
IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MAY 2021 1

Stacked Autoencoder-based Probabilistic Feature
Extraction for On-Device Network Intrusion

Detection
Thi-Nga Dao and HyungJune Lee, Member, IEEE

Abstract—Due to the outbreak of recent network attacks, it is
necessary to develop a robust network intrusion detection system
(NIDS) that can quickly and effectively identify the network
attack. Although the state-of-the-art detection algorithms have
shown quite promising detection performance, they suffer from
computationally intensive operations and large memory footprint,
making themselves infeasible to applications at the resource-
constrained edge devices. We propose a lightweight yet effective
NIDS scheme that incorporates a stacked autoencoder with a
network pruning technique. By removing a set of ineffective
neurons across layers in the autoencoder network with a certain
probability based on their importance, a considerably large
portion of relatively nominal training parameters are reduced.
Then, the pruned and pre-trained encoder network is used as-is
and is connected with a separate classifier network for attack type
inference, avoiding a full retraining from scratch. Experimental
results indicate that our stacked autoencoder-based classification
network with probabilistic feature extraction has outperformed
the state-of-the-art NIDSs in terms of attack detection rate.
Further, we have shown that our lightweight NIDS scheme has
significantly reduced the computational complexity throughout
the architecture, making it feasible to the edge, while maintaining
a similar attack type detection quality compared with its original
fully-connected neural network.

Index Terms—Network Intrusion Detection System, On-Device
AI, Anomaly Classification, Feature Extraction

I. INTRODUCTION

Network intrusion refers to any unauthorized activities on a
network, such as denial-of-service attacks, backdoor attacks,
brute-force attacks, which attempt to gather private information
of users or make network services inaccessible to its intended
users [1], [2]. Recent studies show that these network attacks
have increasingly occurred in both their frequency and traffic
volume. In order to address the network intrusion problem and
to strengthen network security, it is important to design an agile
yet reliable network intrusion detection system (NIDS). The
functionality of early detecting the abnormal network behaviors

Manuscript received July 20, 2020; revised Jan 14, 2021; accepted May 4,
2021. Date of publication May 19, 2021; date of current version May 5, 2021.

This work was supported by Samsung Research Funding & Incubation
Center of Samsung Electronics under Project Number SRFC-IT1803-00.

Copyright (c) 2015 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

T.N Dao is with Faculty of Radio-Electronic Engineering, Le Quy Don Tech-
nical University, Hanoi, Vietnam, 10000 (e-mail: daothinga.mta@gmail.com).

H. Lee is with the Department of Computer Science and Engi-
neering, Ewha Womans University, Seoul, Republic of Korea (e-mail:
hyungjune.lee@ewha.ac.kr). Corresponding author: HyungJune Lee.

and quickly responding to the detected events is considered as
an essential requirement in most of the recent network devices.

As the recent Internet of Things (IoT) has imposed the
requirement of low response time and bandwidth usages,
machine learning-driven intelligent applications have been
brought to the edge such as mobile devices, embedded sensors
or programmable network devices [3]. Applications that can
perform inference on the edge devices include on-device
services from face recognition, natural language processing to
network intrusion detection. In case of the network intrusion
detection system (NIDS), building an efficient distributed
detection model on resource-constrained edge devices is a
challenging problem. It requires a significant latency reduction
to take a responsive action against network attacks for ensuring
network security.

Taking advantage of state-of-the-art machine learning tech-
niques, the existing NIDSs mostly running on powerful GPU-
assisted machines [4]–[6] have achieved promising prediction
performance over real-world network traffic datasets. Generally,
supervised learning-based models are constructed with two
separate phases: 1) feature extraction in which a latent represen-
tation of input features are learned; and 2) classifier to identify
its attack type. In efforts to achieve computationally efficient
performance, various feature extraction models including
autoencoder (AE) [7] have been employed with the deep neural
network architecture. However, even if the feature extraction
has been applied, a neural network can still contain numerous
parameter weights. Thus, it should be supported by substantial
computation and memory resources for its intensive computing
operations, making infeasible to edge network devices.

In this paper, we propose a lightweight yet effective NIDS
scheme that incorporates a stacked autoencoder with a network
pruning technique. The network pruning executes probabilistic
feature extraction and infers network attack types so that it
can be feasible to edge devices. Inspired by the fact that there
exist substantial parts of redundant connections in a trained
network, we perform a neuron pruning process. This process
removes relatively insignificant neurons and their edges for
constructing a compact AE architecture. To evaluate whether a
neuron is effective or not, we quantify an importance score for
each neuron. The score is calculated by taking into account
the correlation between the input and the output features on
the AE architecture as well as the classification label, and then
a neuron gets pruned with a certain probability that is assigned
based on the rank of its score. By doing so, high dimensional
network traffic features are effectively extracted and captured at

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MAY 2021 2

a low dimensional feature space as the internal representation.
By taking the pruned encoder part from the architecture and

connecting it with an additional classifier layer, we form a
new neural network for the attack classification purpose. We
reuse the intact pretrained encoder layers and train only the
classifier on the labeled data with attack types. Avoiding the
entire network training from scratch helps to get the NIDS
network ready for inference as early as possible, making it
practically feasible to the edge.

Previous work on network intrusion detection generally con-
sists of two phases: feature selection and classification [4], [8]–
[10], similar to this work. Since these existing NIDS often suffer
from the high computation and execution time overhead, several
NIDS approaches have been evolved with network simplication
or sparsification via parameter reparameterization [11], feature
reduction [12], and neuron pruning [13].

Some more general network simplication irrespective of the
NIDS context has long been investigated with the following
categories: neuron pruning [14]–[16], feature reduction [17]–
[20], operation simplification [21]–[23].

More closely related to feature extraction and neuron pruning,
primarily considered in this work, Molchanov et al. [24] have
designed a pruning method that approximates the loss change
with the first-order derivative term upon trimming a feature
map. Han et al. [25] have proposed a pruning method in which
the edge connections with the smaller absolute weight values
are removed from the network. Yu et al. [26] have introduced
a neuron importance score propagation (NISP) algorithm that
measures the importance score of each neuron and prunes one
based on the backpropagation impact on its prior neurons.

