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Abstract. This paper discusses the kinematics of a two degrees of free-
dom (2-DOF) planar suspended cable-driven parallel robot (CDPR) with
massless cables. The solutions for the inverse and direct geometric as well
as the inverse and direct kinematic problems are derived while fully con-
sidering the influence of pulleys and cable winding drums.
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1 Introduction

The studies of CDPRs have been carried on for several decades. Due to their
appealing advantages over rigid-body manipulators such as simple in design,
having large workspace and low construction cost, there are more and more
prototypes of CDPRs have been developed. However, one significant drawback
of CDPRs compared to rigid-body manipulators is the low accuracy in their
kinematic modeling which lead to their limits in industrial applications. Simple
design CDPRs tend to bring more complexity in solving their kinematic prob-
lems, especially when all the main factors of the CDPR systems are considered,
for example, pulleys and cable winding drums or the cable sag (in the case of
large workspace and heavy payload CDPRs). The simpler in design, the greater
difficulty there is in order to solve the kinematic modeling problem which is the
well-known trade-off of CDPRs.

Over the past years, many research works have been focusing on dealing
with these problems of CDPR in order to improve their performance in control
applications. Basic solutions to solve the inverse and direct kinematic problems
of CDPR (where the influence of pulleys and winding drums are ignored) can be
seen in [1–3]. Recent studies on CDPRs that consider the involvement of pulleys
can be seen in [4–6]. The works considered both the pulleys and drums of CDPR
systems can be seen in [7,8], however, kinematic modeling solutions has not been
developed explicitly.

Nevertheless, there is the fact that it is difficult to archive the accuracy in
CDPR kinematic modeling similar to that of rigid-body manipulators. For very
large dimension CDPRs, in most applications, simplified kinematic modeling
solutions might be used to get satisfying results. However, for relatively small
workspace CDPRs, in order to increase their applicability, it is important to
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have a good CDPR kinematic modeling solution. We will try to find a solution
regarding this problem in this paper, starting with the most basic CDPR system:
a 2-DOF planar suspended CDPR with massless cables.

2 Geometric Models

Figure 1 shows the geometric structure of the 2-DOF suspended CDPR. It con-
sists of a point mass driven by two massless cables. For this model, we have
several assumptions as follows:

– The cables are massless. The cable segments that do not mount on a pulley
or drum are considered as straight lines.

– The end-effector point is always lies on the plane (x0, z0) of the global coor-
dinate frame 〈O0〉.

– All the cables connect to the point mass at point B.
– The position of the pulleys and drums are fixed.
– The last two pulleys have the same coordinate in z-axis (zP1 = zP2).
– The total lengths of the cables are the same.
– The deformations of the cable length due to friction (between pulleys or drums

and cables) or due to cable twisting or ovalization are neglected.
– There is no deformation of the base frame of the CDPR system (the mounting

positions of the pulleys and drums are fixed in space).
– The distance between the drums and first pulleys are large enough so that

the cables lie properly in corresponding grooves of the drums.

2.1 Inverse Geometric Problem

When fully considering the influence of all the components in the cable driving
system, we will find the equations where the inputs are the coordinates of point
B and the output is the position of the cable exit point on the drum (or the
number of cable turns on the drums).

Figure 2 describes the cable-driving system for one cable. For simplicity, the
cable index i (i = 1, 2) will be omitted in all the terms in this section. For each
cable, the total cable length is constant:

LT = L(D) + L(D,E) + L(E,P ) + L(P,B) (1)

where:

– LT : total cable length.
– L(D): length of cable segment on the drum.
– L(D,E): length of cable segment from the cable exit point on the drum to the

tangent point of the first pulley.
– L(E,P ): length of cable segment from the input tangent point of the first pulley

to the input tangent point of the last pulley.
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Fig. 1. Geometric structure of 2-DOF suspended CDPR.
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Fig. 2. Cable-driving system for one cable.
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– L(P,B): length of cable segment from the input tangent point of the last pulley
to the end-effector point.

In the following, we will compute each part of the cable. The cable segment
on the drum is calculated as follows:

L(D) = 2π
√

r2
D + c2 · qt = rq · qt (2)

with:

– rD: drum radius
– c: helical step on the drum (distance between two consecutive grooves on the

drum).
– qt: current number of cable turns on the drum at time t.
– rq = 2π

√
r2
D + c2: conversion ratio between the cable length on the drum and

the number of cable turns.

The cable segment from the cable exit point on the drum to the input tangent
point of the first pulley:

L(D,E) = MD − ME

=
√

d2
w + �d2 − rp (3)

=
√

d2
w + c2 (qt − qm)2 − rp

with:

– dw: distance from M to the orthogonal cable exit point Dm on the drum
(Fig. 2).

