases: 1) task-selection and
2) worker assignment. In the task-selection phase, subaction j
(i.e., task j) is selected. In the worker assignment phase,
subaction i is selecting a worker (i.e., worker i is chosen
for task j). If worker i is selected for task j, the rest of the
workers cannot be assigned to task j. We use A = {j, i}
to denote the action, and the size of the action space is
|A|(A = {1, . . . , |W| × |T|}).

2) IMMEDIATE REWARD
The immediate reward, r = R(s, a, s′), which is received by
executing an action a at state s, indicates how good the action
is. The objective of the task allocation problem (minimization
of the total cost while ensuring the given constraints) should
be reflected in the reward function. In addition, for faster
learning, a penalty can be added to the reward to prevent the
agent from going to infeasible states and to states with high
total costs. Therefore, reward r is defined as:

r =



m
(
z− Tc(s′)

z

)
, if all constraints are

feasible

m
(
z− Tc(s′)

z
× α

)
, if all constraints are

feasible and Tc is
higher in s′ than s

m
(
z− Tc(s′)

z

)
×(1− (β8)), if constraints (8), (18),

or (19) is violated
(20)

where Tc(s) is the total cost in a state s, z is a large posi-
tive number, α(0 ≤ α ≤ 1) is a coefficient, m(m > 1)
adds flexibility to the magnitudes of the reward, and 8 is
the sum of the following: the ratio of tasks that violate the
deadline constraint, the ratio of UAVs that violate the energy
constraint, and the ratio of tasks that do not have any worker
assigned. β is a weight and β > 0. When the worker resource
is rich and the environment is less constrained (e.g., a loosen
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deadline), a greater value of β, which leads to a large penalty,
encourages the agent to take actions that lead to states with
higher rewards, making learning faster. However, in the oppo-
site scenario, too much of a penalty or a large value of the β
results in a lot of negative rewards in the environment, which
increases the training time. In addition, since the DQN agent
may suffer from the long training problem in the environment
with a varied scale of rewards [18], 8 is clipped to the range
(0,m). As a result, the scale of error derivatives can be limited
to a certain range, which can allowmore stable training of the
Q-network.

B. THE DQN-BASED TASK ALLOCATION ALGORITHM
The goal of the RL algorithm is to learn an optimal policy π
through trial and error, whichmaximizes theQ-value function
Q(s, a) at state s:

Q(s, a) = E[R(s, a)+ γQ(s′, a′)|π ] (21)

where γ is the discount factor that determines the agent’s
interest in the future environment’s state. In traditional RL,
tabular Q-learning is widely used to estimate the Q-value
function [25], [26]. However, it stores the Q-value of each
state–action pair in a Q-table or matrix, the size of which
increases dramatically when the state and action space
increases, leading to high space and time complexity. Thus,
to overcome this problem, the DQN is proposed by Deep-
Mind [18], which exploits a neural network (NN) to estimate
the Q-value of each state–action pair instead of keeping the
Q-table.

In this work, we use DQN to learn the Q-value of an action
A at state s, Q(s,A). In particular, DQN takes the state as
input of the NN and outputs Q-values for all state–action pairs
Q(s,A) (a linear output layer without an activation function),
as shown in Fig. 3(a). In DQN, since the number of output
neurons in the NN is equal to the action space, the number
of output nodes can be huge depending on the number of
tasks and workers. Therefore, in some utmost cases, there
could be no weight update for certain output nodes for a long
time because the corresponding action has not been taken
before. Then, the Q-value estimation of the node will be
totally random. As a result, DQN may not generalize well
over previously unseen states, i.e., it is likely to converge to
a local optima or may require a long training time to find the
best state.

An alternative approach is estimating the Q-value of work-
ers for selected task j. Specifically, one subaction (i.e., a task)
with the state is used as an input of the NN, and the output is
the Q-value of each worker, as shown in Fig. 3(b). We call
this architecture the task DQN (T-DQN) for convenience.
Although this architecture reduces the number of neurons
in the output layer, there could still be no example of a
certain action when there is a large number of workers; hence,
no weight update.