To the best of our knowledge, this work is the first to
implement an on-device multi-class classification of network
attack types using a stacked autoencoder architecture with a
probabilistic neuron pruning approach. The main contributions
can be summarized as follows:
• We propose an on-device network intrusion detection

system with much fewer parameters, which allows to
quickly detect abnormal network behaviors as well as
attack types, based on a stacked pruned autoencoder
combined with a classifier network.

• A lightweight probabilistic feature extraction method is
designed with constrained memory size and computing
capacity for edge devices.

• Experimental results with different pruning rates over real-
world datasets demonstrate that our proposed algorithm
significantly reduces the model size, while achieving
the competitive performance in both supervised and
unsupervised tasks.

II. SYSTEM MODEL

As the Internet grows exponentially with a huge number
of edge and IoT devices, botnet malware often use them as
intermediate hosts to perform distributed massive attacks to
certain network devices, and sometimes the entire network.
Moreover, the attack patterns become more diversified and
intelligent based on the recent advanced machine learning
techniques. Analyzing real-time network traffic traces reliably

Fig. 1. Our proposed lightweight network intrusion detection architecture
with a stacked AE-based probabilistic feature extraction

and promptly is a challenging, but essential task, which is
required at modern edge devices.

We address the problem of network intrusion detection
at edge devices with constrained computation and memory
capacity. We aim to design a lightweight deep neural network
architecture that can effectively learn a non-linear relationship
between network traffic features and attack types with the small
learning and inference overhead.

In order to handle large scale network traffic traces that
have embedded numerous underlying features, at edge devices,
feature extraction offers an effective way of discovering
statistically significant features. Autoencoder (AE) is a neural
network that can learn efficient representation of the input data
by compressing it into the latent code, and thus can be used
as a powerful feature detector.

This work incorporates an autoencoder model as the under-
lying feature detector on network attack traces. To significantly
reduce the model size in terms of computation and memory
consumption, we integrate a neuron pruning approach with the
autoencoder architecture.

To formally define the problem of this work, we first
introduce necessary notations for the AE model. Let x and
W denote the input data and the weight matrices. Note that
W consists of a set of weight matrices, and the elements in
a weight matrix indicates the connection levels between two
consecutive layers. The output layer f(x,W), which is the
reconstructed data, can be expressed as a function of the input
data and the weight matrices. To indicate the architecture of
the pruned network, the binary mask matrices M , which has

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MAY 2021 3

the same size as W , are used. At each matrix in M , a value of
1 implies a valid connection between two corresponding units,
whereas a value of 0 indicates a pruned connection. Then, the
output layer in the pruned AE is represented as f(x,W �M),
where � denotes the element-wise multiplication.

We aim to find a pruned AE model that minimizes the
reconstruction loss, while meeting a target pruning rate pprune,
as follows:

min
M
| f(x,W �M)− x |

subject to: µM ≤ 1− pprune

where µM is the mean value of binary mask matrices M . For
example, if pprune is set to 0.4, µM should be at most 60%
of the elements that should be set to 1 in M .

Then, the problem of deriving a lightweight stacked AE-
based feature extraction model can be decomposed into three
stages: 1) score estimation, 2) pruning rate estimation, and
3) pruned network construction, as illustrated in Fig. 1. The
first stage of score estimation is to extract network traffic
features and quantify the inter-correlation among them. At the
second stage, after computing a pruning probability of the
input feature, the neuron-based pruning probability is inferred.
At the final stage, the extracted features as the output of the
pruned autoencoder network, are fed into the input of an attack
classifier network, in order to determine a specific attack type.

III. OUR APPROACH

In this section, we first discuss the motivation behind our
pruning algorithm in Sec. III-A. In order to make an effective
decision on neuron pruning, We derive a formal relationship
of the importance score of neurons with the input features x
and the weight matrices W . Then, we introduce our proposed
pruning algorithm based on an autoencoder network, which is
inspired by the formulation of the importance score of neurons
in Sec. III-B. Finally, we exploit the the pre-trained pruned
encoder network to construct an attack classifier for detecting
the abnormality and the attack type from the network traffic
traces.

A. Motivation

For the sake of simplification, we first take into account
an AE model with one hidden layer. Fig. 2 shows an AE
model consisting of three layers: input, one hidden, and output
layers. The equation of Rectified Linear Unit (ReLU) activation
function is presented as follows.

ReLU(z) =

{
z z ≥ 0

0 otherwise
(1)

Since the computation of the derivative of ReLU is quite fast
compared to other activation functions, and there is no satura-
tion for the range of non-negative input values, ReLU is selected
as the activation function. The input and output layers have nx
features, while the hidden layer contains nh ReLU activation
units (where nh < nx, in general). Let wik denote the connec-
tion weight between input feature xi and feature hk in the hid-
den layer. Similarly, w′kj is the weight value that represents the

strength of connection between feature hk and the reconstructed
feature x̂′j . Specifically, hk =

∑nx

i=1ReLU(xiwik + bk) and
x̂j =

∑nh

k=1ReLU(hkw
′
kj + bj) where bk and bj are bias

values of hidden unit hk and output unit x̂′j , respectively.

Fig. 2. Architecture of a fully-connected AE model with one hidden layer

Assume that there are m samples in the training set. The ob-
jective function is to minimize the mean-squared reconstruction
error:

C =
1

2m

m∑
l=1

(x(l) − x̂(l))2 (2)

where x(l) the lth sample in the training set. Using the chain
rule, the importance of each input feature (which is proportional
to the change in the loss function with respect to a specific

input feature | ∂C
∂xi
|) is derived for a given training sample:

| ∂C
∂xi
| = |

nx∑
j=1

∂C

∂x̂j
· ∂x̂j
∂xi
|

= |
nx∑
j=1

∂C

∂x̂j
·

nh∑
k=1

∂x̂j
∂hk

∂hk
∂xi
|

= |
nx∑
j=1

(xj − x̂j) ·
nh∑

k=1,x̂j≥0,hk≥0

w′kjwik| (3)

According to Eq. (3) that the importance of feature xi
depends on the sum of the product of weight values, w′kjwik.
In case of the fully-connected AE, xi propagates through
all hidden units hk on the link wik (1 ≤ k ≤ nh), before
reaching the output unit x̂j on the link w′kj . In other words,
the importance score of xi is highly related to the propagation
paths from xi to x̂j . Accordingly, the product of connection
weights (w′kjwik) on the propagation path between xi and x̂j
can be used as a physically meaningful metric for pruning a
neuron in the AE model. However, it takes a long time for the
training procedure to find the optimal weight values, and some
specific learning cases with a large number of training samples
or a complex AE architecture often make it even worse.