– �d = c · �q: distance from the cable exit point D to the orthogonal cable
exit point Dm on the drum.

– rP : pulley radius.
– �q = (qt − qm): difference in cable turns from the point Dm to D.
– qm: number of cable turns on the drum with respect to the cable exit point

at Dm.

The cable segment from the input tangent point of the first pulley to the
input tangent point of the last pulley:

L(E,P ) = L(PD,P ) +
π

2
rP (4)

The term L(PD,P ) is determined since all the pulleys are fixed at the pivot
points (PD, P ).

The cable segment from the input tangent point of the last pulley to the
end-effector point:

L(P,B) = Lt + (π − θt) rP (5)

The term Lt is calculated as follows:

Lt = ‖AB‖ =
√

(xB − xA)2 + (zB − zA)2 (6)
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In Eq. (6), the coordinates of point A need to be computed through the
tangent equation of the line AB to the pulley inner circle, expressed in the local
cable coordinate frame at point P . The subscript “L” is used to indicate that all
the terms are expressed in the cable local coordinate frame 〈P 〉. The coordinates
of point B in frame 〈P 〉 are:

xLB = |xB − xP |
zLB = zB − zP (7)

The coordinates of point A in the frame 〈P 〉 are computed as follows:

zLA =
zLBr2

P + rP |xLB − rP |
√

z2
LB + (xLB − rP )2 − r2

P

z2
LB + (xLB − rP )2

xLA = rP +
√

r2
P − z2

LA (8)

The coordinates of point A in the global coordinate frame 〈O0〉 are:

xA = xP + xLA cos (γ)
zA = zP + zLA (9)

with the angle γ is computed as follows:

γ = atan2 (0, xB − xP ) (10)

To determine the term qt, let us rewrite the Eq. (1) after substituting all the
calculated terms:

LT = rqqt +
√

d2
w + c2 (qt − qm)2 + L(PD,P ) + Lt +

(
3π

2
− θt − 1

)
rP (11)

In Eq. (11), we have:

– Lt is determined from Eqs. (6)–(10).
– θt can be computed from Eq. (7):

θt = asin
(

zLA

rP

)
(12)

– qm is determined from the CDPR design.

Deriving Eq. (11), we get:
√

d2
w + c2 (qt − qm)2 = M − rqqt (13)

where:

M = LT − L(PD,P ) − Lt −
(

3π

2
− θt − 1

)
rP (14)
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Equation (13) has two roots:

qt =
− (

c2qm − rqM
) ± √�

r2
q − c2

(15)

with:
� =

(
r2
q − c2

)
d2

w + c2 (rqqm − M)2 (16)

Note that qt always has positive value. Besides, from Eq. (13) we have:

M − rqqt > 0 (17)

If we choose qt =
− (

c2qm − rqM
)

+
√�

r2
q − c2

, substituting this solution in con-

dition (17) we have:

M − rq

− (
c2qm − rqM

)
+

√�
r2
q − c2

=
−c2 (M − rqqm) − √�

r2
q − c2

> 0 (18)

which is not valid. Therefore, Eq. (13) has only one root:

qt =
− (

c2qm − rqM
) − √�

r2
q − c2

(19)

Equation (19) is the solution of the inverse geometric problem: given the
coordinates of the end-effector point, find the number of cable turns on the
drum.

Also, from Eq. (19) one can see that, in order to calculate exactly the value of
qt, we need to know exactly the values of the following terms: qm, dw, LT and the
coordinates of each pulley (in this study case are the coordinates of points P and
PD). The determination of these terms depends on the accuracy of machining
and assembling all the parts of the CDPR.

2.2 Direct Geometric Problem

For the CDPR in this work, we will derive the constraint equations that describe
the relations between the coordinates of the end-effector point and the number
of cable turns on each drum qti (i = 1, 2).