Another way to handle this problem is to consider a
DQN architecture, where the number of output nodes is
independent of the possible number of actions, i.e., the NN

FIGURE 3. Different deep Q-learning architectures.

outputs the single Q-value approximation for each possible
action [27]. In our work, this architecture is called assignment
DQN (A-DQN). The input of the NN in A-DQN is a state
and task–worker assignment (i.e., an action represented as a
one-hot vector), and the output is the Q-value approximation
of the corresponding action, as shown in Fig. 3(c). In A-DQN,
there is only one neuron in the output layer, which allevi-
ates the problems of random Q-value estimations for certain
actions. As a result, it generalizes better on the action that has
never been chosen before and needs less experience to find a
good solution as the output. Furthermore, the combination of
the state and one-hot vector of the action as the input of NN
helps the model learn the relations between the current state
and the selected task and worker more precisely.

However, using an NN to train the agent to learn the
Q-value approximation is computationally expensive, i.e., the
agent needs to obtain a great number of samples to find
the best solution. Therefore, to reduce the training time,
a local search algorithm is applied at the end of the A-DQN
algorithm to locally optimize the best solution obtained after
training the A-DQN for a given number of episodes. The
solution representation of the local search and the fitness of
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the solution, respectively, are the same as the state and the
reward of the DQN.

Since the performance of local searches (e.g., tabu search
or simulated annealing (SA)) can vary depending on the
problem types and sizes [28], [29], two variants of the
A-DQN-based task allocation and worker routing algo-
rithm, called A-DQN with local search (A-DQN w/ LS),
i.e., A-DQN w/ tabu and A-DQN w/ SA, are proposed.

• A-DQN w/ tabu: In this algorithm, after the DQN is
trained, a tabu search [30] is employed to locally opti-
mize the solution obtained by the A-DQN, which is
the initial solution of the tabu search. At each iteration,
a new solution from the set of the neighboring solutions
of the current best solution is selected. If two solutions
differ by one element, they are considered neighbors.
As the neighborhood directly affects the results of the
local search, the following strategies are used to create
the neighborhood. We create half of the neighborhood
by randomly selecting one task and a worker for that
task. The rest of the neighborhood is created randomly
by flipping the value of one element. The new solution
is accepted if its fitness is better than the fitness of the
current best solution and not in the tabu list, which con-
tains the task–worker assignment matrix and the element
number.

• A-DQNw/ SA: This algorithm uses simulated annealing
[31] as a local search algorithm for local optimization
of the solution obtained from A-DQN. In each iteration,
one new solution, which is the neighbor of the current
solution, is created by following the same strategies
as the tabu search. If the fitness of the new solution
is superior to the current solution, then it is accepted;
otherwise, the new solution is chosen with a certain
probability. This probability of acceptance decreases as
the number of iterations increases.

The pseudocode of the A-DQN w/ tabu or w/ SA is pre-
sented in Algorithm 1. At first, parameters of the Q-network
and the target-network are initialized in Line 3. Note that
DQN uses two different networks with different parameters
to estimate the target Q-value and the Q-value of the current
state, whereas both networks use the same NN architecture.
The NN consists of two fully connected hidden layers with a
tanh activation function since fully connected layers can han-
dle heterogeneous input and catch the correlations between
state and action. The number of units in the first and second
hidden layers is set to 128. The parameters of Q-network
and target-network at iteration t are denoted by θt and θ

−
t ,

respectively.
Similar to acting in games, during each episode, the agent

starts from the initial state and plays Liter steps, where Liter is
the length of an episode (lines 4, 5, and 6). At the beginning
of each step, the current state is fed to the Q-network, and
the Q-values of all actions are obtained. Then, the agent
chooses an action A using an ε-greedy policy to balance the
exploration and exploitation, where the ε value gradually

Algorithm 1 A-DQN-Based Task Allocation and Worker
Routing Algorithm
Input: Set of tasks T and set of workersW
1: nsteps = 0 F Total number of steps that agent has played
2: Initialize samples (s,A, s′, r) in a pool
3: Initialize parameters θt and θ−t of the Q-network and

target network
4: for l ← 1 to Niter do F Niter : Number of episodes
5: current state← initial state s0
6: for t ← 1 to Liter do F Liter : one episode length
7: s← current state
8: choose an action A using ε-greedy policy
9: perform action A in state s and observe next state.

