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Abstract
Predicting the critical buckling loads of functionally graded material (FGM) plates using an analytical method requires

solving complex equations with various modes of deformation to determine the minimum loads. The approach is too

complex for application in engineering practice. In this paper, a data-driven model using the artificial neural network

(ANN) is proposed for the critical buckling load of FGM plates, as an alternative tool for practicing engineers. A database

is first developed for randomly selected inputs using an analytical solution based on first-order shear deformation theory for

simply supported FGM plates. The database is then divided into a training dataset with 80% of the data and a testing dataset

with 20% of the data for developing and validating, respectively, the ANN model. The ANN model developed using six

hidden layers with 32 nodes in each layer is found to match the data with a coefficient of determination of 99.95%. Using

the ANN model, the stochastic characteristic of the critical buckling load is examined with respect to randomness of the

input parameters. The study reveals that along with the dimensional parameters, the critical buckling load is significantly

affected by the randomness of the volume fraction ratio and ratio of the modulus of elasticity of the ceramic and the metal.

Keywords Functionally graded material � Buckling analysis � Shear deformation plate theory � Machine learning �
Artificial neural network � Monte Carlo simulation

1 Introduction

Functionally graded materials (FGMs) are advanced

materials designed to possess properties varying continu-

ously and smoothly within the structure. Typically, FGMs

are composed of metal and ceramic. The ceramic con-

stituent of FGMs provides an excellent heat-resistant

property due to its low thermal conductivity, while the

ductile metal constituent provides a crack-resistant prop-

erty. Because of these beneficial properties FGMs are

widely used in many engineering applications, such as the

structural components in space vehicles, nuclear reactors,

and other high thermal applications. However, the behavior

of FGMs is very complex, due to the complexity in the

manufacturing process and the uncertainties in the prop-

erties of the component materials (i.e., metal and ceramic).

Understanding the mechanical behavior of FGM structural

elements accounting for the uncertainties is very important

for the design and maintenance of FGM structures.

Different studies were conducted in the past to develop

analytical solutions for the stability of FGM plates and

cylindrical shell structures. Zhao et al. [1] used the first-

order shear deformation theory (FSDT), in conjunction

with the element-free kp-Ritz method, to analyze the

mechanical and thermal buckling behavior of FGM plates.

An analytical approach (Levy-type solution) based on a

higher-order shear deformation theory (HSDT) was pro-

posed by Bodaghi and Saidi [2] for buckling analysis of
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thick FGM rectangular plates. Shariat and Eslami [3] used

the third-order shear deformation theory (TSDT) to study

the buckling of thick rectangular FGM plates under

mechanical and thermal loads. Thai and Choi [4, 5] also

employed the TSDT for buckling analysis of FGM plates.

In these studies, governing equations were derived from the

principle of minimum total potential energy, and closed-

form solutions of rectangular plates were obtained. Thai

and his colleagues [6, 7] used two variable refined plate

theories and a new sinusoidal shear deformation theory for

bending, buckling, and vibration analyses of thick rectan-

gular plates with various boundary conditions. Nguyen

et al. [8] obtained Navier-type solutions for simply sup-

ported FGM sandwich plates for vibration and buckling

analysis based on the FSDT. Tung and Duc [9] presented a

simple analytical approach, using the classical plate theory

(CPT) to investigate the stability of FGM plates under in-

plane compressive, thermal, and combined loads. Huan

et al. [10] and Tran et al. [11] used analytical solutions

based on the FSDT for analyzing bending, buckling, and

vibration of an FGM cylindrical panel. Based on the new

eight-unknown HSDT, Thinh et al. [12], Tu et al. [13], and

Long et al. [14] studied the bending, buckling and free

vibration of FGM plates by analytical and finite element

methods. The solutions for the critical buckling loads from

the analytical methods are often complex [15] and require

trials to solve equations for determining various buckling

loads and corresponding buckling modes to obtain the

minimum loads. This can be more complex for multi-lay-

ered plates with varying material properties. Besides,

intrinsic uncertainties in the material properties of FGMs

resulting from the complicated manufacturing process

often necessitate a non-deterministic/stochastic assessment

of the structural behavior [16]. Stochastic analysis using

the analytical solution is computationally infeasible. To

overcome the challenges of the analytical methods, a data-

driven model using an Artificial Neural Network (ANN) is

proposed in the current study. The developed model is used

for the assessment of a critical buckling load considering

the randomness of material properties.

