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Abstract
The role of the spatial variation of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates 
is investigated in this study. The key achievement of this work is that the classical nonlocal elasticity theory is modified to 
take into account the dependence of nonlocal parameters on the varying of materials through the thickness of the function-
ally graded sandwich nanoplates. Hamilton’s principle is adopted to establish the governing equations of motion using a 
new inverse hyperbolic shear deformation theory. Numerical results are carried out via Navier’s solution for the fully simply 
supported rectangular functionally graded sandwich nanoplates, and they are compared with the available results to confirm 
the accuracy and efficiency of the proposed algorithm. Besides, the effects of some parameters such as the spatial variation of 
the nonlocal parameters, the aspect ratio, the side-to-thickness ratio as well as the power-law index on the free vibration of the 
nanoplates are also investigated cautiously. The results show that the variation of the nonlocal parameters plays a significant 
role in the free vibration of the functionally graded sandwich nanoplates, which is never investigated in the literature. The 
present methodology could be applied to the design and application of the micro/nanostructures.

Keywords Functionally graded materials · Sandwich nanoplates · Inverse hyperbolic shear deformation theory · Nonlocal 
elasticity theory · Spatial variation of the nonlocal parameter · Free vibration analysis

1 Introduction

Recently, the consumption of micro/nanostructures is 
increasing in exponential principle in many fields of engi-
neering and technology, some remarkable examples can be 
expressed here are solar cells energy, micro/nanosensors, 
biological applications as well as micro/nanoelectrome-
chanical systems (MEMS/NEMS), and so on. In these cases, 
the behaviors of the nanoplates, nanobeams, and nanoshells 

are completely different from those of the macrostructures. 
The reason is that the effect of small-scale length parameter 
on the behavior of micro/nanostructures is very essential. 
Hence, it is necessary to have an excellent understanding of 
the mechanical and thermal behavior of micro/nanostruc-
tures. Many methods have been introduced to study the 
static, dynamic, as well as thermal behavior of the micro/
nanostructures. For example, atomistic simulations and 
experimental methods are the most accurate methods that 
can predict and capture very well the small-scale effects. 
However, the atomistic simulations cost a lot of time and 
computer computation, and the experimental methods cost 
much time and economy. As a consequence, many contin-
uum mechanics theories have been developed to evaluate 
the behavior of the micro/nanostructures. Several notice-
able theories can be presented here are modified couple 
stress theory (MCST) [1, 2], the surface elasticity theory 
(SET) [3–8], the strain gradient theory (SGT) [9, 10] and 
nonlocal strain gradient (NSGT) [11, 12], the micropolar 
and nonlocal polar theory [13, 14], and nonlocal elasticity 
theory (NET) [15, 16]. The NET has been applied to study 
dynamic, static, as well as thermomechanical behavior of 
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micro/nanostructures in numerous published works. For 
instance, Reddy et al. [17, 18] employed NET to investi-
gate the bending, buckling, and vibration of nanobeams and 
carbon nanotubes. Ebrahimi et al. [19] studied the vibra-
tion of piezoelectric nanobeams using NET. Thai et al. 
[20] applied sinusoidal shear deformation beam theory in 
combination with NET to examine the bending, buckling, 
and free vibration of nanobeams. The linear and nonlinear 
free vibration of functionally graded (FG) nanobeams have 
been investigated by Eltaher et al. [21] and Nazemezhad 
et al. [22]. A combination of NET and MCST was developed 
by Ebrahimi [23] to analyze the static stability and vibra-
tion of nonlocal microstructures-dependent nanostructures 
with the application of Chebyshev–Ritz method. Hadji et al. 
[24] applied nonlocal hyperbolic shear deformation beam 
theory to analyze free vibration of porous FG nanobeams. 
Youcef et al. [25] applied the nonlocal shear deformation 
and energy principle to analyze the free vibration of porous 
FG nanobeams. Shariati et al. [26] employed the NET and 
Laplace transformation to study dynamic response of axi-
ally FG nanobeams. Zenkour [27] studied the thermoelastic 
vibration of nanoplates using a novel mixed formulation of 
NET. Aghababaei et al. [28] used NET in cooperation with 
third-order shear deformation theory (TSDT) to analyze the 
bending and free vibration of nanoplates. A Levy-type solu-
tion for free vibration and buckling analysis of nanoplates 
using NET has been carried out by Aksencer and his cow-
orkers [29]. Hosseini-Hashemi et al. [30] developed an exact 
solution for free vibration analysis of FG circular/annular 
Mindlin nanoplates using NET. Zare et al. [31] investigated 
the free vibration of FG rectangular nanoplates with arbi-
trary boundary conditions using NET and an analytical solu-
tion. Several works on the bending, free vibration, and buck-
ling of orthotropic, FG nanoplates have been carried out by 
Sobhy et al. [32–34]. A novel nonlocal single variable shear 
deformation theory has been developed by Hoa et al. [35] to 
investigate the bending and free vibration of FG nanoplates. 
Akbas [36] studied modal behavior of viscoelastic nanorods 
under an axially harmonic load. Ghandourah et al. [37] ana-
lyzed dynamic response of the FG nanobeams with different 
porosity models. Natarajan et al. [38] studied the flexural 
free vibration of FG nanoplates using Eringen’s differential 
form of NET and isogeometric-based finite-element method.

To achieve some delightful features and high-performance 
applications in micro/nanostructures, functionally graded 
materials (FGMs) have been widely applied to produce these 
structures. These materials are first introduced by some Japa-
nese researchers in 1984 (Koizumi [39]) and have been applied 
widely in some fields of engineering and technology. Hence, 
the investigation on the static, dynamic, and buckling behav-
ior of single-layer and sandwich FG structures has been carried 
out by numerous researchers (Swaminathan et al. [40], Sayyad 
et al. [41], Thom et al. [42], Vinh et al. [43], Abouelregal et al. 