We aim to design a pruning algorithm that can sparsify
a given network without a pre-training process. Inspired by
the fact that the importance score of an input feature highly
depends on the propagation path between the input feature and
output units, we propose a probabilistic pruning method in
which the importance score of an input unit is first determined
based on a correlation coefficient between the input unit and

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MAY 2021 4

(a) Original neural network before pruning

(b) Pruned neural network after pruning

Fig. 3. Demonstration of the propagation paths between xi and x̂j in an
autoencoder network

the reconstructed input. Then, the probability for a neuron to
be pruned is computed based on its importance score. In case
of the important input features, we want them to keep remained
by acquiring as many propagation paths as possible, with a
relatively low pruning probability; the unimportant features
would rather be skipped for the architectural efficiency by
likely pruning the existing propagation paths with a relatively
high pruning probability.

Most of the existing pruning algorithms are deterministic,
i.e., the edge weights with the lowest importance score are
completely removed from the network. An inherent problem
of these deterministic pruning methods is that they often
delete some boundary yet still important neurons located
right below a threshold. Although both the pruned and the
remaining neurons may have the similar contributions to the
fully-connected network, the deterministic algorithms discard
any further opportunity. In order to address this issue, we
propose a probabilistic pruning method that attempts to prune
a neuron with a certain pruning probability, which is determined
by the importance score and the rank of the neuron.

Fig. 3 shows an example of removing a connection path
from xi to x̂j . In Fig. 3(a), xi is fully connected with x̂j via
all 4 hidden units in the fully-connected autoencoder model. In
case that one hidden unit is pruned, the number of propagation
paths from xi is reduced to 3, based on the contribution of xi
to the output layer.

B. Algorithm

We present a pruning algorithm called Spearman correlation-
based probabilistic pruning (SCPP) for a general AE model
with an arbitrary number of hidden layers. Note that there are

are some advanced AE models [27] with more complex archi-
tectures. However, since our work aims to design a lightweight
intrusion detection method for edge devices, a fundamental
architecture of AE is used to learn the representative features
of data traffic. SCPP consists of three steps: 1) computing the
importance score of input features; 2) computing the pruning
probability for each input feature; and 3) constructing a pruned
AE model.

1) Computation of the input feature’s importance score:
In the proposed SCPP algorithm, the importance score of the
ith input feature xi is computed by measuring a correlation
between xi and other input features. Since the representative
features extracted from the autoencoder network are then
used to build a classification model, the SCPP algorithm also
considers the correlation between xi and the output labels
of the classifier. Note that in general, the input features are
either discrete or continuous variables. We select the Spearman
correlation method [28] to compute the correlation coefficient
between two features since it can be applied for both discrete
and continuous variables. Let ρ(xi, xj) denote the correlation
coefficient between two input features xi and xj while ρ(xi, yk)
indicates the correlation score between xi and the kth label
yk. Assume that there are ny output units in the classification
model. We define s(xi) as the importance score of xi, which
is equal to the mean of Spearman correlation values between
xi and all of the reconstructed features at the output layer
of the AE network as well as the label of the classification
model. Note that in the ideal case the AE model is trained
such that the reconstructed feature equals the corresponding
input feature, i.e., x̂i = xi with i = 1, 2, ..., nx. Therefore, the
importance score s(xi) can be derived as follows.

s(xi) =
1

nx + ny

(nx∑
j=1

|ρ(xi, xj)|+ .

ny∑
k=1

|ρ(xi, yk)|
)
. (4)

Since the correlation coefficient can get a negative value, the
absolute values |ρ(xi, xj)| and |ρ(xi, yk)| are considered.

The Spearman correlation between two variables is equiv-
alent to the Pearson correlation between the rank values of
them. Let Rxi and Rxj denote the rank of two variables xi
and xj , respectively. Then, if there are n samples for each
variable, ρ(xi, xj) is derived as below:

ρ(xi, xj) =

∑n
k=1(R

(k)
xi − µRxi

)(R
(k)
xj − µRxj

)

σ(Rxi)σ(Rxj)
(5)

where µRxi
and µRxj

are the mean of rank Rxi and Rxj ,
respectively, while σ(Rxi

) and σ(Rxj
) denote the standard

deviations of rank Rxi
and Rxj

, respectively. The input features
are arranged in the descending order of the importance score’s
rank value, i.e., the feature with the largest importance score
has a rank value of 1, while the feature with the smallest
importance score has a rank value of nx, which is defined as
the number of input features.

2) Computing a Pruning Probability for an Input Feature:
In the second step, we find and assign a pruning probability for
each input feature. A linear method is used such that the pruning
probabilities are determined to be linearly increased with the
ascending order of the rank values of input features’ importance

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MAY 2021 5

scores. More specifically, a feature with the rank mean of the
importance score value, Rs(xi) = nx+1

2 , is pruned according to
a target pruning rate pprune. In addition, the pruning probability
for input feature xi, p(xi) is linearly proportional to the rank

value with the step size ∆ =
2×min(pprune, 1− pprune)

nx − 1
.

Mathematically, the pruning probability of feature xi is
calculated as follows.

p(xi) = pprune + ∆
(
Rs(xi) −Rs(xi)

)
(6)

= pprune + ∆
(
Rs(xi) −

nx + 1

2

)
Table I demonstrates an example of the pruning probability

for nx = 5 input features, where pprune = 0.4 is given.
The step size that indicates the pruning probability difference
between two features with the consecutive rank values is given

by ∆ =
2×min(0.4, 0.6)

5− 1
= 0.2

TABLE I
EXAMPLE OF THE PRUNING PROBABILITY OF FIVE INPUT FEATURES

Rank of Feature scores Pruning Probability
1 0.0
2 0.2
3 0.4
4 0.6
5 0.8

3) Construction of a Pruned AE Network: After obtaining
the pruning probability of each input feature, the pruned
network is constructed by first computing the mask matrices,
and then determining the pruned propagation paths using the
mask matrices. For example, in case of the AE model with
a hidden layer, a binary mask matrix M0 ∈ Bnx×nh is used
to indicate the mask connection between the input layer and
the first hidden layer. The connection mask of the ith input
feature xi is represented by nh elements in the ith row of
M0. Specifically, these nh elements are samples of a random
variable that follows the Bernoulli distribution with the mean
of 1− p(xi), where p(xi) is the pruning probability of input
feature xi.