10: s′← next state
11: calculate reward r using (20)
12: add new sample (s,A, s′, r) to the pool
13: randomly select η samples from the pool
14: calculate the Q-value of the next state using target

network.
15: update θt using selected η samples F Eq. (22)
16: current state← s′

17: nsteps ++
18: if nsteps mod c == 0 then
19: θ−t ← θt F Copy parameters from

Q-network to target-network
20: end if
21: end for
22: test periodically and record the best state
23: end for
24: apply tabu search or SA to the best state found so far

decreases over the training steps. Next, the agent performs
the action, obtains the next state s′ and reward r (lines 7-11).
To reduce correlations between data samples, a scheme

called experience replay is implemented by storing the
agent’s experience, et = (st ,At , rt , s′t ), in a memory pool at
Line 12. At each step in the iteration t , η samples (s,A, s′, r)
are randomly taken from the pool to update the Q-network
parameters θt (lines 13-15) by minimizing the following
mean squared loss function:

Lt (θt ) = E
[(
r + γ max

a′
Q(s′,A′; θ−t )− Q(s,A; θt )

)2]
(22)

The loss function represents the difference between the
target Q-value estimated using the target network, i.e., r +
γ maxQ(s′,A′; θ−t ), and the Q-value obtained from the
Q-network, Q(s,A; θt ). The Adam optimizer with the learn-
ing rate α = 0.001 is used to update the model parameters of
the Q-network.

The target-network parameters θ−t are copied from the
Q-network parameters θt every c steps (line 19) and remain
unchanged between consecutive copies. In addition, we test
the agent periodically and record the best state.
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Lastly, a local search (i.e., tabu or SA) is applied to the
solution obtained by deep Q-learning. In particular, the best
solution recorded by periodically testing the agent is used as
the input of the local search (line 24).

Immediate reward r is calculated by solving the subprob-
lems, i.e., the task completion order of the workers. First,
an ATSP heuristic, iterated 3opt (i3opt) [32], is applied
to obtain the task completion order of each worker. Next,
the values of8 and Tc(s) are obtained by using the task com-
pletion orders of the workers, and then reward r is calculated
using Equation (20).

VI. PERFORMANCE EVALUATION
In this section, the proposed algorithms are evaluated by con-
ducting simulations. We first introduce the simulation setup
and algorithms for comparison. Then, the performances of the
proposed methods are compared with other approaches with
respect to total cost (i.e., the objective function value) and
CPU time under various dynamics, such as different numbers
of iterations, tasks, workers, and deadlines.

A. SIMULATION SETUP
Table 2 summarizes the parameters for the experiments. It is
assumed that each worker is equipped with a specific set of
sensors, and a task may require up to three types of sensors.
In each simulation, the arrival deadline, sensing duration of
the tasks, and the base unit payment of the workers are set
randomly within the range. The default values are denoted
by bold fonts in Table 2. Recall that the deadline of a task
is the time for the worker to reach the location and perform
the task. Therefore, we use two different parameters: the

TABLE 2. Experimental settings.

arrival deadline, which is the required time within which a
worker should reach the task location, and the task duration.
For simplicity, sensing frequency and data size are set to the
same for all tasks. All UAVs are also assumed to have the
same specifications.

A taxi movement dataset called roma/taxi [33] is used to
determine the locations of tasks and workers. The dataset
provides the GPS points of taxi drivers in the city of Rome
during one month period from February to March in 2014.
Since the GPS traces are collected from the different parts
of the city, we first select a 7 km x 7 km crowded region
in the city and use this region as the simulation area. Then,
the locations of tasks and workers are randomly selected from
the list of taxi drivers’ GPS points inside the selected region.

Experiments are performed on a platform equipped with an
Intel Xeon E5-1620 v3 CPU @ 3.50GHz, with an NVIDIA
GeForce GTX TITAN X graphics card and 16 GB of RAM.
All DQN-based algorithms are implemented in Tensorflow’s
GPU version.

In this section, first, we compare the performance of
three different DQN architectures (i.e., DQN, T-DQN, and
A-DQN) in terms of the total cost. Then, the baseline A-DQN
is compared with the variants of A-DQN w/ LS (i.e., A-DQN
w/ tabu and A-DQN w/ SA) in terms of total cost and CPU
time. In A-DQN w/ tabu and A-DQN w/ SA, after A-DQN
is trained, the local search algorithm (tabu or SA) is run ten
times and the best value is obtained. For fairness, parameters
of tabu and SA, such as the number of iterations and the
neighborhood size, are selected in such a way that the total
searches in solution space for both algorithms are approxi-
mately the same. For example, we stop the tabu search if there
is no improvement for five iterations with a neighborhood
size of 100, and stop SA if there is no improvement for
500 iterations.