[44], Civalek et al. [45], Lyashenko et al. [46], and Daikh et al. 
[47]). For instance, Nguyen et al. [48] studied the vibration and 
buckling behavior of functionally graded sandwich (FGSW) 
plates using first-order shear deformation theory (FSDT) with an 
improvement of transverse shear stiffness. Vinh [49] developed a 
new mixed four-node quadrilateral plate element based on FSDT 
to analyze the static bending of variable thickness FG plates. 
Hassan et al. [50] studied the relations between the various criti-
cal temperatures of thin FG plates. AlSaid-Alwan et al. [51] used 
different types of beam theories to analyze the free vibration of 
the FG beams. Hadji et al. [52, 53] analyzed free vibration of 
porous FG and FGSW plates under various boundary condi-
tions. A comprehensive study on the buckling and free vibration 
of FGSW plates has been done by Zenkour [54] using sinusoi-
dal shear deformation theory (SSDT). Tahir et al. [55] studied 
wave propagation of ceramic–metal FGSW plates with different 
porosity distributions in hygro-thermal environment. Rebai et al. 
[56] analyzed thermoelastic response of FGSW plates via a sim-
ple integral HSDT. Bennoun et al. [57] developed a novel five-
variable refined plate theory to analyze free vibration of FGSW 
plates. Meiche et al. [58] studied buckling and free vibration of 
FGSW plates using a new hyperbolic shear deformation theory 
(HySDT). A new inverse trigonometric shear deformation the-
ory (iTrSDT) had been developed by Nguyen et al. [59] to study 
the static bending, free vibration, and buckling of FGSW plates. 
Bessaim et al. [60] developed a new HSDT with hyperbolic 
distribution shape function to take into account the hyperbolic 
distribution of the transverse shear strain through the thickness 
of the plates. Pham et al. [61] developed a combination of a new 
hyperbolic shear deformation theory and finite-element method 
to study the static bending of FGSW plates. To consider the 
thickness stretching effects, some quasi-3D theories have been 
developed by Neves et al. [62], Natarajan et al. [63], and some 
of their references. Vinh [64] studied deflections, stresses, and 
free vibration of FGSW plates using a hybrid quasi-3D theory. 
A three-dimensional vibration of FGSW plates had been inves-
tigated by Li et al. [65] via three-dimensional linear elasticity 
theory. Iurlaro et al. [66] established a refined Zigzag theory for 
analysis the bending and free vibration analysis of the FGSW 
plates. For micro/nanostructures, Arefi et al. [67] used Kirchhoff 
plate theory and NET to study the size-dependent free vibra-
tion and dynamic response of piezo-electro-magnetic sandwich 
nanoplates resting on the viscoelastic foundation. In the other 
work of Arefi et al. [68], the nonlocal SGT was applied to ana-
lyze the magneto-electro-elastic vibration of FG-core sandwich 
and piezomagnetic face sheets resting on elastic foundation. 
Zeng et al. [69] studied the nonlinear vibration of piezoelectric 
sandwich nanoplates with FG porous core and piezoelectric face 
sheets. Daikh et al. [70] studied vibration of FGSW nanoplates 
in the thermal environment using NET and HSDT.

It can be seen that in the most of the above studies, the NET 
has been applied to analyze the FG and FGSW nanoplates with 
an assumption of a constant nonlocal parameter through the 
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thickness direction. However, according to several recent works 
on the analysis of micro/nanostructures such as Salehipour 
et al. [71] and Batra [72], the nonlocal parameter is a material-
dependent property. It means that the nonlocal parameter varies 
through the thickness of the FG and FGSW nanoplates. Besides, 
the study on the free vibration of FGSW nanoplates is still lim-
ited. According to these comments, it is necessary to analyze 
free vibration of FGSW nanoplates via NET with the material-
dependent nonlocal parameters. It is the main goal of this study 
to modify the NET to take into account for the spatial variation 
of the nonlocal parameters for free vibration analyze of the FG 
nanoplates. The frameworks of the paper are as follows: Sect. 2 
gives the construction of three types of FGSW nanoplates and 
the basic formulations of the problem. Section 3 gives several 
comparison studies to verify the accuracy of the proposed algo-
rithm in some special cases, and then, several deep investigations 
on the role of the spatial variation of the nonlocal parameter as 
well as the effects of some parameters on the free vibration of 
the FGSW nanoplates are carried out cautiously. Section 4 gives 
some remarkable conclusions and some potential suggestions 
for future work on the analysis of the FG and FGSW micro/
nanostructures.

2  The theoretical formulation and solution 
algorithm

2.1  Functionally graded sandwich nanoplates

In this study, three types of functionally graded sandwich 
(FGSW) nanoplates, namely “Type A”, “Type B”, and “Type 
C” are considered. The FGSW nanoplates of type A consist of 
one FG core, one homogenous metal face sheet at the bottom 
layer, and one homogenous ceramic face sheet at top layer. 
The FGSW nanoplates of type B consist of one homogenous 
ceramic core and two FG face sheets. The FGSW nanoplates 
of type C consist of one homogenous metal core and two layers 
made of FG materials. The geometry and dimensions of the 
sandwich nanoplates are demonstrated in Fig. 1. In which the 
variables h0, h1, h2 , and h3 are used to denote the coordinates 
of the surfaces of the bottom, core, and top layers.

2.1.1  The FGSW nanoplates of type A

The variation of the effective material properties through the 
thickness of the FGSW nanoplates of type A is obtained by 
the following formulae:

(1)

⎧⎪⎨⎪⎩

P(z) = Pm h0 ≤ z ≤ h1

P(z) = Pm +
�
Pc − Pm

�� z−h1

h2−h1

�p

h1 < z < h2

P(z) = Pc h2 ≤ z ≤ h3

,

where Pc, Pm are the material properties of the ceramic and 
metal components, respectively.

2.1.2  The FGSW nanoplates of type B

For the FGSW nanoplates of type B, the material proper-
ties of the materials through the thickness of the plates 
are calculated by

z

y

h

x

a
b

h0

h1

h2

h3

h0

h1

h2

h3

metal

ceramic

metal

ceramic

metal

metal

ceramic

ceramic

(c) Type B

(b) Type A

(a)

h0

h1

h2

h3

metal

ceramic
(d) Type C

ceramic

metal

Fig. 1  The geometry and construction of functionally graded sand-
wich nanoplates
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2.1.3  The FGSW nanoplates of type C

In the cases of FGSW nanoplates of type C, the following 
formulas are used to evaluate the material properties of 
the materials:

The material properties of several individual materials 
are presented in Table 1 (Natarajan [38], Zenkour [54]).

The FGSW nanoplates which are investigated in this 
work are made of Al as metal component and Al2O3 
as ceramic component. The variation of the effective 
Young’s modulus through the thickness of the FGSW 
nanoplates with three types of sandwich nanoplates are 
demonstrated in Fig. 2.

2.2  A new inverse hyperbolic shear deformation 
theory

2.2.1  Kinematic

In this study, a new inverse hyperbolic shear deformation 
theory (IHSDT) is developed to investigate the free vibra-
tion of the FGSW nanoplates. The displacement of the 
proposed IHSDT is written as follows:

(2)

⎧
⎪⎨⎪⎩

P(z) = Pm + (Pc − Pm)
�

z−h0

h1−h0

�p

h0 ≤ z ≤ h1

P(z) = Pc h1 < z < h2

P(z) = Pm + (Pc − Pm)
�

z−h3

h2−h3

�p

h2 ≤ z ≤ h3

.

(3)

⎧
⎪⎨⎪⎩

P(z) = Pc + (Pm − Pc)
�

z−h0

h1−h0

�p

h0 ≤ z ≤ h1

P(z) = Pm h1 < z < h2

P(z) = Pc + (Pm − Pc)
�

z−h3

h2−h3

�p

h2 ≤ z ≤ h3

.