Let M1 ∈ Bnh×nx denote the connection mask between the
hidden layer and the output layer. Since the AE model usually
has a symmetric architecture, the propagation paths are also
symmetric in terms of layer structure (i.e., M1 = MT

0).
Similarly, we take into account the general AE with an

arbitrary number of hidden layers. First, the connection masks
of the encoder part are determined, and then that of the decoder
side can be inferred because of the symmetric AE architecture.
Mask matrix M0 for weights between the input and the first
hidden layers is derived in the same way as in the case of one
hidden layer. For the connection mask M1 that represents the
remaining propagation paths between the first and the second
hidden layers, the pruning probability of each hidden unit in
the first hidden layer should be estimated. We define h

(k)
j

as the jth unit at hidden layer k. Let Mk and n
(k)
h denote

the connection mask and the number of hidden units in layer
k, respectively. If there are nl hidden layers, 1 ≤ k ≤ nl.
Since hidden units h(1)j transmit information of all of the input

features to the next layer, the pruning probability of p(h(1)j) is
calculated as the average ratio of the remaining connections
from the input layer through the hidden unit h(1)j :

p(h
(1)
j) =

1

n0

n0∑
i=1

M0[i, j] (7)

where M0[i, j] is the element of M0 at the ith row and jth

column. In general, based on the connection mask of the
preceding layer, the pruning probability of the units in the
current layer in the encoder side is calculated in a recursive
manner. Suppose that there are n(k)h units at hidden layer k.
The pruning probability for the jth unit at the kth hidden layer
h
(k)
j is calculated as below.

p(h
(k)
j) =

1

n
(k−1)
h

n
(k−1)
h∑
i=1

Mk−1[i, j] (8)

where j = 1, 2, ..., n
(k)
h . Finally, after obtaining the connection

mask matrices for the encoder side, the mask matrices for the
decoder part are inferred with the assumption of a symmetric
AE architecture. In other words, Mk = Mnl−k with k =
nl + 1

2
,
nl + 3

2
, ..., nl. The procedures of the SCPP method can

be summarized in Algorithm 1. The SCPP algorithm consists
of three consecutive steps and the complexity of each step is
O(n2x + nxny), O(nx) and O(n

(1)
h nl), respectively. Note that

due to n(1)h < nx, the time complexity of SCPP is as high as
O(n2x + nxny).

C. Lightweight Intrusion Detection Architecture

Making use of the prior pruned AE model, we construct and
train a neural network-based classifier by connecting a fully-
connected softmax layer after the AE’s encoder network, as
shown in Fig. 4. For the binary intrusion detection problem, a
single output unit is sufficient to represent the network behavior
with normal and abnormal (0: normal and 1: abnormal). For
the multi-attack classification problem, the number of output
units is equal to the number of attack types where each output
unit implies the probability for a specific attack to appear. The
parameter training in the classifier consists of three following
steps.
• Step 1: Initialize the weights across hidden layers by using

the pre-trained weights of the encoder network
• Step 2: Freeze the weights in hidden layers of the classifier

and train only the softmax layer
• Step 3: Fine-tune the weights of the whole deep neural

network

IV. EXPERIMENTS

We evaluate the feasibility of our network intrusion detection
algorithm on two real-world network traffic datasets: UNSW-
NB15 [29] and CICIDS [30]. We first validate the effectiveness
of the encoder network of our pruned autoencoder architecture
by quantifying the reconstruction error. We select three state-of-
the-art pruning algorithms based on their novelty and popularity:
Molchanov’s algorithm [24], Han’s algorithm [25], and NISP

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MAY 2021 6

Algorithm 1 SCPP Algorithm
Input: Pruning rate pprune

Number of input features nx
Number of attack labels ny
Number of hidden layers of autoencoder model nl

First step: Compute input feature’s score
1: Rank input feature Rxi

using the training dataset
2: for i = 1→ nx do
3: for j = i→ nx do

4: ρ(xi, xj) =

∑n
k=1(R

(k)
xi − µRxi

)(R
(k)
xj − µRxj

)

σ(Rxi
)σ(Rxj

)
5: end for
6: for k = 1→ ny do
7: Compute ρ(xi, yk)
8: end for
9: end for

10: for i = 1→ nx do

11: s(xi) =
1

nx + ny

(nx∑
j=1

|ρ(xi, xj)| +
ny∑
k=1

|ρ(xi, yk)|
)

. Input features’ score
12: end for

Second step: Compute pruning probability for input
features

13: ∆ =
2×min(pprune, 1− pprune)

nx − 1
14: for i = 1→ nx do
15: p(xi) = pprune + ∆

(
Rs(xi) −

nx + 1

2

)
16: end for

Third step: Construct the pruned AE model
17: Prune connections from feature xi with probability p(xi)
18: Construct mask matrix M0 between input to first hidden

layer
Derive connection mask for encoder

19: for k = 1→ nl−1
2 do

20: for j = 1→ n
(k)
h do

21: p(h
(k)
j) =

1

n
(k−1)
h

n
(k−1)
h∑
i=1

Mk−1[i, j]

22: Prune connections from neuron j in layer k to layer
k + 1 with probability p(h(k)j)

23: end for
24: Derive Mk

25: end for
Derive connection mask for decoder

26: for k =
nl + 1

2
→ nl do

27: Mk = Mnl−k . symmetric pruning
28: end for

return The pruned autoencoder model

Fig. 4. Our proposed lightweight NIDS architecture based on a pruned
autoencoder

algorithm [26]. It should be noted that the proposed pruning
algorithm is designed for resource-limited edge devices (e.g.,
FPGA-based routers or gateways, or IoT devices), which cannot
support computationally intensive operations. To stress out this
aspect, we validate NIDS models in terms of the number of
parameters and computation operations.

We apply our pruning algorithm and the counterpart algo-
rithms to an original fully-connected autoencoder model, in
which the former encoder network consists of 100, 50, 20
neurons across 3 hidden layers for UNSW-NB15, and 60, 30
neurons across 2 hidden layers for CICIDS, in order to evaluate
the resulting pruning quality. The above-mentioned architecture,
with the highest result on the validation set among different
network architectures of the AE model, is selected.