Derive Eq. (11) for two cables, we have:

Li + θirP = Lti (i = 1, 2) (20)

with:

Li = LTi−rqqti−
√

d2
wi + c2 (qti − qmi)

2−L(PDi,Pi)−
(

3π

2
− 1

)
rP (i = 1, 2)

(21)
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Therefore, if qti (i = 1, 2) are known, one can compute Li (i = 1, 2). From
Eq. (20), we have:

(Li + θirP )2 = (xLAi − xLBi)
2 + (zLAi − zLBi)

2 (i = 1, 2) (22)

All the coordinates in Eq. (22) are expressed in the local cable coordinate
frames that have their origins at the mounting points of respective pulleys, and
are computed as follows (i = 1, 2):

⎧⎪⎪⎨
⎪⎪⎩

xLAi = rP (Ci + 1)
zLAi = rP Si

xLBi = |xB − xPi|
zLBi = zB − zPi

(23)

with Ci = cos (θi) , Si = sin (θi) (i = 1, 2). All the terms that have the subscripts
“L” and “i” are expressed in the local cable coordinate frames that have their
origins at Pi. All the terms without the subscript “L” are expressed in the global
coordinate frame 〈O0〉. The tangent equations of the line BAi expressed in the
local cable coordinate frames:

(xLAi − rP ) (xLBi − rP ) + zLAizLBi = r2
P (i = 1, 2) (24)

which leads to:

rP Ci (xLBi − rP ) + rP SizLBi = r2
P

⇒

⎧⎪⎨
⎪⎩

zLBi =
rP − Ci (xLBi − rP )

Si

xLBi =
rP − SizLBi

Ci
+ rP

(i = 1, 2) (25)

Note that the angles θi (i = 1, 2) are strictly constrained by the following
condition:

0 < θi <
π

2
(i = 1, 2) (26)

Therefore, Si > 0, Ci > 0 (i = 1, 2), thus zLBi, xLBi are always exist. The
condition (26) only happens when the end-effector point lies within the feasi-
ble workspace which satisfies the conditions of the tension distribution problem
where the end-effector is at its static equilibrium. In the cases the end-effector
moves, there could be situations where the angles θi fall outside the range in
(26) but the cable tensions are still positive. These cases are not considered in
this study.

Substituting Eqs. (23), (25) into Eq. (22), we have:

(Li + θirP )2 =
1

C2
i

(zLAi − zLBi)
2 (i = 1, 2) (27)

For suspended CDPR, we have the condition:

zLAi > zLBi (i = 1, 2) (28)
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Thus, Eq. (27) becomes:

Li + θi rP =
1
Ci

(zLAi − zLBi)

⇔ zLBi = rP Si − Ci (Li + θirP ) (i = 1, 2) (29)

From Eq. (23) and Eq. (29) we have:

zB = zPi + rP Si − Ci (Li + θirP ) (i = 1, 2) (30)

Substituting Eq. (29) into Eq. (25) we have:

xLBi =
rP − Si [rP Si − Ci (Li + θirP )]

Ci
+ rP

⇒ xLBi = rP (Ci + 1) + Si (Li + θirP ) (i = 1, 2) (31)

From Eq. (23) and Eq. (31) we have:

|xB − xPi| = rP (Ci + 1) + Si (Li + θirP ) (i = 1, 2) (32)

Combining Eq. (30) and Eq. (32) and note the condition xP1 < xB < xP2,
we have a system of four equations with four unknown terms (xB , zB , θ1, θ2):⎧⎪⎪⎨

⎪⎪⎩

xB = xP1 + rP (C1 + 1) + S1 (L1 + θ1rP )
xB = xP2 − rP (C2 + 1) − S2 (L2 + θ2rP )
zB = zP1 + rP S1 − C1 (L1 + θ1rP )
zB = zP2 + rP S2 − C2 (L2 + θ2rP )

(33)

The system of equations (33) does not have analytical solution. That is why
we have to use numerical methods to compute the unknown terms (xB , zB , θ1, θ2)
in which (xB , zB) is the solution of the direct geometric problem.

Derive the Eq. (33) and note that zP1 = zP2, we can transform the system
of equations to:

⎧⎪⎪⎨
⎪⎪⎩

S12 (L1 + rP θ1) − (xP2 − xP1 − 2rP ) C2 + rP (C12 + 1) = 0
S12 (L2 + rP θ2) − (xP2 − xP1 − 2rP ) C1 + rP (C12 + 1) = 0
xB = xP1 + rP (C1 + 1) + S1 (L1 + θ1rP )
zB = zP1 + rP S1 − C1 (L1 + θ1rP )

(34)

where S12 = sin (θ1 + θ2) , C12 = cos (θ1 + θ2).
Equation (34) can be solved through two steps as follows.