(4)

u(x, y, z, t) = u(x, y, t) − z
�w(x, y, t)

�x
+ f (z)�x(x, y, t)

v(x, y, z, t) = v(x, y, t) − z
�w(x, y, t)

�y
+ f (z)�y(x, y, t)

w(x, y, z, t) = w(x, y, t),

where f (z) is the distribution shape function, which is given 
by

with

The shear strain shape functions are chosen to satisfy the 
condition of the free transverse shear stresses on two sur-
faces of the plates and the nonlinear distribution through the 
thickness. Therefore, the proposed IHSDT does not need any 
shear correction factor. Additionally, the two coefficients Γ 
and Θ are calculated in such a way that the proposed theory 
allows for realistic prediction of the displacements and stress 
distribution through the thickness of the plates by compar-
ing the results of the present theory and available results of 
three-dimensional elasticity solutions. The strain fields of 
the plate are obtained as

where g(z) = f �(z) . In the matrix form

In which

(5)f (z) = Γ ⋅ sinh−1
(

z

�h

)
+ Θ ⋅ tanh−1

(
z

�h

)
,

(6)

Γ =
5�3h

√
1

4�2
+ 1

4�2

√
1

4�2
+ 1 − 4�2 + 1

,Θ =
5�h

(
1 − 4�2

)

4

(
4�2

√
1

4�2
+ 1 − 4�2 + 1

) .

(7)

�x =
�u

�x
− z

�2w

�x2
+ f (z)

��x

�x

�y =
�v

�y
− z

�2w

�y2
+ f (z)

��y

�y

�xy =
�u

�y
+

�v

�x
− 2z

�2w

�x�y
+ f (z)

(
��x

�y
+

��y

�x

)

�xz = g(z)�x

�yz = g(z)�y,

(8)

⎧⎪⎨⎪⎩

�x

�y

�xy

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩

�0
x

�0
y

�0
xy

⎫⎪⎬⎪⎭
+ z

⎧⎪⎨⎪⎩

�1
x

�1
y

�1
xy

⎫⎪⎬⎪⎭
+ f (z)

⎧⎪⎨⎪⎩

�2
x

�2
y

�2
xy

⎫⎪⎬⎪⎭
,

�
�xz

�yz

�
= g(z)

�
�0
xz

�0
yz

�
.

(9)

⎧⎪⎨⎪⎩

�0
x

�0
y

�0
xy

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩

�u

�x
�v

�y
�u

�y
+

�v

�x

⎫⎪⎬⎪⎭
,

⎧⎪⎨⎪⎩

�1
x

�1
y

�1
xy

⎫⎪⎬⎪⎭
= −

⎧⎪⎨⎪⎩

�2w

�x2

�2w

�y2

2
�2w

�x�y

⎫⎪⎬⎪⎭
,

⎧⎪⎨⎪⎩

�2
x

�2
y

�2
xy

⎫
⎪⎬⎪⎭
=

⎧
⎪⎨⎪⎩

��
x

�x
��

y

�y
��

x

�y
+

��
y

�x

⎫
⎪⎬⎪⎭
,

�
�0
xz

�0
yz

�
=

�
�
x

�
y

�
.

Table 1  The material properties of several individual materials

Material constants Materials

Al
2
O

3
Si

3
N

4
Al SUS304

E (GPa) 380 348.43 70 201.04
� (kg/m3) 3800 2370 2707 8166
� 0.3 0.3 0.3 0.3
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2.2.2  Constitutive relations

The constitutive equation of the plate is expressed as

where

(10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�x

�y

�xy

�yz

�xz

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(n)

=

⎡⎢⎢⎢⎢⎢⎣

C11 C12 0 0 0

C12 C22 0 0 0

0 0 C66 0 0

0 0 0 C44 0

0 0 0 0 C55

⎤⎥⎥⎥⎥⎥⎦

(n)⎧⎪⎪⎪⎨⎪⎪⎪⎩

�x

�y

�xy

�yz

�xz

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(n)

,

(11)

C11 = C22 =
E(z)

1 − �2
, C12 =

�E(z)

1 − �2
, C44 = C55 = C66 =

E(z)

2(1 + �)
.

2.3  The nonlocal elasticity theory

To take into account the small-scale effects on the behavior 
of the nanostructures, Eringen [15, 16] introduced a nonlocal 
elasticity theory in both integral and differential form. In the 
nonlocal elasticity theory, the stress at any point depends on 
the strains at all neighbor points in the continuum body. The 
differential form of nonlocal elasticity theory is usually used 
by many researchers, whereas the nonlocal parameter does not 
depend on the variation of materials. The differential form of 
the nonlocal elasticity theory [16] is given by the following 
formula:

(12)
(
1 − �∇2

)
�ij = sij,

(a) (1-1-1) Type A (b) (1-1-1) Type B

(c) (1-1-1) Type C

0 1 2 3 4
Eeff (Pa) 1011

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
z/
h

p = 0
p = 0.25
p = 0.5
p = 1

p = 2
p = 5
p = 10
p =

0 1 2 3 4
Eeff (Pa) 1011

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

z/
h

p = 0
p = 0.25
p = 0.5
p = 1

p = 2
p = 5
p = 10
p =

0 1 2 3 4
Eeff (Pa) 1011

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

z/
h

p = 0
p = 0.25
p = 0.5
p = 1

p = 2
p = 5
p = 10
p =

Fig. 2  The variation of effective Young’s modulus through the thickness of the Al
2
O

3
/Al FGSW nanoplates
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where �ij, sij are, respectively, the nonlocal and local stress 
tensors, ∇2 = �2

/
�x2 + �2

/
�y2 is the second Laplace opera-

tor, � =
(
e0a

)2
(nm2) is the nonlocal parameter, in which 

e0 is a material constant which is determined via experi-
mental or atomistic dynamic for each material, and a is an 
internal characteristic length which relates to the distance 
of the molecules, lattice parameter, and granular size. Some 
studies show that the nonlocal parameter is not constant 
with the variation of materials and the dimensions of the 
structures (Salehipour [71], Batra [72]). In this study, the 
nonlocal parameter is assumed to change as other material 
properties of functionally graded materials. Therefore, the 
nonlocal parameter at any point of the FGSW nanoplates is 
calculated via Eqs. (1)–(3) as a function of z-coordinates 
depending on the type of the sandwich plates.