Then, the performances of A-DQN w/ tabu and A-DQN
w/ SA are compared by using the evaluation metric total
cost for different parameters, such as the number of tasks
and workers, and the arrival deadline. We also compared the
proposed methods with other MCS approaches: MATC-IGA,
and MGATA. Those algorithms are stopped if there is no
improvement for a given number of iterations. In addition,
MATC-IGA and MGATA, described as follows, are both run
ten times and the best value is obtained.
• MATC-IGA [17]: A genetic algorithm is employed to
find the recruited workers set where the initial popula-
tion is generated by using a random-greedy algorithm.
MATC-IGA uses a repair operation to obtain a valid
chromosome from the produced invalid chromosome
through crossover and mutation.

• MGATA [20]: In this study, a memetic genetic algorithm
is applied to find the task–worker assignments and uses
anATSP heuristic to obtain the worker’s task completion
order. However, because of the different assumptions
and the considered scenario, MGATA cannot be directly
applied to our problem. Therefore, we adjusted the algo-
rithm according to our problem formulation.
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FIGURE 4. Total cost learning curves of different DQN architectures along with the increases in the number of episodes for: (a) eight
tasks and 10 workers; (b) 10 tasks and 10 workers; (c) eight tasks and 18 workers.

B. RESULTS EVALUATION AND ANALYSIS
Here, the numerical results from the simulations are presented
to evaluate the performances of the proposed approaches,
where the result of the greedy algorithm [20] is used as the
initial state of each approach. In addition, each simulation is
averaged over three runs.

1) PERFORMANCE COMPARISON BETWEEN DIFFERENT
DQN ARCHITECTURES
Fig. 4 shows the convergence process of the three DQN
architectures (DQN, T-DQN, and A-DQN) along with the
increase in the number of episodes under different numbers of
tasks and workers. From the figure, we can see that the total
cost obtained by all three architectures decreases as the num-
ber of episodes increases. This is because the agent initially
explores the environment more and then gradually learns
to make decisions, which maximizes the total aggregated
reward, i.e., leads to a state with a lower total cost. Among
them, A-DQN obtains the lowest total cost, which can be seen

in Figs. 4(a), (b), and (c). The reason is that the A-DQN has
only one node in the output layer resulting in more efficient
generalization, and the ability of generalization enables the
algorithm to find a relatively better solution within a smaller
number of iterations. It can be seen that for all cases, DQN
and T-DQN do not generalize well, i.e., do not reach a state
with a total cost lower than A-DQN, which shows the effect
of the over-sized output layer.

2) PERFORMANCE COMPARISON BETWEEN BASELINE
A-DQN AND A-DQN W/LS
The effect of adding a local search to the DQN with
respect to the total cost and CPU time is shown in Fig. 5.
A-DQN with two different local search algorithms, i.e., tabu
search and SA, is compared with A-DQN, which was
chosen as the baseline because it outperforms DQN
and T-DQN.

First, Figs. 5(a)-(c) show the total cost obtained by each
algorithm for different numbers of episodes of A-DQN
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FIGURE 5. Performance comparison of the baseline A-DQN and A-DQN with local search: A-DQN w/ tabu and A-DQN w/ SA.
(a)-(c) Total cost obtained by the methods for different numbers of iterations of A-DQN under different numbers of tasks and
workers: (a) eight tasks and 10 workers; (b) 10 tasks and 10 workers; (c) 14 tasks and 10 workers. (d) Time complexity of the
approaches given total costs for different numbers of tasks.

(i.e., 50, 100, 150, 200, and 300). Note that in A-DQNw/ tabu
and A-DQN w/ SA, only the episodes of A-DQN changes
while iterations in tabu and SA remain unchanged. As can
be seen in the figures that A-DQN with a local search
(i.e., A-DQN w/ tabu or A-DQN w/ SA) obtains a lower total
cost than the baseline A-DQN. Among the two local searches,
A-DQN w/ SA does not show significant improvement when
the quality of the input increases, whereas A-DQN w/ tabu
shows a slightly greater change in the obtained total cost
and outperforms A-DQN w/ SA as the training episodes
increases.