The method of ANN was first introduced in the 1940s by

McCulloch and Pitts [17], but was not extensively devel-

oped until the late 1980s due to the limitations in compu-

tational ability. Nowadays, the ANN is widely used to deal

with complex problems, including convolutional networks

for image recognition [18], restricted Boltzmann machines

[19], deep belief net [20], auto-encoders [21] and others.

The applications of ANN for solving engineering problems

are gaining interest with various studies such as [22–25]

and [23, 24, 26]. In the area of FGM, Ootao et al. [27]

applied ANN with the incorporation of optimization to

predict the maximum thermal stress in an FGM circular

cylinder. Liu et al. [28] applied a modified hybrid

numerical method with ANN to predict the dynamic dis-

placement of FGM plates. Jodaei et al. [29] employed

ANN for free vibration analysis of FGM plates. To predict

the material property of the FGM cylinder, an ANN is

implemented with the displacements on the outer surface,

are the inputs in Han and Liu [30]. Nazari et al. [31] used a

database of 144 experimental results with ANN to predict

the temperature corresponding to the ductile/brittle transi-

tion for functionally graded steels. However, to the best of

the authors’ knowledge, the ANN method has not been

applied for assessing the stochastic characteristics of the

buckling loads on FGM plates. An ANN-based model

could be used for studying the stochastic characteristics of

buckling loads, as the analytical or numerical models are

computationally prohibitive for the task.

In this paper, an ANN model is proposed to estimate the

buckling load of biaxial simply supported rectangular

plates under various loading conditions with plate dimen-

sions and material properties as the input variables. The

ANN method was found to be superior to other machine

learning models considered. An analytical method based on

first-order shear deformation theory (FSDT) for a simply

supported plate is considered for the development of a

database. Nondimensional buckling loads are calculated

using the analytical method for various randomly generated

input variables. The developed ANN model is validated

with results from the analytical models for a range of input

variables. The ANN model is then applied to assess the

stochastic characteristics of the critical buckling load under

the influence of the variation of inputs.

2 Theoretical formulation

2.1 Analytical model

An analytical model developed in Thai and Choi [4] is used

in this study for the assessment of the critical buckling

load. A rectangular plate of length ‘a,’ width ‘b,’ and total

thickness ‘h’ as shown in Fig. 1 is considered. The plate is

Fig. 1 Geometry and coordinate system of FGM plate
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made of isotropic material with material properties varying

smoothly along the thickness direction.

The Young’s modulus, E, is assumed to vary through the

thickness according to a power law, as shown in Eq. (1)

[32]:

EðzÞ ¼ ðEc � EmÞ:
1

2
þ z

h

� �p

þEm ð1Þ

where Ec and Em are the Young’s modulus of the ceramic

and metal, respectively, p is the volume fraction exponent

(p C 0), and z is the coordinate in the thickness direction.

In this study, the Poisson’s ratio, t, is assumed to be a

constant.

According to the first-order shear deformation theory,

the displacement field can be expressed as in Eq. (2) [32]:

uðx; y; zÞ ¼ u0ðx; yÞ þ z/xðx; yÞ
vðx; y; zÞ ¼ v0ðx; yÞ þ z/yðx; yÞ

wðx; y; zÞ ¼ w0ðx; yÞ
ð2Þ

where u0; v0 and w0 denote the displacements at the mid-

plane of the plate along the x-, y-, and z-directions. /x and

/y represent the transverse normal rotations about the y-

and x-axes, respectively.