Hence, the nonlocal constitutive relations of the plates 
can be expressed as follows:

It is obvious that the present nonlocal constitutive relations 
of the FGSW nanoplates using the present nonlocal elasticity 
theory are completely different to the classical Eringen’s nonlo-
cal elasticity theory. In Eringen’s nonlocal elasticity theory, the 

(13)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

s
x

s
y

s
xy

s
yz

s
xz

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(n)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
x

�
y

�
xy

�
yz

�
xz

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(n)

− �(z)∇2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
x

�
y

�
xy

�
yz

�
xz

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(n)

=

⎡⎢⎢⎢⎢⎢⎣

C11 C12 0 0 0

C12 C22 0 0 0

0 0 C66 0 0

0 0 0 C44 0

0 0 0 0 C55

⎤⎥⎥⎥⎥⎥⎦

(n)⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
x

�
y

�
xy

�
yz

�
xz

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(n)

.

effects of the nonlocal parameter are similar at any thickness 
coordinate, because the nonlocal parameter is constant through 
the thickness of the FGSW nanoplates. On the contrary, the 
effects of the nonlocal parameter are different across the thick-
ness directions of the FG nanoplates. From Eq. (13), it is obvious 
that the relation between the nonlocal stress �ij and the local 
strain �ij not only depends on the variation of Young’s modu-
lus and the Poisson’s ratio but also depends on the variation 
of the nonlocal parameter through the z-direction. When the 
exact nonlocal parameters of the individual material are deter-
mined, the current methodology can be applied to generate more 
accurate results for design and applications of the FG micro/
nanostructures.

2.4  The governing equations of motion

The equations of motion are achieved via Hamilton’s principle

where �Π is the variation of the strain energy and �T  is the 
variation of the kinematic energy of the plates. The variation 
of the strain energy is obtained as the following expression:

The variation of the kinetic energy of the plate is expressed as

Substituting Eqs. (7) and (10) into Eq. (15), substituting 
Eq. (4) into Eq. (16), and considering the nonlocal relations of 
Eq. (12), after integrating through the thickness of the plates, 
the governing equations of motion of the sandwich plates are 
derived from Eq. (14) as the following formulae:

(14)0 = ∫
T

0

(�Π − �T)dt,

(15)

�Π = ∫
V

(
�x��x + �y��y + �xy��xy + �xz��xz + �yz��yz

)
dV .

(16)𝛿T = ∫
V

(u̇𝛿u̇ + v̇𝛿v̇ + ẇ𝛿ẇ)𝜌(z)dV .

(17)

𝛿u ∶
𝜕Nx

𝜕x
+

𝜕Nxy

𝜕y
= I0ü − I1

𝜕ẅ

𝜕x
+ I2�̈�x − ∇2

(
Y0ü − Y1

𝜕ẅ

𝜕x
+ Y2�̈�x

)

𝛿v ∶
𝜕Ny

𝜕y
+

𝜕Nxy

𝜕x
= I0v̈ − I1

𝜕ẅ

𝜕y
+ I2�̈�y − ∇2

(
Y0v̈ − Y1

𝜕ẅ

𝜕y
+ Y2�̈�y

)

𝛿w ∶
𝜕2Mx

𝜕x2
+ 2

𝜕2Mxy

𝜕x𝜕y
+

𝜕2My

𝜕y2
= I0ẅ + I1

(
𝜕ü

𝜕x
+

𝜕v̈

𝜕y

)
− I3

(
𝜕2ẅ

𝜕x2
+

𝜕2ẅ

𝜕y2

)
+ I4

(
𝜕�̈�x

𝜕x
+

𝜕�̈�y

𝜕y

)

− ∇2

[
Y0ẅ + Y1

(
𝜕ü

𝜕x
+

𝜕v̈

𝜕y

)
− Y3

(
𝜕2ẅ

𝜕x2
+

𝜕2ẅ

𝜕y2

)
+ Y4

(
𝜕�̈�x

𝜕x
+

𝜕�̈�y

𝜕y

)]

𝛿𝜑x ∶
𝜕Px

𝜕x
+

𝜕Pxy

𝜕y
− Qx = I2ü − I4

𝜕ẅ

𝜕x
+ I5�̈�x − ∇2

(
Y2ü − Y4

𝜕ẅ

𝜕x
+ Y5�̈�x

)

𝛿𝜑y ∶
𝜕Py

𝜕y
+

𝜕Pxy

𝜕x
− Qy = I2v̈ − I4

𝜕ẅ

𝜕y
+ I5�̈�y − ∇2

(
Y2v̈ − Y4

𝜕ẅ

𝜕y
+ Y5�̈�y

)
,
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where Ni, Mi, Pi , and Qi are the local stress resultants which 
are calculated by

Substituting Eq. (13) into Eq. (18) and integrating 
through the thickness of the plates, and then reordering 
these equations into matrix form, one gets

where

and the elements of �, �, �, �, �, �� are calculated as 
follows:

(18)

(
Nx,Ny,Nxy

)
=

3∑
n=1

hn

∫
hn−1

(
sx, sy, sxy

)(n)
dz

(
Mx,My,Mxy

)
=

3∑
n=1

hn

∫
hn−1

(
sx, sy, sxy

)(n)
zdz

(
Px,Py,Pxy

)
=

3∑
n=1

hn

∫
hn−1

(
sx, sy, sxy

)(n)
f (z)dz

(
Qx,Qy

)
=

3∑
n=1

hn

∫
hn−1

(
sxz, syz

)(n)
g(z)dz.

(19)

⎧⎪⎪⎨⎪⎪⎩

�

�

�

�

⎫
⎪⎪⎬⎪⎪⎭

=

⎡⎢⎢⎢⎣

� � � �

� � � �

� � � �

� � � ��

⎤⎥⎥⎥⎦

⎧
⎪⎪⎨⎪⎪⎩

�0

�1

�2

�0

⎫
⎪⎪⎬⎪⎪⎭

,

(20)

� =

⎧⎪⎨⎪⎩

Nx

Ny

Nxy

⎫⎪⎬⎪⎭
, � =

⎧⎪⎨⎪⎩

Mx

My

Mxy

⎫⎪⎬⎪⎭
, � =

⎧⎪⎨⎪⎩

Px

Py

Pxy

⎫⎪⎬⎪⎭
, � =

�
Qx

Qy

�

(21)

�0 =

⎧⎪⎨⎪⎩

�0
x

�0
y

�0
xy

⎫⎪⎬⎪⎭
, �1 =

⎧⎪⎨⎪⎩

�1
x

�1
y

�1
xy

⎫⎪⎬⎪⎭
, �2 =

⎧⎪⎨⎪⎩

�2
x

�2
y

�2
xy

⎫⎪⎬⎪⎭
, �0 =

�
�0
xz

�0
yz

�
,

(22)

(
Y
0
, Y

1
, Y

2
, Y

3
, Y

4
, Y

5

)

=

3∑
n=1

h
n

∫
h
n−1

�(z)�(z)
(
1, z, f (z), z2, zf (z), f 2(z)

)
dz,

(23)
(
��ij

)
=

3∑
n=1

hn

∫
hn−1

C
(n)

ij

(
g2(z)

)
dz.