Then, the time each method needs to obtain the given total
costs for the different number of tasks is shown in Fig. 5(d).
Each baseline cost is obtained by training the baseline
A-DQN for 1500 episodes. The baseline costs obtained for
8, 10, 12, 14, and 16 tasks are 408, 429, 588, 656, and
922, respectively. The number of workers is set to 10. For

A-DQN w/ tabu and A-DQN w/ SA, we run A-DQN for
50 episodes, records the weights of the NN, and then apply
the local search. The procedure is repeated until the obtained
total cost is lower or equal to the baseline cost. It can be
seen from Fig. 5(d) that the difference in execution times
between the baseline A-DQN and A-DQNwith a local search
is very large. Both versions of A-DQN with local search
obtain a total cost lower than the threshold value within only
50 training episodes of A-DQN inmost cases except when the
number of tasks is 16. The number of infeasible solutions in
the solution space is relatively higher when the task number
is 16, and both A-DQN with tabu and SA sometimes need
more than 50 episodes to find the desired cost. Therefore,
from Fig. 5, we can infer that adding a local search to the
DQN algorithm enables obtaining better results in less time.
In addition, A-DQN w/ tabu takes slightly less time to obtain
the given cost than the A-DQN w/ SA.
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3) PERFORMANCE COMPARISON BETWEEN A-DQN
W/LOCAL SEARCH AND OTHER MCS ALGORITHMS
(i.e., MATC-IGA AND MGATA)
Now, the performance of A-DQN w/ tabu and A-DQN w/ SA
is compared with the two other MCS methods (i.e., MGATA
and MATC-IGA) under different situations, such as different
numbers of tasks, workers, and deadlines.

Fig. 6 shows the total cost obtained from the considered
algorithms when the number of tasks varies. From the figure,
it is notable that the total cost of all methods (i.e., MGATA,
MATC-IGA, A-DQN w/ SA, and A-DQN w/ tabu) gradually
increases when the numbers of tasks increase because of
the traveling distance and sensing cost. A-DQN w/ tabu and
A-DQNw/ SA always outperformMGATA andMATC-IGA,
whereas the total cost obtained by the A-DQN-w/ tabu is
the lowest among them. For example, when the number of
tasks is eight, the total cost obtained by the A-DQN with
tabu and SA, respectively is 303.015 and 311.220, whereas
MGATA is 394.250. In contrast, MATC-IGA obtains the
highest total cost (518.341 when the number of tasks is eight).
The results indicate that the DQN-based algorithm can obtain
a better solution in the considered problem by approximating
the Q-value through NN, which helps the agent learn the
policy to find the task–worker assignments with lower costs
that maximize the total reward, and locally optimizing the
result obtained from the DQN. On the contrary, MGATA and
MATC-IGA partially depend on random evolution, and may
suffer from loss of genetic diversity resulting in early conver-
gence. In addition, MATC-IGA tries to solve the assignment
and worker’s path-planning problems directly, and uses a
repair operation to obtain a valid solution without any strict
rules on the assignment of all tasks. Therefore, solution space
is huge, and a lot of invalid solutions are produced in each
generation, which makes it hard for MATC-IGA to find a
good solution.

FIGURE 6. The effects of the number of tasks.

Fig. 7 shows the total cost obtained by the four algo-
rithms under the various numbers of workers. It can be seen

FIGURE 7. The effects of the number of workers.

FIGURE 8. The effects of the different deadline (in minutes).

from the figure that a rich worker resource, i.e., a larger
number of workers, leads to a lower total cost for all four
approaches. This is because a larger group of workers is more
diverse; hence, more appropriate workers can be chosen.
Furthermore, A-DQN w/ tabu shows the best performance
while MATC-IGA being the worst performer. For instance,
when the number of workers is 18, the total cost achieved
by A-DQN w/ tabu is around 8% lower than A-DQN w/
SA, whereas MGATA and MATC-IGA, respectively, obtain
total costs around 19% and 33% higher than A-DQN w/ SA.
A-DQN w/ SA achieves the same cost as the A-DQN w/ tabu
in some cases (e.g., when the number of workers is 14).