We first show how the SCPP pruning algorithm can keep the
inherent patterns of images on the handwritten digit recognition
task using the MNIST dataset. Then, once the unsupervised
feature of our pruning technique is validated, we investigate
the prediction accuracy of network intrusion classification. We
show the accuracy of predicting the abnormality of network
traffic with two classes, i.e., whether a network traffic trace
turns out to be normal or not. Our NIDS algorithm that has
been trained with two labels is compared against a state-of-
the-art two-label NIDS classifier [9] based on multi-distributed
variational autoencoder (MVAE).

Beyond the binary anomaly detection, we validate more
detailed classification performance of inferring the correct
anomaly type with a multi-class NIDS classifier. Our classifier
is compared against a fully-connected neural network-based
classifier as an upper-bound performance baseline and a two-
stage deep learning model (TSDL) [27] with an advanced
autoencoder network in NIDS.

A. Experimental Setting

We used two representative network traffic traces of UNSW-
NB15 and CICIDS datasets. The UNSW-NB15 dataset includes
real normal and synthetic abnormal network traffic traces during
a 16-hour experimental period, consisting of 9 attack classes.
For our evaluation, the full dataset was divided into a training
data set of 175,341 samples and a test data set of 82,332
samples, and one third of the training data set is used as the
validation dataset.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MAY 2021 7

Fig. 5. Visualization of images in the MNIST dataset [31]

The CICIDS dataset covers normal network activities and
common network attacks with 14 different types, which were
collected during 5 days in 2017. The entire dataset contains
more than 3 million samples and 78 recorded features, and is
divided into the training, validation, and test data sets with the
ratio of 6:2:2. According to [31], [32] in which 20% samples
are recommended to be used as the test set, we have randomly
selected 20% instances as the validation set for the selection
of the good hyper-parameters, while the remaining 60% data
are used to train network parameters.

To pre-process the traffic features, the nominal features are
first converted to binary values using the one-hot encoding
technique. Then, the min-max normalization is applied to
bound the absolute input values to be less than or equal to
1. The auto-encoder model consists of a certain number of
hidden layers where the middle hidden layer contains the
representative traffic features. After training the AE model, the
representative features are extracted and fed into the softmax
output layer in the classification model. The number of units
in the encoder of the AE model is fixed to [100, 50, 20] and
[60, 30] for UNSW-NB15 and CICIDS datasets, respectively,
while the number of softmax units is equal to the number of
traffic classes. We implemented our NIDS algorithm and other
counterpart algorithms in a desktop PC with Intel Core i7-9700
3GHz CPU (with no GPU support) and 16 GB RAM, which
are comparable to a normal edge device specification, with
TensorFlow 1.15.0 on 64-bit Windows 10 OS to evaluate the
detection and classification performance of the pruning methods.
There are some commercial devices at the edge with the similar
hardware configuration: NVIDIA Jetson AGX Xavier, Jetson
Xavier NX, Jetson Nano, Cisco IC3000 Industrial Compute
Gateway, Dell Edge Gateway Model 5100 (industrial version),
and Industrial Smart IoT Edge Computing Gateway.

B. Pruning Effect on Feature Extraction

To get a glimpse of the effectiveness of our proposed SCPP
pruning algorithm in a visual way, we illustrate the importance

scores of features for images in the MNIST dataset, as shown
in Fig. 5. Since the images with different labels retain unique
features, we validate how well a pruning algorithm avoids
losing the innate characteristics within a feature.

We calculate the important scores of the input features with
the same size of 28×28 with the MNIST images and visualize
them for each label from the left to right side of Fig. 6. As can
be compared in Figs. 6(a) and (b), the SCPP algorithm extracts
and highlights the key patterns in a more clear contrasting
manner, in particular for the cases of labels 6, 8, and 9. This
result implies that our SCPP algorithm is good at keeping the
core features after pruning some unimportant features, without
requiring a pre-training AE model.

We validate how choosing a different pruning rate affects
classification performance over different pruning methods on
the MNIST dataset. We construct an AE model with a hidden
layer of 300 neurons to learn the latent vectors from the MNIST
images. Then, the extracted vector is used to classify the images
into 10 different classes. As shown in Fig. 7, our pruning
algorithm achieves similar performance to the others with
the low pruning rates (e.g., 0.5) and higher performance for
higher pruning rates beyond 0.5. In particular, in case of the
pruning rates of 0.98, our SCPP algorithm further improves
the classification accuracy by 1 to 3.5% compared to others.
The SCPP results on the handwritten digit classification task
implicitly implies that the proposed SCPP pruning scheme can
work well for a general machine learning problem. The rest of
this section is devoted for analyzing experimental performance
of SCPP and other pruning methods on the intrusion detection
task.

C. Feature Extraction Performance

We measure the reconstruction error that calculates the
mean squared error between the input samples and their
reconstructed output samples after pruning, on both UNSW-
NB15 and CICIDS datasets, as shown in Figs. 8 (for training
sets) and 9 (for test sets). We vary the pruning rate pprune in
the range of [0, 1], and report the average performance over 5
experiment runs. We compare our SCPP pruning algorithm to
other pruning counterpart algorithms of Molchanov’s, Han’s,
and NISP algorithms together with a naive random pruning
approach that randomly prunes a neuron with a probability of
pprune.

As indicated in Figs. 8(a) and 8(b) on both datasets, as
the pruning rate pprune increases from 0 to 0.95, our SCPP
algorithm increases very slowly from 2.14× 10−4 to 5.18×
10−4 with a factor of 2.42 on the UNSW-NB15 dataset. On
the other hand, the reconstruction error of the other pruning
algorithms: random pruning, Molchanov’s, Han’s, and NISP
increases steeply with a factor of 4.47, 8.03, 16,65, and 14.69,
respectively, as in Fig. 8(a). We verify the similar result on the
CICIDS training set, as shown in Fig. 8(b) and the test sets of
both datasets in Fig. 9.