In addition, I0, I1, I2, I3, I4, I5 and Y0, Y1, Y2, Y3, Y4, Y5 in 
Eq. (17) are computed as follows:

where �(z) is the effective mass density and �(z) is effective 
nonlocal parameter of the materials. It is obvious that when 
the nonlocal parameter � is constant, one gets Yi = �Ii . As 
a consequence, the governing equations of motion Eq. (17) 
become the conventional governing equations of motion of 
the nanoplates with the constant nonlocal parameter which 
is usually used by many researchers in the literature. In this 
study, the nonlocal parameter is a material-dependent prop-
erty of the material, and this is a key point of the present 
algorithm to investigate the role of the spatial variation of 
the nonlocal parameter on the free vibration of the FGSW 
nanoplates. For the parametric study, the nonlocal parameter 
of the metal phase will be chosen as a reference value and 
the ratio between the nonlocal parameter of ceramic phase 
and the nonlocal parameter of metal phase, � = �c∕�m , is 
introduced as a new parameter. In the case of the constant 
nonlocal parameter, this parameter is equal to unit � = 1.

2.5  Analytical solution

In this study, an FGSW nanoplate subjected to simply 
support at all edges is considered. The Navier’s solution 
technique is employed to solve the equations of motion, 
the unknown displacement functions of the nanoplates are 
assumed as the following formulae:

(24)

(
I0, I1, I2, I3, I4, I5

)
=

3∑
n=1

hn

∫
hn−1

�(z)
(
1, z, f (z), z2, zf (z), f 2(z)

)
dz

(25)

(
Y
0
, Y

1
, Y

2
, Y

3
, Y

4
, Y

5

)

=

3∑
n=1

h
n

∫
h
n−1

�(z)�(z)
(
1, z, f (z), z2, zf (z), f 2(z)

)
dz,

(26)

u(x, y, t) =

∞∑
�=1

∞∑
�=1

U�� ei�t cos ��x sin��y

v(x, y, t) =

∞∑
�=1

∞∑
�=1

V�� ei�t sin ��x cos ��y

w(x, y, t) =

∞∑
�=1

∞∑
�=1

W�� ei�t sin ��x sin��y

�x(x, y, t) =

∞∑
�=1

∞∑
�=1

Ψ�� ei�t cos ��x sin��y

�y(x, y, t) =

∞∑
�=1

∞∑
�=1

Υ�� ei�t sin ��x cos��y,
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where �� = ��∕a and �� = ��∕b.
Substituting Eq. (26) into Eq. (19) and then Eq. (17), one 

gets

where kij, mij, i, j = 1, 5 are calculated by the following 
formulae:

3  Numerical results and discussion

3.1  Verification study

It is obvious that there is no available work that has been 
done on the free vibration analysis of the FGSW nanoplates, 
especially the free vibration of the FGSW nanoplates with 
the spatial variation of the nonlocal parameter. Thus, in this 
section, the accuracy of the present algorithm is verified via 
some examples of the sandwich plates and FG nanoplates 
with a constant nonlocal parameter. In such cases, the nonlo-
cal parameters of two individual materials are equal to each 
other, so � = �c∕�m = 1.

3.1.1  Free vibration of the FGSW plates

The main object of this subsection is to compare the fre-
quencies of the FGSW plates of type C undergoing free 
vibration with different schemes and power-law indexes. 
The FGSW plates are made of Al and Al2O3 , and the plate 

(27)

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

k11 k12 k13 k14 k15
k22 k23 k24 k25

k33 k34 k35
sys k44 k45

k55

⎤
⎥⎥⎥⎥⎥⎦

− �2

⎡
⎢⎢⎢⎢⎢⎣

m11 m12 m13 m14 m15

m22 m23 m24 m25

m33 m34 m35

sys m44 m45

m55

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎨⎪⎪⎪⎩

U��

V��

W��

Ψ��

Υ��

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0

0

0

0

0

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

,

(28)

k11 = A11�
2 + A66�

2, k12 =
(
A12 + A66

)
��, k13 = −B11�

3 −
(
B12 + 2B66

)
�2�,

k14 = E11�
2 + E66�

2, k15 = �
(
E12 + E66

)
�, k22 = A22�

2 + A66�
2,

k23 = −B22�
3 −

(
B12 + 2B66

)
�2�, k24 = �

(
E12 + E66

)
�,

k25 = E22�
2 + �2E66, k33 = D22�

4 + 2�2
(
D12 + 2D66

)
�2 + D11�

4,

k34 = −�
(
F12 + 2F66

)
�2 − F11�

3, k35 = −F22�
3 −

(
F12 + 2F66

)
�2�,

k44 = H11�
2 + H66�

2 + As55, k45 = �
(
H12 + H66

)
�, k55 = H22�

2 + H66�
2 + As44.

(29)

m11 = �Y0 + I0, m12 = 0, m13 = −�
(
�Y1 + I1

)
, m14 = �Y2 + I2, m15 = 0,

m22 = �Y0 + I0, m23 = −�
(
�Y1 + I1

)
, m24 = 0, m25 = �Y2 + I2,

m33 = �
(
�Y3 + Y0 + I3

)
+ I0, m34 = −�

(
�Y4 + I4

)
, m35 = −�

(
�Y4 + I4

)
,

m44 = �Y5 + I5, m45 = 0, m55 = �Y5 + I5,

� = �2 + �2.

is subjected to simply support at four edges. The dimensions 
of the plates are a = b, h = a∕10. The non-dimensional fre-
quencies of the plates are calculated by � = �(a2∕h)

√
�0∕E0 

with �0 = 1 kg/m3 , E0 = 1 GPa . The comparison of non-
dimensional fundamental frequencies of the FGSW plates 

is presented in Table 2. The numerical results using the new 
IHSDT are compared with those of Meiche et al. [58] using 
four variables hyperbolic shear deformation theory and 
Li et al. [65] using the three-dimensional linear theory of 
elasticity. It can be seen that the present results are in good 
agreement with the available results for all cases of scheme 
and power-law indices. 

Table 3 gives the comparison between the first ten non-
dimensional frequencies of the FGSW plates using proposed 
theory and those of Meiche et al. [58] using SSDT and 
HySDT. The comparison shows that the present numerical 
results are very closed to the published results. Therefore, 
it can be concluded that the new IHSDT is compatible in 
predicting the free vibration of FGSW plates.

3.1.2  Free vibration of single‑layer FG nanoplates

Continuously, the free vibration of single-layer nanoplates 
with a constant nonlocal parameter is considered and 
compared in this subsection. First, a thin FG nanoplate 
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of SUS304/Si3N4 simply supported at all edges with 
p = 5, a = 10 (nm) and h∕a = 0.05 is considered. These 
FG nanoplates can be achieved easily by setting scheme of 
FGSW nanoplates of type A as (0-1-0). The non-dimensional 
frequency of the plates is calculated via �̂� = 𝜔h

√
𝜌c∕Gc 

with Gc = Ec∕(2(1 + �)) . Table 4 gives the non-dimensional 
first three frequencies of the thin FG plates of the proposed 
theory in comparison with those of Zare et al. [31] in two 
cases of square and rectangular nanoplates [the superscript 
numbers are used to denote the mode order ( �, � ) of the 
frequencies]. According to this table, the present results are 
in excellent agreement with the published data.