The linear strain–displacement relationship is given by

(Eq. 3):
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The linear constitutive relations of a FGM plate can be

written as (Eq. 5):
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where the coefficients Qij are determined as:

Q11 ¼ Q22 ¼
E zð Þ
1� t2

; Q12 ¼ Q21 ¼
tE zð Þ
1� t2

; Q44 ¼ Q55

¼ Q66 ¼
E zð Þ

2 1þ tð Þ
ð6Þ

The total in-plane force resultants, total moment resul-

tants, and transverse force resultants are defined as in

Eq. (7).
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Substituting Eq. (5) into Eq. (7) and integrating through

the thickness of the plate, the stress resultants are given as

in Eq. (8).
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where

Aij ¼
Zh=2

�h=2

Qijdz; Bij ¼
Zh=2

�h=2

Qijzdz; Dij

¼
Zh=2

�h=2

Qijz
2dz; with ði; jÞ ¼ ð1; 2; 4; 5; 6Þ ð8dÞ

Ks denotes the transverse shear correction factor (Ks-

= 5/6, [33–35]).

Using the principle of minimum total potential energy,

the governing equations can be obtained as follows [36]:
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with bN 0
x ;

bN 0
y ;

bN 0
xy, the in-plane pre-buckling forces.

Now, consider that the simply supported rectangular

plate is subjected to in-plane loading in two directions,

such as bN 0
x ¼ N0 along the x-axis, bN 0

y ¼ kN0 along the y-

axis, where k is the load ratio. Based on the Navier method,

the following expansions of displacements

(u0; v0; w0; /x; /y) are obtained to satisfy the simply

supported boundary conditions [32]:

u0 x; yð Þ ¼
X1
n¼1

X1
m¼1

umn cos ax sin by;

v0 x; yð Þ ¼
X1
n¼1

X1
m¼1

vmn sin ax cos by

w0 x; yð Þ ¼
X1
n¼1

X1
m¼1

wmn sin ax sin by;

/x x; yð Þ ¼
X1
n¼1

X1
m¼1

/xmn cos ax sin by

/y x; yð Þ ¼
X1
n¼1

X1
m¼1

/ymn sin ax cos by

ð10Þ

where a ¼ mp=a, b ¼ np=b.
Substituting Eq. (10) into Eq. (9a), we obtain a 5 9 5

system of the following equations:
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in which the coefficients of kij; mij are defined as

follows:

k11 ¼ A11a2 þ A66b
2

� 	
k33 ¼ A55a2 þ A44b

2
� 	

Ks

k12 ¼ A12 þ A66ð Þab bk33 ¼ N0a2 þ kb2N0

k14 ¼ B11a2 þ B66b
2

� 	
k34 ¼ A55aKs

k15 ¼ B12 þ B66ð Þab k35 ¼ A44bKs

k22 ¼ A66a2 þ A22b
2

� 	
k44 ¼ A55Ks þ D11a2 þ D66b

2
� 	

k24 ¼ B12 þ B66ð Þab k45 ¼ D12 þ D66ð Þab
k25 ¼ B66a2 þ B22b

2
� 	

k55 ¼ A44K þ D66a2 þ D22b
2

� 	
ð11bÞ

For a nontrivial solution, the determinant of the coeffi-

cient matrix in Eq. (11a) must be zero.

k11 k12 0 k14 k15
k12 k22 0 k24 k25
0 0 k33 þ bk33 k34 k35
k14 k24 k34 k44 k45
k15 k25 k35 k45 k55
























¼ 0 ð12Þ

Solving Eq. (12), the buckling loads N0
m;nð Þ correspond-

ing to buckling modes (m, n) can be obtained.

Note that when k = 0, the FGM plate is subjected to

uniaxial compression along the x-axis, and when k = 1, the

FGM plate is subjected to biaxial compression with equal

magnitudes of loads.

The critical buckling load (Ncr) is the smallest value of

N0
m;nð Þ.

Ncr ¼ min N0
m;nð Þ

n o
ð13Þ

The smallest value of N0
m;nð Þ is obtained using trials and

errors with varying ‘m’ and ‘n.’ For the study presented in

this paper, the nondimensional critical buckling load of the

FGM plate is defined in the following form (Eq. 14) [4].

Ncr ¼ Ncra
2= Emh

3
� 	

ð14Þ

2.2 ANN model development

Several supervised machine learning models such as ran-

dom forest regression, extreme gradient boosting, support

vector machine, and ANN are first examined and demon-

strate the ANN as the most suitable method for the critical

buckling load of FGM (discussed later in the paper). Like

the other supervised machine learning models, ANN aims

to provide a prediction on the variable of interest based on

a labeled database. The objective of the training or model

developing process is to minimize the difference between

actual value y and predicted value �y of the output corre-

sponding to the ith input xi through minimizing the loss

function Q.