Step 1: Using numerical methods to compute θ1, θ2 from the first two equa-
tions:{

f1 (θ) = S12 (L1 + rP θ1) − (xP2 − xP1 − 2rP ) C2 + rP (C12 + 1) = 0
f2 (θ) = S12 (L2 + rP θ2) − (xP2 − xP1 − 2rP ) C1 + rP (C12 + 1) = 0 (35)

with θ = [θ1 θ2]
T .
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Let us define F (θ) = [f1 (θ) f2 (θ)]T . Using the Newton-Raphson method,
the solution of (35) is updated as follows:

θ(k) = θ(k−1) + �θ(k−1)

�θ(k−1) = −Ja

(
θ(k−1)

)−1

F
(
θ(k−1)

) (36)

with:

Ja (θ) =

⎡
⎢⎣

∂f1

∂θ1

∂f1

∂θ2
∂f2

∂θ1

∂f2

∂θ2

⎤
⎥⎦

∂f1

∂θ1
= C12 (L1 + rP θ1)

∂f1

∂θ2
= C12 (L1 + rP θ1) + (xP2 − xP1 − 2rP ) S2 − rP S12

∂f2

∂θ1
= C12 (L2 + rP θ2) + (xP2 − xP1 − 2rP ) S1 − rP S12

∂f2

∂θ2
= C12 (L2 + rP θ2)

(37)

For a general case, one can start with the initial condition:

θ(0) = [π/4 π/4]T

�θ(0) = −Ja

(
θ(0)

)−1

F
(
θ(0)

) (38)

We reach a solution when ‖�θ‖ → 0.
In the trajectory tracking control problem, where we have to continuously

update θ = θt, the initial value θ
(0)
t can be chosen as its previous values: θ

(0)
t =

θt−1.

Step 2: Update the coordinates of the end-effector point by the last two
equations in Eq. (34).

3 Kinematic Models

The kinematic models of the robot describe the relation between the velocity
vector of the end-effector point B with respect to the angular velocity of the
drums in term of q̇t1, q̇t2. In order to derive the kinematic equations, we will
consider Eqs. (21), (33).

Taking the time derivatives of both sides of Eq. (21), we have:

L̇i = riq̇ti (i = 1, 2) (39)

with:

ri = −
⎡
⎣rq +

c2 (qti − qmi)√
d2

wi + c2 (qti − qmi)
2

⎤
⎦ (i = 1, 2) (40)
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Taking the time derivatives of both sides of equations in Eq. (33), we have:

⎧⎪⎪⎨
⎪⎪⎩

ẋB = r1S1q̇t1 + C1 (L1 + rP θ1) θ̇1

ẋB = −r2S2q̇t2 − C2 (L2 + rP θ2) θ̇2

żB = −r1C1q̇t1 + S1 (L1 + rP θ1) θ̇1

żB = −r2C2q̇t2 + S2 (L2 + rP θ2) θ̇2

(41)

Rewrite Eq. (41) in the matrix form:
⎡
⎢⎢⎣

ẋB

ẋB

żB

żB

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

C1 (L1 + rP θ1) 0 r1S1 0
0 −C2 (L2 + rP θ2) 0 −r2S2

S1 (L1 + rP θ1) 0 −r1C1 0
0 S2 (L2 + rP θ2) 0 −r2C2

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

θ̇1

θ̇2

q̇t1

q̇t2

⎤
⎥⎥⎦ (42)

The solution for Eq. (42) is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̇1 =
1

L1 + rP θ1
(C1ẋB + S1żB)

θ̇2 =
1

L2 + rP θ2
(C2ẋB − S2żB)

q̇t1 =
1
r1

(S1ẋB − C1żB)

q̇t2 =
1
r2

(S2ẋB + C2żB)

(43)

From the last two equations in Eq. (43), we get the direct and inverse kine-
matic equations of the CDPR:

Ẋ = Jq̇
q̇ = J−1Ẋ

(44)

where X = [xB , zB ]T , Ẋ = [ẋB , żB ]T ,q = [qt1, qt2]
T

, q̇ = [q̇t1, q̇t2]
T (with unit

in rps - round per second) and J,J−1 are the Jacobian matrix and its inverse:

J =
1

S12

[
r1C2 −r2C1

−r1S2 −r2S1

]
, J−1 =

⎡
⎢⎢⎣

S1

r1
−C1

r1

−S2

r2
−C2

r2

⎤
⎥⎥⎦ (45)

Note that we have ri > 0 (i = 1, 2) and S12 > 0
(
because 0 < θ1, θ2 <

π

2

)
,

thus there is no singularity in the CDPR feasible work space.
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4 Conclusion

This paper presented a solution in solving the direct and inverse geometric and
kinematic problems of a 2-DOF planar suspended CDPR. Analytical solution
can be found for the inverse geometric problem whereas only numerical solution
can be found for the direct geometric problem of the CDPR.

The found solutions help to improve the accuracy of the CDPR kinematic
modeling since the influence of the pulleys and cable winding drums are both
considered. These results can be used in the kinematic analysis as well as in the
kinematic-based control of CDPRs with a similar structure to the one in this
work.
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