Second, the present results of non-dimensional funda-
mental frequencies of the Al/Al2O3 FG nanoplates are com-
pared with the results of Sobhy [33] and Hoa et al. [35] to 
confirm the validity of the proposed theory. It is noticed that 
the material properties of the plates are calculated via a new 
power-law of P(z) = Pm

(
Pc

/
Pm

)Vc , Vc = (z∕h + 1∕2)p . In 

Table 2  The comparison of the 
non-dimensional fundamental 
frequencies of the FGSW plates

p Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0 Meiche et al. [58] 1.82449 1.82449 1.82449 1.82449 1.82449 1.82449
Li et al. [65] – – – – – –
Present 1.82445 1.82445 1.82445 1.82445 1.82445 1.82445

0.5 Meiche et al. [58] 1.44419 1.48405 1.50636 1.51922 1.54714 1.57458
Li et al. [65] 1.44614 1.48608 1.50841 1.52131 1.54926 1.57668
Present 1.44424 1.48408 1.50640 1.51922 1.54715 1.57452

1 Meiche et al. [58] 1.24310 1.30004 1.33328 1.35331 1.39559 1.43940
Li et al. [65] 1.24470 1.30181 1.33511 1.35523 1.39763 1.44137
Present 1.24319 1.30011 1.33339 1.35333 1.39565 1.43934

5 Meiche et al. [58] 0.94574 0.98166 1.03033 1.04455 1.10875 1.17397
Li et al. [65] 0.94476 0.98103 1.02942 1.04532 1.10983 1.17567
Present 0.94597 0.98183 1.03058 1.04466 1.10897 1.17397

10 Meiche et al. [58] 0.92811 0.94275 0.99184 0.99536 1.06081 1.12311
Li et al. [65] 0.92727 0.94078 0.98929 0.99523 1.06104 1.12466
Present 0.92837 0.94296 0.99210 0.99550 1.06106 1.12314

Table 3  The comparison of 
the non-dimensional first ten 
frequencies of the FGSW plates

� � 1-2-1 2–2-1

Meiche et al. 
[58] (SSDT)

Meiche et al. 
[58] (HySDT)

Present Meiche et al. 
[58] (SSDT)

Meiche et al. 
[58] (HySDT)

Present

1 1 1.30244 1.30250 1.30246 1.26780 1.24375 1.24389
1 2 3.15686 3.15726 3.15704 3.07382 3.01698 3.01776
2 2 4.90849 4.90978 4.90926 4.78065 4.69456 4.69633
1 3 6.02622 6.02866 6.02787 5.87022 5.76658 5.76916
2 3 7.63601 7.64154 7.64028 7.44002 7.31319 7.31712
1 4 9.67121 9.68465 9.68264 9.42552 9.27437 9.28028
3 3 10.16193 10.17821 10.17600 9.90439 9.74847 9.75490
2 4 11.12321 11.14644 11.14380 10.84261 10.67885 10.68634
3 4 13.41755 13.46652 13.46271 13.08260 12.91005 12.92026
4 4 16.39820 16.50693 16.50131 15.99393 15.83764 15.85170

Table 4  The comparison of the non-dimensional fundamental fre-
quencies of thin FG nanoplates

b∕a � (nm2) Method Mode 1 Mode 2 Mode 3

1 0 Zare et al. [31] 0.011411 0.028112 0.028121

Present 0.011311 0.027912 0.027921

1 Zare et al. [31] 0.010411 0.023012 0.023021

Present 0.010411 0.022912 0.022921

4 Zare et al. [31] 0.008511 0.016512 0.016521

Present 0.008511 0.016212 0.016221

0.5 0 Zare et al. [31] 0.028111 0.044321 0.070431

Present 0.027911 0.044121 0.070131

1 Zare et al. [31] 0.023011 0.033021 0.046631

Present 0.022911 0.033021 0.046431

4 Zare et al. [31] 0.016511 0.021821 0.028631

Present 0.016211 0.021621 0.028331
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which, the results of Sobhy [33] are obtained via two-vari-
able shear deformation theory and the results of Hoa et al. 
[35] are calculated via single variable shear deformation 
theory. The dimensions of the plates are a = b = 10 (nm), 
h∕a = 0.1 . The comparison is given in Table 5, in which 
the non-dimensional fundamental frequencies are computed 
by �̃� = 𝜔(a2∕𝜋2)

√
𝜌ch∕Dc, Dc = Ech

3∕(12(1 − 𝜈2)) . The 
comparison shows that the difference between the present 
results and those of Sobhy [33] and Hoa et al. [35] is very 
low. Hence, the proposed theory is compatible to examine 
the free vibration of nanoplates.Kindly provide the signifi-
cance for the bold values mentioned in Tables 2, 3, 4, 5The 
bold style in these Tables is used to help reviewer read the 
manuscript more easily, it is unnecessary in the final artical. 
So please can you change the bole values to normal values.

According to the above comparison studies, it can be con-
cluded that the proposed algorithm is good accuracy and 
compatible to predict the behavior of the FGSW nanoplates 
undergoing free vibration.

3.2  Parametric study

In this section, a comprehensive study on the role of the spa-
tial variation of the nonlocal parameters on the free vibration 
of the Al/Al2O3 FGSW nanoplates is presented. The dimen-
sions of the FGSW nanoplates are a × b , the total height 
is h , and the boundary conditions of the plates are simply 
supported at all edges. It is noticed that, in the parameter 
study section, the nonlocal parameter of the metal phase, 
�m = 2 (nm2) , is chosen as the reference value and that of 
the ceramic phase is calculated via ratio � = �c∕�m . For con-
venience, the following dimensionless frequency is used:

where E0 = 1 GPa, �0 = 1 kg/m3, h0 = a∕10.
The non-dimensional fundamental frequencies of square 

FGSW nanoplates of Al/Al2O3 with b = a = 10 (nm) , 
a∕h = 10 are demonstrated in Table 6. In addition, the non-
dimensional first six frequencies of the FGSW nanoplates 
with b = a = 10 (nm) , a∕h = 10 , p = 2 are given in Table 7.