This result demonstrates that our probabilistic feature extrac-
tion provides an effective way of dropping some unimportant
connections in the fully-connected neural network even at a very
high pruning rate of 0.95, for example. An autoencoder network

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MAY 2021 8

(a) Naive Derivative method based on Eq. (3)

(b) Our SCPP algorithm

Fig. 6. Visualization of the importance scores for images with a specific label based on a derivation method (a) and our SCPP algorithm (b), respectively

Random Pruning Han's Algorithm NISP Molchanov's Algorithm SCPP
Pruning Methods

91

92

93

94

95

96

97

98

99

100

Pr
ed

ict
io

n
Ac

cu
ra

cy
 (%

)

Pruning Rate: 0.5
Pruning Rate: 0.9
Pruning Rate: 0.95
Pruning Rate: 0.98

Fig. 7. Effect of the pruning methods on MNIST classification performance

pruned by our approach reconstructs the input with a relatively
smaller error. This implies that using only a small portion of
neurons via our approach still provides a stable unsupervised
learning performance with the smaller computation and memory
usage.

In that Molchanov’s, Han’s and NISP algorithms perform
pruning in such a deterministic way that the connections with
the lower importance scores are completely removed from the
network even though they may have inter-connected with their
prior or subsequent connections with the higher importance
scores. It is interesting to see that our approach and the random
pruning that both prunes neurons in a probabilistic manner are
more effective in feature extraction than the other deterministic
pruning techniques. This implies that a pruning algorithm with
reliable feature extraction can be applied to an even more deep
and wide neural network under the same learning and inference
time constraint.

D. Network Intrusion Detection Performance

We evaluate the network intrusion detection performance
for two classification problems: 1) two-label classification with
normal and abnormal; and 2) multi-label classification with
attack types.

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Rate pprune

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Re
co

ns
tru

ct
io

n
Er

ro
r o

n
Tr

ai
ni

ng
 S

et Han's Algorithm
NISP
Molchanov's Algorithm
Random Pruning
SCPP

(a) UNSW-NB15 training set

0.00 0.15 0.30 0.45 0.60 0.75 0.95
Pruning Rate pprune

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Re
co

ns
tru

ct
io

n
Er

ro
r o

n
Tr

ai
ni

ng
 S

et Han's Algorithm
NISP
Molchanov's Algorithm
Random Pruning
SCPP

(b) CICIDS training set

Fig. 8. Effectiveness of pruning algorithms in terms of reconstruction error
on the training set by varying the pruning rate

1) Two-label Classification: We first show the learning
curves of our SCPP algorithm in the accuracy and loss dynamics
for two-label classification on the UNSW-NB15 dataset, as
shown in Fig. 10. From the beginning to epoch 40 or around, the
SCPP-based two-label classifier network gets trained quickly
and efficiently. When there is no further improvement in

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MAY 2021 9

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Rate pprune

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Re
co

ns
tru

ct
io

n
Er

ro
r o

n
Te

st
 S

et

Han's Algorithm
NISP
Molchanov's Algorithm
Random Pruning
SCPP

(a) UNSW-NB15 test set

0.00 0.15 0.30 0.45 0.60 0.75 0.95
Pruning Rate pprune

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Re
co

ns
tru

ct
io

n
Er

ro
r o

n
Te

st
 S

et

Han's Algorithm
NISP
Molchanov's Algorithm
Random Pruning
SCPP

(b) CICIDS test set

Fig. 9. Effectiveness of pruning algorithms in terms of reconstruction error
on the test set by varying the pruning rate

accuracy of the validation set for the last 20 epochs, we stop the
parameter training process. We fine-tune training parameters
with various pruning rate and learning rate, as shown in Fig. 11.
The detection accuracy highly depends on both the learning
rate and the pruning rate. Specifically, the learning rate higher
than 0.01 results in unstable and low detection performance,
especially with the pruning rate lower than 0.8. Moreover,
the accuracy performance generally decreases in case that
the pruning rate higher than 0.8 due to the lack of network
parameters. Since the learning rate of 0.01 produces the highest
results among possible values, we have selected 0.01 as the
default value for the learning rate of the classification model.

Then, in order to compare our algorithm with a state-of-
the-art two-label classifier, MVAE with feature extraction
in NIDS [9], we collect the area-under-curve (AUC) score
which considers both true-positive and false-positive. This
is due to the fact that the score measure considers both
detection quality and specificity at various threshold settings.
As shown in Table II, our SCPP-based algorithm outperforms
all of other counterpart algorithms, which combines various
machine learning techniques with the MVAE-based underlying
feature extraction. Observing the performance of our SCPP

0 20 40 60 80 100 120 140
Epoch

93.8

93.9

94.0

94.1

94.2

94.3

Ac
cu

ra
cy

 (%
)

Accuracy on Training
Accuracy on Validation
Loss Value on Training
Loss value on Validation

0.115

0.120

0.125

0.130

0.135

0.140

Lo
ss

 V
al

ue

Fig. 10. Loss and prediction accuracy of our SCPP-based two-label classifier
over epoch on the UNSW-NB15 dataset

0.00 0.20 0.40 0.60 0.80 0.95
Pruning Rate pprune

65

70

75

80

85

Ac
cu

ra
cy

 o
n

Te
st

 S
et

 (%
)

Learning Rate: 0.001
Learning Rate: 0.005
Learning Rate: 0.01
Learning Rate: 0.05

Fig. 11. Effect of the learning rate on two-label prediction accuracy in our
SCPP algorithm with respect to pruning rate on the UNSW-NB15 test set

algorithm with different pruning rates, we demonstrate that
the SCPP-based two-label classifier can substantially reduce a
large portion of parameters from 80% up to 95%, without a
significant sacrifice of the classification performance.

We also compare the SCPP-based classification models with
the existing methods in terms of computation and memory
overhead. Specifically, the memory usage to store network
parameters and the number of FLOPs are used as comparison
metrics. It is assumed that four bytes are used to store each
parameter. It should be noted that, without neuron pruning, the

TABLE II
PERFORMANCE COMPARISON AMONG TWO-CLASS CLASSIFIERS ON THE

UNSW-NB15 DATASET

Models AUC #Param Memory #FLOPs
Score (KB)

MVAE w/ Naive Bayes 0.928 25,812 100.83 25,640
MVAE w/ SVM 0.945 25,791 100.75 25,620
MVAE w/ Decision Tree 0.954 25,790 100.74 25,600
MVAE w/ Random Forest 0.961 25,870 101.05 25,600
AE w/ Random Forest 0.900 25,870 101.05 25,600
SCPP w/ pprune = 0 0.963 25,791 100.75 25,620
SCPP w/ pprune = 0.5 0.965 12,991 50.74 12,820
SCPP w/ pprune = 0.8 0.962 5,311 20.74 5,140
SCPP w/ pprune = 0.95 0.935 1,471 5.75 1,300