A conventional feedforward ANN with ‘s’ layers for the

regression problem with a dataset containing ‘r’ features

(e.g., number of inputs) is shown in Fig. 2. Each node (a

neuron) in a layer of the network is connected with all
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nodes in the previous and the next layers (i.e., fully con-

nected). With an activation function (e.g., ReLu, sigmoid

or Hyperbolic tangent), this neuron generates a signal to

the nodes in the next layer until the output layer is reached.

A bias node is added to each hidden layer to move the

activation function forward or backward. The network is

trained by feeding data to the input layer. Each node in this

layer takes its corresponding feature for each sample.

Every neuron combines its input signals from nodes in the

previous layer by a weighted summation. After being fed

with the total number of samples (also called the batch

size), the loss function in Eq. 15 is calculated. The back-

propagation algorithm [37] is implemented to compute the

gradient of weights with respect to the loss function. The

weights in ANN are thus adjusted based on total samples to

update the weights for neuron-to-neuron connections. The

weight updating process continues from the first batch to

the last batch of the database to finish an epoch. There are a

number of epochs to finish the training process for an

ANN. There is no strict rule for choosing the batch size and

number of epochs required in the training process.

To predict the buckling load, a fully connected ANN is

established through trying various configurations of the

networks. Five input variables (r = 5) for the model include

the ratio of in-plane forces corresponding along x- and y-

directions (k), volume fraction exponent (p), thickness ratio

(b/h), aspects ratio (a/b) and the ratio Ec/Em. Unlabeled data

of random inputs are first generated. The database is then

labeled with corresponding Ncr, determined from the ana-

lytical method. The labeled database is split into a training

dataset and a testing dataset. The training dataset is used for

training the ANN while the testing dataset is applied for

validation. Figure 3 demonstrates the ANN model devel-

opment process. The training and validating processes for

the ANN model are conducted developing a computer code

in the Python programming language.

3 Results

3.1 ANN model

Table 1 shows the ranges of input variables considered for

the supervised machine learning model development. The

ranges are chosen to develop the ANN model for a wide

range of magnitudes of the critical buckling load. The ratio

(k) of in-plane forces along x-direction to those along y-

direction is randomly generated between - 1 and 5. A

negative lower bound value indicates a tensile load along

one axis and compression along the other axis. The mate-

rial-related variables, such as the volume fraction exponent

‘p’ and the ratio Ec/Em, are assumed to range between

[0:10] and [1:10], respectively. The thickness ratio (b/h)

and aspects ratio (a/b) are assumed to range between

[20:100] and [1:5], respectively. Within these ranges, 4487

set samples of input variables are generated. Then, the

analytical method (based on the FSDT) is applied to obtain

Ncr for each set of samples of input variables, which are

used to label the input samples. The resulting distribution

of Ncr is shown in Fig. 4. The magnitudes of the load (Ncr)

range between [0.67, 364.50], indicating a heavy right-

skewed distribution with a mean of 28.0 and a median of

13.30.

The overall database is split into training and testing

datasets with a ratio of 4:1. With the training data sets,

various ANN configurations are tried along with batch

sizes and maximum numbers of the epoch. A model with 6

hidden layers and 32 ? 1 (bias) nodes in each layer is

found to reasonably simulate the buckling load. This model

involves a total of 206 nodes and 5537 trainable weights

and is trained with 105 epochs and batches of 500 samples.

A set of metrics is used in this study to validate the

developed model on the train and test set, including

Coefficient of determination, R2, Mean absolute error,

MAE, and Mean squared error, MSE, in Eqs. 15, 16 and 17,

respectively.

R2¼ 1�
Pn

i¼1 ðyi � fiÞ2Pn
i¼1 ðyi � yÞ2

ð15Þ

MAE ¼ 1

n
�
Xn
i¼1

yi � fij j ð16Þ

MSE ¼ 1

n

Xn
i¼1

ðyi�f iÞ2 ð17Þ

The training process is conducted with 105 iterative

steps of updating the weights for the connection between

neurons through comparing the model errors (i.e., the loss

function). The loss function during the training process

against the number of epochs is plotted in Fig. 5. It shows

Fig. 2 Example of a feedforward ANN with ‘r’ input features and ‘s’
hidden layers (adapted from [38])
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that for the first thousand epochs, the Mean Absolute Error

(MAE) dramatically drops from 22.05 to 1.81. For the rest

of the training process, MAE gradually decreases from 1.81

to 0.31 along with the improvement of the model.