(30)�∗ = �
a2

h0

√
�0

E0

,

Next, the effects of the aspect ratio on the behavior of 
(1-2-1) FGSW nanoplates of Al/Al2O3 with b = a = 10 (nm) 
undergoing free vibration are investigated. The side-to-thick-
ness ratio of the plate is a∕h = 10 , the power-law index is 
p = 2 , the aspect ratio b∕a changes from 0.5 to 5, and the 
ratios of the nonlocal parameters are � = 0.5, 1, 1.5, 2 . The 
non-dimensional fundamental frequencies of the FGSW 
nanoplates as the function of the aspect ratio b∕a with four 
cases of the nonlocal parameter’s ratio are plotted in Fig. 3. 
It can see clearly that the non-dimensional frequencies of 
the FGSW nanoplates decrease rapidly as increasing of the 
aspect ratio b∕a . The fundamental frequencies decrease dra-
matically when the aspect ratio varies from 0.5 to 2, then the 
fundamental frequencies decrease slowly. According to the 
four subplots of Fig. 3, the frequencies of the FGSW nano-
plates with a small value of the nonlocal parameter’s ratio 
are higher than those of the FGSW nanoplates with higher 
nonlocal parameter’s ratio. The frequencies of the FGSW 
nanoplates of type A is similar to those of type B, and the 
frequencies of the FGSW nanoplates of type C are higher 
than those of type A and type B.

Figure 4 presents the influence of the side-to-thickness 
ratio a∕h on the fundamental frequencies of the square (1-2-
1) FGSW nanoplates of Al/Al2O3 with a = b = 10 (nm) . The 
power-law index of the materials is p = 2 , and four cases of 
the nonlocal parameters are � = 0.5, 1, 1.5, 2 . According 
to this figure, it is obvious that the side-to-thickness ratio 
has remarkable effects on the free vibration behavior of the 
FGSW nanoplates. When the side-to-thickness ratio rises, 
the non-dimensional fundamental frequencies of the FGSW 
nanoplates decrease. The reason is that when the side-to-
thickness ratio increases, the FGSW nanoplates become thin 
plates, so the stiffness of the plates is reduced. It can be 
seen against that the fundamental frequencies of the FGSW 
nanoplates of type C are higher than those of type B, and the 
fundamental frequencies of the FGSW nanoplates of type 
A are smallest. Because the FGSW nanoplates of type C 
consist of two FG face sheets with the ceramic-rich surface 
at the top and bottom surface of the FGSW nanoplates, so 
the stiffness of the FGSW nanoplates of type C greater than 
those of type B which consist of two FG face sheets with 
the metal-rich surface at the top and bottom surface of the 
plates. The non-dimensional fundamental frequencies of the 

Table 5  The comparison of the 
non-dimensional fundamental 
frequencies of the FG 
nanoplates

p � = 0 � = 4

Sobhy [33] Hoa et al. [35] Present Sobhy [33] Hoa et al. [35] Present

0 1.9318 1.9317 1.9317 1.4441 1.4440 1.4440
0.5 1.4969 1.4989 1.4968 1.1189 1.1205 1.1189
2.5 1.2572 1.2623 1.2574 0.9397 0.9436 0.9399
5.5 1.2087 1.2126 1.2088 0.9035 0.9065 0.9036
10.5 1.1609 1.1618 1.1609 0.8678 0.8685 0.8678
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FGSW nanoplates with a higher ratio of nonlocal parameters 
are smaller than those of the FGSW nanoplates with a small 
value of nonlocal parameter’s ratio.

Continuously, the dependence of the fundamental fre-
quencies of the square (1-2-1) FGSW nanoplates of Al/Al2O3 
with a = b = 10 (nm) on the power-law index is investigated 
in details. The side-to-thickness of the plates is a∕h = 10 , 
and four cases of the nonlocal parameters’ ratio are consid-
ered, which are � = 0.5, 1, 1.5, 2 . Figure 5 demonstrates 
the variation of the fundamental frequencies of the FGSW 
nanoplates as the function of the power-law index. When 
the power-law index increases, the fundamental frequencies 
of the FGSW nanoplates of type A and type B decrease, 
while those of the FGSW nanoplates of type C increase in 
four cases of the ratio of the nonlocal parameters. The fun-
damental frequencies of the FGSW nanoplates of type B 
decrease faster than those of the FGSW nanoplates of type 
A. It is because when the power-law index increases, the 
volume fraction of the ceramic component of type A and 
type B decreases and the metallic component increases, so 
the stiffness of the FGSW nanoplates of type A and type 
B decrease. On the other hand, when the power-law index 
increases, the volume fraction of the ceramic component 
of type C increase and the metallic component decrease, 
it leads to reduce the stiffness of the FGSW nanoplates. In 

addition, the consideration of the higher value of the nonlo-
cal parameter’s ratio leads to a reduction of the fundamental 
frequencies of the FGSW nanoplates.

Finally, the effects of the variation of the nonlocal 
parameter on the free vibration of the FGSW nanoplates 
are considered judiciously. An Al/Al2O3 (1–2-1) FGSW 
nanoplates with side-to-thickness of a∕h = 5, 10 and the 
power-law index of p = 0.5, 2 is examined herein. The 
ratio of the nonlocal parameters varies from 0.5 to 2. Fig-
ure 6 demonstrates the influence of the nonlocal param-
eter’s ratio on the fundamental frequencies of the FGSW 
nanoplates. It can be seen that when the ratio of the nonlo-
cal parameters rises, the fundamental frequencies of the 
FGSW nanoplates of three cases of type A, type B, and 
type C decrease. In the case of p = 0.5 , the decrease rate of 
the frequency of the FGSW nanoplates of type B is high-
est and that of the FGSW nanoplates of type C is lowest. 
In the case of p = 2 , the decrease rates of the frequencies 
of the FGSW nanoplates of type A and C are similar and 
lower than those of the FGSW nanoplates of type B.

Figure 7 shows the ratio between the frequencies of 
the rectangular FGSW nanoplates with variable nonlocal 
parameter and those of the nanoplates with a constant non-
local parameter of �c = �m = 2. In which the dimensions 
of the plates are a = 10 (nm), b = 20 (nm) . According to 

Table 6  The non-dimensional 
fundamental frequencies of 
the square FGSW nanoplates 
( a∕h = 10)

Types p � 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

Type A 0 0.5 1.08522 1.13716 1.08522 1.19155 1.13716 1.28128
1 1.04001 1.08183 1.04001 1.12823 1.08183 1.20628
1.5 1.00003 1.03386 1.00003 1.07405 1.03386 1.14307
2 0.96432 0.99176 0.96432 1.02699 0.99176 1.08887

2 0.5 1.08522 1.07917 1.06299 1.08108 1.06680 1.08776
1 1.04001 1.03752 1.03287 1.04158 1.03709 1.05084
1.5 1.00003 1.00035 1.00517 1.00612 1.00973 1.01745
2 0.96432 0.96691 0.97958 0.97405 0.98443 0.98704

Type B 0 0.5 1.66730 1.66730 1.66730 1.66730 1.66730 1.66730
1 1.54482 1.54482 1.54482 1.54482 1.54482 1.54482
1.5 1.44590 1.44590 1.44590 1.44590 1.44590 1.44590
2 1.36382 1.36382 1.36382 1.36382 1.36382 1.36382