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MAY 2021 10

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Rate pprune

0

100

200

300

400

500

600

700

800
Tr

ai
ni

ng
 ti

m
e

(s
)

Han's Algorithm
NISP
Molchanov's Algorithm
Random
SCPP

(a) Training time

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Rate pprune

50

60

70

80

90

100

Ac
cu

ra
cy

 T
es

t (
%

)

Han's Algorithm
NISP
Molchanov's Algorithm
Random
SCPP

(b) Classification accuracy

Fig. 12. Training time and classification accuracy depending on the pruning
algorithm on the UNSW-NB15 dataset

fully connected classifier with MVAE has the model complexity
similar to the proposed SCPP method with the pruning rate of 0.
Even though MVAE and AE use different cost functions, they
have the same architecture. When the pruning rate increases,
our SCPP scheme can yield even lower model complexity
than MVAE to learn the latent representation of data traffic.
For example, when the pruning rate is 0.8, both memory and
complexity overhead of the SCPP-based classification model
are reduced by almost 80%.

2) Multi-label Classification: In order to show the
lightweight benefits of SCPP over other pruning methods,
we first conduct performance comparison between pruning
algorithms in terms of training time, inference time, and
multi-class classification accuracy. Then, we measure and
compare architecture complexity and accuracy among the
SCPP algorithm, the fully-connected neural network, and TSDL
model. Finally, research discussion is made on the possible
improvement of the classification performance of the proposed
method by analyzing the data distribution and accuracy on
each attack label.

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Rate pprune

1000

1500

2000

2500

3000

3500

Tr
ai

ni
ng

 ti
m

e
(s

)

Han's Algorithm
NISP
Molchanov's Algorithm
Random
SCPP

(a) Training time

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Rate pprune

86

88

90

92

94

96

98

100

Ac
cu

ra
cy

 T
es

t (
%

)

Han's Algorithm
NISP
Molchanov's Algorithm
Random
SCPP

(b) Classification accuracy

Fig. 13. Training time and classification accuracy depending on the pruning
algorithm on the CICIDS dataset

TABLE III
AVERAGE PERFORMANCE OF PRUNING ALGORITHMS ON UNSW-NB15

Accuracy (%) Training Inference
time (s) time (s)

Han 69.32 293.70 0.068
NISP 71.40 312.39 0.069

Molchanov 73.99 281.1 0.070
Random 72.95 239.08 0.075

SCPP 74.17 254.88 0.073

TABLE IV
AVERAGE PERFORMANCE OF PRUNING ALGORITHMS ON CICIDS

Accuracy (%) Training Inference
time (s) time (s)

Han 95.70 1786.93 0.43
NISP 96.66 1936.13 0.42

Molchanov 96.35 1882.64 0.47
Random 96.11 1285.46 0.43

SCPP 96.58 1851.02 0.43

First, Figs. 12 and 13 show the comparisons of the average
training time and classification accuracy with different pruning

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MAY 2021 11

TABLE V
PERFORMANCE COMPARISON FOR MULTI-ATTACK CLASSIFICATION WITH

FULLY-CONNECTED NN, TSDL ON UNSW-NB15

No. of No. of Accuracy
parameters FLOPs (%)

TSDL [27] 31,031 61,710 76.48
Fully-Connected NN 25,980 51,600 73.37
SCPP (pprune = 0.5) 13,080 25,890 74.63
SCPP (pprune = 0.9) 2,760 5,322 74.65

SCPP (pprune = 0.95) 1,470 2,751 73.09

algorithms by varying the pruning rate from 0 to 0.98 on
the UNSW-NB15 and CICIDS datasets, respectively. Since
network parameters are randomly initialized, to make fair
comparison between the pruning algorithms, we collect and
present the average training time and classification accuracy
over 10 running times for each pruning rate. Generally, the
classification accuracy clearly decreases when the pruning rate
is greater than 0.8. This observation is attributed by the fact that
the large pruning rate causes the lack of network parameters,
and thus, the classification model becomes underfit to the data
samples.

In order to indicate the overall performance of pruning
algorithm over different pprune values, we take an average
of classification accuracy, training time, and inference time
over pruning rate values as shown in Tables III and IV. In
practice, a specific pruning rate should be used; however, for the
purpose of conducting extensive and quantitative experiments,
we measure how well each pruning algorithm shows dynamic
performance over a variety of pruning rates, requiring different
computation and memory overhead. With the UNSW-NB15
dataset, our SCPP achieves the highest average classification
accuracy (i.e., 74.17%), while requiring relatively lower training
time, thus becoming more feasible to edge devices than the
other methods. On the CICIDS dataset, the highest classification
accuracy (96.66% on average) belongs to the NISP method.
Meanwhile, our SCPP algorithm produces the second-highest
accuracy with the 85-second reduction of training time (i.e.,
4.4%) compared to the NISP method. The random pruning
method consumes the lowest training time on both datasets
for parameters learning, but the classification performance is
less than SCPP and Molchanov’s algorithms. With regard to
the inference time for all test samples, the pruning algorithms
consume similar amount of time to recognize an attack type
of incoming traffic on both datasets.

In summary, beside the lower reconstruction error than the
other pruning methods, our SCPP algorithm yields relatively
higher classification accuracy with the lower training time
than the deterministic pruning schemes. Since edge devices
are equipped with some more limited computing and memory
resource, it is more beneficial to use the proposed SCPP scheme
when deploying a network defense system on the edge.

Second, we validate the multi-attack classification perfor-
mance by comparing our algorithm against a fully-connected
neural network and TSDL [27] on both datasets as shown
in Tables V and VI. TSDL consists of two consecutive sub-
models. The first sub-model trains an autoencoder network
from traffic features and then the condensed features are fed

TABLE VI
PERFORMANCE COMPARISON FOR MULTI-ATTACK CLASSIFICATION WITH

FULLY-CONNECTED NN, TSDL ON CICIDS

No. of No. of Accuracy
parameters FLOPs (%)

TSDL [27] 8,616 16,970 98.92
Fully-Connected NN 7,035 13,860 98.63

SCPP (pprune = 0.5) 3,570 6,983 98.02
SCPP (pprune = 0.9) 798 1,481 97.31

SCPP (pprune = 0.95) 452 793 97.08

into a sigmoid output layer to learn the intrusion probability
value. This probability value and traffic features provided by
the dataset are later used to construct another autoencoder
network. In the second sub-model, the abstract encoded features
extracted from the second autoencoder are connected to an
softmax output layer to classify attack types of data traffic.