In a scatter plot in Fig. 6, the Ncr predicted using the

ANN models are compared with those from the analytical

solutions. The figure shows the data points concentrating

narrowly around the 1:1 line, implying that the predictions

using the ANN model match well with the predictions from

the analytical model. Table 2 shows the calculated errors of

the models. The ANN has the lowest Mean Absolute Error

in Table 2 for both training and testing datasets compared

to other machine learning models. The ANN model is

therefore proposed for the critical buckling load of an FGM

plate. For the ANN model, the errors for both testing and

training datasets are very low (0.6296 and 0.3135,

respectively) with a very high coefficient of determination

or R-square value (close to 100%). Given that the devel-

oped model fits very well with the data, no further study

has been conducted to modify the ANN architecture.

Fig. 3 Scheme of developing ANN model

Table 1 Input parameter ranges

for machine learning models
Input Range

K [- 1:5]

P [0:10]

b/h [20:100]

a/b [1:5]

Ec/Em [1:10]

Fig. 4 Histogram and descriptive summary of Ncr in the database

Fig. 5 Error versus number of epochs during the training process

Fig. 6 Scatter plot of analytical Ncr with FSDT versus predicted Ncr

with ANN
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The benefits of using the ANN model instead of the

conventional analytical and numerical models are exam-

ined through simulation of the critical buckling load of

FGM plates. The analytical method involves solving

det(K) = 0, corresponding to each buckling mode, to

identify the critical load. This process requires iteration due

to the uncertainties of the parameters ‘m’ and ‘n’ in Eqs. 13

and 14. For numerical modeling using the finite element

method, the computational time is significantly increased

with the use of fine mesh, required to obtain accurate

solutions. However, an ANN model developed with opti-

mization of the weight factors through the training process

can provide simplified solutions. The ANN model is par-

ticularly essential for reliability analysis requiring millions

of simulations using the Monte Carlo method. Reliability

assessments were performed using various methods con-

sidering all inputs as normally distributed random vari-

ables. Using a computer with a Core i5-8250U processor

and 8.00 GB RAM, the analyses took 4.128 h, 711 h, and

774 h for the ANN, analytical, and FEA models, respec-

tively. Thus, the complexity of the problems and the

computational time can be significantly reduced using the

proposed ANN model.

3.2 Parametric study

The Ncr is examined against each of the input variables

independently to visualize the effect of input parameters on

the buckling load. To examine this, a control case is set

with each of the variables varying within the ranges pro-

vided in Table 1, while the other variables are set to con-

stant values as: Ec = 380 9 109 Pa; Em = 70 9 109 Pa;

m = 0.3; p = 2; b/h = 20; a/b = 2; k = 1. Figure 7 plots the

variation of Ncr against various input parameters. Note that

the results obtained from the proposed ANN model match

very well with the results from the analytical model in

Fig. 7, validating the developed model.

Figure 7a shows that the buckling load significantly

changes with the changes in the magnitudes of k. For

negative magnitudes of k, the buckling load increases with

decreasing magnitudes of k to the maximum value at

k = - 0.5 and then decreases. The buckling load continues

to decrease with the increase in the positive magnitude of k.

This implies that the critical buckling load (under com-

pression) along one direction can be increased due to a

tensile load along the orthogonal direction for the FGM

plates, while a compressive force along the orthogonal

direction can reduce the buckling load. However, an

excessive tension (beyond 50% of the compression) can

lead to the reduction in the critical buckling load. The

critical buckling load is found to increase with the increase

in a/b and Ec/Em (Fig. 7b, d) and decreases with the

increases of p. The length to thickness ratio, b/h, appears to

have an insignificant effect on the critical buckling load,

Ncr.