2 0.5 0.92265 0.98666 1.02709 1.05215 1.10504 1.16293
1 0.89875 0.95037 0.98665 1.00628 1.05324 1.10283
1.5 0.87662 0.91781 0.95064 0.96593 1.00810 1.05119
2 0.85604 0.88838 0.91831 0.93008 0.96831 1.00618

Type C 0 0.5 0.78557 0.78557 0.78557 0.78557 0.78557 0.78557
1 0.78557 0.78557 0.78557 0.78557 0.78557 0.78557
1.5 0.78557 0.78557 0.78557 0.78557 0.78557 0.78557
2 0.78557 0.78557 0.78557 0.78557 0.78557 0.78557

2 0.5 1.61636 1.57902 1.53028 1.53555 1.47334 1.45470
1 1.53444 1.51228 1.46909 1.47989 1.42466 1.41363
1.5 1.46384 1.45335 1.41471 1.42987 1.38050 1.37586
2 1.40216 1.40081 1.36595 1.38460 1.34021 1.34096
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this figure, it is obvious that the variation of the nonlocal 
parameter has significant effects on the higher frequencies 
of the FG nanoplates and the FGSW nanoplates. When 
the ratio of the nonlocal parameters increases, the higher 
frequencies decreases faster than the lower ones of the 
FGSW nanoplates. Hence, it can be concluded that it is 
necessary to take into account the effects of the variation 
of the nonlocal parameters in designing, testing, and pro-
ducing inhomogeneous nanostructures.

4  Conclusions

In this work, the role of the spatial variation of the nonlo-
cal parameter on the free vibration of the FGSW nano-
plates has been investigated for the first time. Moreover, 
a new inverse hyperbolic shear deformation theory in 
combination with modified nonlocal elasticity theory has 
been established to take into account the spatial variation 
of the nonlocal parameter. A comprehensive study on the 
effects of several parameters including the variation of the 
nonlocal parameter, the power-law index, the aspect ratio, 
as well as the side-to-thickness ratio has been carried out. 

Table 7  The non-dimensional 
first six frequencies of the 
square FGSW nanoplates 
( p = 2)

Types Scheme � Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Type A 1-1-1 0.5 1.08108 2.24115 2.24115 3.08570 3.53858 3.53858
1 1.04158 2.09782 2.09782 2.84392 3.23933 3.23933
1.5 1.00612 1.97887 1.97887 2.65123 3.00492 3.00492
2 0.97405 1.87809 1.87809 2.49300 2.81491 2.81491

1-2-1 0.5 1.08776 2.24533 2.24533 3.08243 3.52947 3.52947
1 1.05084 2.11195 2.11195 2.85801 3.25204 3.25204
1.5 1.01745 1.99981 1.99981 2.67632 3.03103 3.03103
2 0.98704 1.90382 1.90382 2.52535 2.84963 2.84963

2-2-1 0.5 1.06680 2.17743 2.17743 2.96607 3.38249 3.38249
1 1.03709 2.07161 2.07161 2.78959 3.16525 3.16525
1.5 1.00973 1.97983 1.97983 2.64120 2.98499 2.98499
2 0.98443 1.89926 1.89926 2.51417 2.83231 2.83231

Type B 1-1-1 0.5 1.05215 2.21983 2.21983 3.09672 3.57669 3.57669
1 1.00628 2.04893 2.04893 2.80289 3.20935 3.20935
1.5 0.96593 1.91227 1.91227 2.57943 2.93601 2.93601
2 0.93008 1.79974 1.79974 2.40209 2.72239 2.72239

1-2-1 0.5 1.16293 2.46603 2.46603 3.44866 3.98677 3.98677
1 1.10283 2.23968 2.23968 3.05688 3.49542 3.49542
1.5 1.05119 2.06604 2.06604 2.77405 3.15004 3.15004
2 1.00618 1.92739 1.92739 2.55753 2.89023 2.89023

2-2-1 0.5 1.10504 2.33454 2.33454 3.25793 3.76284 3.76284
1 1.05324 2.14087 2.14087 2.92430 3.34540 3.34540
1.5 1.00810 1.98857 1.98857 2.67583 3.04179 3.04179
2 0.96831 1.86474 1.86474 2.48154 2.80820 2.80820

Type C 1-1-1 0.5 1.53555 3.04428 3.04428 4.05148 4.55963 4.55963
1 1.47989 2.84623 2.84623 3.72248 4.15601 4.15601
1.5 1.42987 2.68240 2.68240 3.46248 3.84351 3.84351
2 1.38460 2.54395 2.54395 3.25030 3.59232 3.59232

1-2-1 0.5 1.45470 2.84112 2.84112 3.74415 4.19305 4.19305
1 1.41363 2.69740 2.69740 3.50802 3.90497 3.90497
1.5 1.37586 2.57349 2.57349 3.31157 3.66911 3.66911
2 1.34096 2.46522 2.46522 3.14480 3.47138 3.47138

2-2-1 0.5 1.47334 2.92542 2.92542 3.89934 4.39267 4.39267
1 1.42466 2.75225 2.75225 3.61143 4.03917 4.03917
1.5 1.38050 2.60658 2.60658 3.37911 3.75922 3.75922
2 1.34021 2.48183 2.48183 3.18652 3.53040 3.53040
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The numerical results of this work drew some remarkable 
points as follows.

• The spatial variation of the nonlocal parameter plays a 
significant role in the behavior of the FGSW nanoplates 
undergoing free vibrations.

• The consideration of the nonlocal parameter leads to 
a reduction of the natural frequencies of the FGSW 
nanoplates.

• The variation of the nonlocal parameter has significant 
effects on the higher frequencies of the FGSW nano-
plates.

• Because the nonlocal parameter is a material-dependent 
property, more investigations on the role of the spatial 
variation of the nonlocal parameter on static bending, 

free vibration, buckling, as well as dynamic response 
of the FG and FGSW nanoplates, nanobeams should be 
done to understanding deeply the mechanical behavior 
of the nanostructures. Furthermore, the vibration of 
the FGSW nanoplates can be controlled by varying the 
material volume fractions to avoid resonant phenom-
enon in micro/nanoelectromechanical systems. Besides, 
the measurement of the exact nonlocal parameter of 
FGMs of the nanostructures is the challenge of the 
future works.

Fig. 3  The effects of aspect ratio b∕a on the fundamental frequencies of the FGSW nanoplates
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Fig. 4  The influence of the side-to-thickness ratio a∕h on the fundamental frequencies of the FGSW nanoplates
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Fig. 5  The variation of the fundamental frequencies of the FGSW nanoplates as function of the power-law index p
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Fig. 6  The effects of the ratio of nonlocal parameters � on the fundamental frequencies of the FGSW nanoplates
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