In Fig. 8, the experimental results for different arrival
deadlines ranging from [5, 10] to [40, 60] are presented. All
four algorithms show a decreasing trend with the increase
in the arrival deadline. When the arrival deadline is large,
more workers can perform the tasks. For example, distant
workers and workers with a lower velocity are able to reach
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FIGURE 9. The performance of the different algorithms: (a) total cost obtained by each method for different CPU times given 14 tasks
and 10 workers, and (b) the time needed by the approaches to obtain the specified total cost under different numbers of tasks.

task venues within the given time. Therefore, the chance
of selecting workers at a lower cost increases. It is also
shown that there is a slight decrease in total costs of all the
algorithms from [5, 10] and [10, 20] as these ranges impose
relatively tight deadlines compared to the range [20, 30],
where algorithms show a sharp downward trend. For all
different ranges of arrival deadlines, A-DQNw/ tabu achieves
the lowest total cost. For instance, when the arrival deadline
range is between 40 and 60 minutes, A-DQN w/ tabu obtains
287.589 (total cost), which is much lower than MGATA
and MATC-IGA.

4) COMPUTATION TIME
The performance of A-DQN w/ tabu, A-DQN w/SA,
MGATA, and MATC-IGA after running for a given amount
of CPU time, and the CPU time needed by each method
to produce the desired result under different situations, are
shown in Fig. 9.

First, given different CPU times [5, 10, 30, 60, and 90 min-
utes], the total cost obtained by each method is shown
in Fig. 9(a). In the case of A-DQN w/ tabu and A-DQN
w/ SA, A-DQN is trained for 3, 8, 28, 58, and 88 min-
utes, whereas the local search algorithms are run for two
minutes in all cases. Note that the number of iterations in
each algorithm is adjusted according to CPU time. Fig. 9(a)
shows that the result of MATC-IGA does not improve even
though the running time increases from five to 90 minutes,
whereas MGATA shows improvement up until 30 minutes.
On the other hand, A-DQN with tabu and with SA maintains
a decreasing trend until the end, except for a slight increase
in A-DQN w/ SA when the CPU time is 60 minutes, possibly
because of getting trapped into local minima. A-DQN w/
tabu still achieves the lowest total cost among them. For
instance, when the running time is five minutes, A-DQN w/

tabu obtains a total cost of 606.011, whereas A-DQN w/ SA,
MGATA, and MATC-IGA achieve 643.423, 840. 051, and
1,030.023, respectively.

Second, how much time each algorithm takes to obtain
the specified total cost is shown in Fig. 9(b). The baseline
cost is collected by running MATC-IGA because there is no
improvement on MATC-IGA after running it for a certain
amount of time, as seen in Fig. 9(a). We run MATC-IGA
for the different numbers of tasks [8, 10, 12, 14] and
obtain respective baseline costs of 518, 653, 857, and 1030.
In A-DQN w/ tabu and w/ SA, A-DQN first trained for
10 episodes, and the weights of the NN are recorded; then,
the local search is applied. This procedure is repeated until the
desired total cost is obtained. It can be seen that DQN-based
algorithms take a longer time to obtain the specified cost,
whereas MGATA is the fastest. For example, when there are
10 tasks, MGATA and MATC-IGA obtain the desired cost
within 0.48 and 1.2 minutes, respectively, whereas A-DQN
w/ tabu and w/ SA take 1.85 and 1.86 minutes, respec-
tively. A-DQN w/ SA takes slightly less time than A-DQN
w/ tabu in most cases except when the number of tasks is
larger, where SA takes a relatively longer time than tabu
search.

VII. CONCLUSION
In this paper, we considered a task allocation problem for
time-sensitive mobile crowd-sensing applications, where a
worker can perform multiple tasks. The problem takes task
completion order of the worker (since traveling costs and
response times of the tasks assigned to the worker are directly
affected by the worker’s moving path), as well as the deadline
and sensor requirements of tasks, different types of worker
(i.e., UAV and human worker), and UAVs’ energy constraint
into consideration. Specifically, the task allocation problem
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has an embedded structure, i.e., it contains multiple task
completion order problems, which results in a huge search
space. Therefore, first, we formulated the assignment and
the task completion order problems as two ILP problems
by exploiting a decomposition method where they iteratively
interact to achieve the main objective. Next, two variants of
the deep Q-learning-based task allocation and worker routing
algorithm (A-DQN w/ tabu and A-DQN w/ SA) are proposed
to address the assignment problem, where both algorithms
employ an ATSP heuristic to solve the traveling salesman
problem. Evaluation under various situations demonstrated
the effectiveness of the proposed methods in comparison with
other recruitment strategies.
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