3.3 Stochastic characteristics of Ncr

The complex manufacturing process of FGM with cera-

mic and metal, which have significantly different material

properties, leads to uncertainties in the behavior of the

structural elements made of FGM. The uncertainties in the

critical buckling load of FGM plates are investigated here,

considering the randomness of material parameters using

Monte Carlo simulations (MCS). The input parameters are

assumed to be random variables with known normal dis-

tributions. The means for k, p, b/h, a/b and Ec/Em are

randomly selected using the range defined in Table 1,

except for k, for which a range [0:1] is chosen to reduce

right-skewness of the mean. The tension in the orthogonal

direction is typically rare for an FGM plate. The coeffi-

cients of variances, CV, corresponding to each mean

value of the parameters are selected to be uniformly

distributed between [0:0.2]. A database containing 103

samples is developed for the assessment of the stochastic

characteristics of Ncr. For each sample,106 Monte Carlo

simulations are performed to calculate Ncr using the ANN

model. Thus, the mean, standard deviation and coefficient

variance of Ncr from these 106 Monte Carlo simulations

are recorded as the output (i.e., labels). For the presen-

tation of data and results, symbols ‘r,’ ‘CV’ and ‘l’ are

Table 2 Evaluation metrics for

ANN model and other machine

learning models

Model Validate on R2 MAE MSE

ANN Train set 1.0000 0.3135 0.8135

Test set 0.9981 0.6296 2.7699

Random forest [39, 40] Train set 0.9939 1.1688 9.4431

Test set 0.9624 2.7073 45.9287

Xgboost [41] Train set 0.9995 0.5471 0.7233

Test set 0.9579 3.1078 60.6407

Support vector machine [42–44] Train set 0.7109 9.8643 444.0426

Test set 0.7049 9.3992 360.1878
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used to indicate standard deviation, coefficient of vari-

ance, and mean of the parameters, respectively. The

subscripts of these symbols (e.g., ra/b, CVa/b and la/b)
refer to corresponding variables.

The effects of the various geometric and material

parameters on the mean of Ncr are examined using the

database obtained from the MCS. The distribution of the

mean of Ncr against the variations of the mean of input

Fig. 7 The effect on nondimensional critical buckling load of FG rectangular plate under biaxial compression: a biaxial compression factor (k);
b aspects ratio (a/b); c volume fraction exponent (p); d material component ratio (Ec/Em); e thickness ratio (b/h)
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variables is plotted in Fig. 8. The figure plots a contour

map of the mean of Ncr for two input variables on the x-

and y-axes, respectively. The darker color in the fig-

ure corresponds to a higher mean of Ncr.

Figure 8a shows the contour map for la/b and lk, where
the darker color is concentrated near to the lower right

corner. Thus, the higher mean of Ncr is correlated with

higher la/b. The highest buckling loads are concentrated in

the region with a/b[ 2.5. The buckling load also depends

on k, with the high values of lNcr
(i.e., larger than 100)

concentrated in the lower right corner. The distribution of

color is nearly uniform along the vertical axis in Fig. 8b,

indicating insignificant effects of lb/h on lNcr
, while the

critical buckling load of the plate is higher with higher la/b
(as in Fig. 8a). The contour map with lp and lEc/Em in

Fig. 8c shows a weak concentration of dark color near the

lower right corner. This figure indicates a relatively weaker

correlation of high lNcr
with lp. The lNcr

is apparently

higher for higher lEc/Em and lower lp. Similar effects of

standard deviations of the input parameters on the standard

deviation of Ncr are observed (but not included in the paper

for the sake of brevity).

The correlations of the mean and standard deviations of

the input variables with the mean and standard deviation of

Ncr are examined, as shown in Fig. 9. It shows that the la/b
has a significant correlation with lNcr

and rNcr
with the

correlation coefficients of 0.6538 and 0.5799, respectively.

The rb/a has the strongest correlation to rNcr
with the

correlation coefficient of 0.6764. The input k has the most

negative correlation to Ncr with the correlation coefficients

of - 0.3906 and - 0.2761 for lNcr
and rNcr

, respectively.

The p has a negative effect on Ncr while a/b and Ec/Em

Fig. 8 Contour map of mean of Ncr versus mean of: a aspect ratio and loading coefficient (i.e., la/b and lk); b geometric parameters (i.e., la/b and
lb/h); c material parameters (i.e., lEc/Em and lp)
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have positive effects Ncr (similar to those observed in

Fig. 8).

The effects of CVs of inputs on the CV_ Ncr are

examined in Fig. 10, where the variations of the buckling

load are plotted against the variations of random variables.

The figure presents the results for cases with lEc/Em = 380/

70; lp = 2; lb/h = 20; la/b = 2; and lk = 1. For the effects

of each variable, the CV for the other variables is set at

zero (the variables are set to constant values). Thus, one

random variable is changed at a time. As seen in the figure,

CVNcr
generally increases with the increase in the CVs of

the random variables. However, the magnitudes of the

changes depend on the mean values of the input parameters

and their importance levels to the Ncr. As expected, CVNcr

increases more significantly for the more important input

parameters, such as a/b (Fig. 10b). For all other parame-

ters, the variation in the output (Ncr) is less (i.e.,\ 0.2)

than the variation of the input parameters (i.e., 0.2). The

effect of uncertainty in b/h appears to be the lowest, and

insignificant with the maximum CVNcr
of 0.0041 (for lb/

h = 80 and CVb/h = 0.2), shown in Fig. 10e.

Figure 10 also shows that CVNcr
consistently increases

with the increase in means of k and a/b (Fig. 10a, b). For p,

and Ec/Em, the CVNcr
initially increases with the increase in

mean values of the parameter and then decreases. For

example, CVNcr
increases by increasing the lp from 0.2 to

1, and then decreases with further increase in the lp to 5

(Fig. 10c). Among different parameters, the uncertainties

in b/a are found to have the most significant effect on Ncr,

followed by k and Ec/Em.

4 Conclusions

In this paper, an ANN model is developed for the assess-

ment of the critical buckling load of simply supported

FGM plates. The data for the development of ANN model

were generated through an analytical solution obtained

based on the first-order shear deformation theory. A major

limitation of the analytical solution is that it is too complex

to apply in engineering practice and requires trials to solve

equations for various modes to obtain the minimum load as

the critical buckling load. This limitation could be over-

come using the proposed ANN model, which provides a

simplified solution for the complex engineering problems

of FMG plates. The model developed for the simply sup-

ported FGM plates includes six input variables, represent-

ing the biaxial load factor, the geometrical parameters, and

the material properties. A network with six hidden layers

with each layer of 32 nodes (plus 1 bias node) leads to the

successful development of the ANN model with a coeffi-

cient of determination of around 99.95%.

Among the different parameters, biaxial compression

factor k is found to have the most significant effect on

the nondimensional critical buckling load. The critical

buckling load is the highest for a tensile load of 50% of

the compression load along the orthogonal direction

(k =— 0.5). The critical buckling load decreases with a

further increase in tensile load and compression load

toward the orthogonal direction. The critical buckling

load increases with the increase in a/b and Ec/Em and

decreases with the increase in p. The length to thickness

ratio, b/h, has an insignificant effect on the critical

buckling load, Ncr.

The first- and second-order stochastic characteristics of

Ncr have been examined based on the results of 106 MCSs.

The mean values of the inputs are chosen as the normally

distributed random variables, while the coefficients of

variance are uniformly distributed within [0:0.2]. Among

the different parameters, a/b and k are found to influence

the statistical characteristics of Ncr most significantly. The

critical buckling load increases with the increase in a/b and

Ec/Em and decreases with the increase in p and k.

The CVNcr
is found to increase almost linearly with the

increase in the CVs of the input variables. The critical

buckling loads are more sensitive to the variations of the

mean values of the input parameters. The variation in the

critical buckling load (CVNcr
) can be greater than the

variation in b/a (i.e., CVb/a) while CVNcr
is less than the

coefficient of variance of the other parameters.

The ANN model presented here provides a surrogate to

the computationally expensive finite element analysis and

iterative analytical solution of the complex buckling

problem of FGM plates. The simplified model is useful for

Fig. 9 Correlation coefficients of lNcr
and rNcr
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studying the uncertainties of the critical buckling load due

to variabilities in the input parameters using statistical

analysis. Future work will involve improving the model to

cover a wide range of edge constraints and geometries (i.e.,

circular or quadrilateral) of the plates. The proposed

method can be used to develop ANN models for other

complex structural problems.
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