As can be seen in Tables V and VI, with some small sacrifice
in classification accuracy of 1.9 - 3.4%, the SCPP algorithm is
much more lightweight than TSDL. For example, in UNSW-
NB15, when the pruning rate is set to 0.9, our SCPP method
can reduce parameters and FLOPs by a factor of 11.2 and
11.6, respectively, with less than 2% accuracy reduction. The
reason that TSDL offers a slightly higher accuracy is that
TSDL is based on a relatively more complex two serial sub-
models where the second sub-model leverages the intrusion
probability learnt from the first sub-model. Our SCPP algorithm,
on the other hand, only considers one autoencoder network
together with neuron pruning, resulting in considerably fewer
parameters and FLOPs than TSDL. Therefore, a symmetric
autoencoder network consisting of an encoder and a decoder
turns out to be an effective architecture for extracting the
feature representation.

The results indicate that our SCPP-based NIDS algorithm
produces a similar predictive performance, while using con-
siderably fewer parameters. For example, with pprune = 0.95
where 95% of the weight connections are pruned, our algorithm
reduces the number of parameters, and the number of FLOPs
by a factor of 25, 980/1, 470 ≈ 17.67 and 51, 600/2, 751 ≈
18.76, respectively on the UNSW-NB15 dataset, and by a
factor of 7, 035/452 ≈ 15.56 and 13, 860/793 ≈ 17.48,
respectively on the CICIDS dataset, while achieving almost
similar prediction quality, compared to the fully-connected
neural network. Meanwhile, the number of parameters and
FLOPs in our SCPP algorithm is equal to 1/21.11 and 1/22.43
that of TSDL with pprune = 0.95 in UNSW-NB15. In cases
of CICIDS, these numbers are 1/19.06 and 1/21.40 for
parameters and FLOPs, respectively.

Reducing the number of FLOPs by a factor of roughly
19 technically means that the edge devices with SCPP can
inspect data packets 19 times higher than the fully-connected
classification model. For example, assume that an edge de-
vice (e.g., industrial smart IoT edge computing gateway by
EtherWan systems company) has a speed of 1.35 GHz and
spends 20 clock cycles on average for each FLOP. In SCPP,
the maximum number of packets to be inspected by this edge
device is (1.35 × 109)/(2, 751 × 20) = 24, 736. If there are
1000 bytes per packet on average, the maximum data rate can

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MAY 2021 12

TABLE VII
DISTRIBUTION OF ATTACK TYPES IN THE TRAINING AND TEST SETS OF UNSW-NB15

Class name Training size Training distribution (%) Test size Test distribution (%)
Analysis 2,000 1.14 677 0.82
Backdoor 1,746 1 583 0.71

DoS 12,264 6.99 4,089 4.97
Exploit 33,393 19.04 11,132 13.52
Fuzzers 18,184 10.37 6,062 7.36
Generic 40,000 22.81 18,871 22.92
Normal 56,000 31.94 37,000 44.94

Reconnaissance 10,491 5.98 3,496 4.25
Shellcode 1,133 0.65 378 0.46

Worms 130 0.07 44 0.05
Total 173,341 100 82,332 100

TABLE VIII
CONFUSION MATRIX ON THE TEST SET OF UNSW-NB15

Anal. Back. DoS Expl. Fuzz. Gene. Norm. Reco. Shell. Worm. Total Accuracy (%)
Anal. 1 0 23 638 11 0 4 0 0 0 677 0.15
Back. 0 26 23 507 15 0 2 2 8 0 583 4.46
DoS 0 39 174 3,642 132 8 19 29 46 0 4,089 4.26
Expl. 16 48 120 10,146 445 2 80 111 162 2 11,132 91.14
Fuzz. 0 25 48 1,444 3,126 0 965 156 298 0 6,062 51.57
Gene. 0 11 57 460 141 18,142 34 5 18 3 18,871 96.14
Norm. 306 63 24 1,161 7,426 1 27,507 391 120 1 37,000 74.34
Reco. 0 8 14 645 44 4 58 2,652 71 0 3,496 75.86
Shell. 0 15 0 34 41 0 7 68 213 0 378 56.35
Worm. 0 1 0 30 5 0 0 0 1 7 44 15.9
Total 323 236 483 18,707 11,386 18,157 28,676 3,414 937 13 82,332 Average: 75.29%

TABLE IX
PRECISION, RECALL, AND F1 PERFORMANCE ON THE TEST SET OF

UNSW-NB15

Precision Recall F1
Anal. 0.0031 0.0015 0.002
Back. 0.1102 0.0446 0.0635
DoS 0.3602 0.0426 0.0762
Expl. 0.5424 0.9114 0.6801
Fuzz. 0.2745 0.5157 0.3583
Gene. 0.9992 0.9614 0.9799
Norm. 0.9592 0.7434 0.8376
Reco. 0.7768 0.7586 0.7676
Shell. 0.2273 0.5635 0.3239
Worm. 0.5385 0.159 0.2455

be inspected is 24, 736× 1000× 8 = 187.2 Mb/s. Meanwhile,
if using the fully-connected classification model, the mentioned
edge device can only process maximum 187.2/18.75 = 9.98
Mb/s. Therefore, the proposed SCPP algorithm allows NIDS
to be implemented on the edge device in networks with a
relatively larger volume of traffic.

Finally, in order to give insights into multi-class performance,
we present label distribution, confusion matrices on the test
set of both datasets as shown in Tables VII, VIII, X, and XI.
Please note that both datasets are highly biased in terms of the
number of samples in each different group as can be seen in
Tables VII and X. As a result, performance in some certain
classes with majority samples is expected to be much higher
than others. Tables VIII and XI show the confusion matrix
of the classification model with SCPP (pprune = 0.5) on the
test sets where average classification accuracy is 75.29% and
96.43% with UNSW-NB15 and CICIDS, respectively. Note
that the value at row i and column j indicates the number of

samples that belong to the attack label i are predicted as class
j. In Table VIII, some classes with high performance include
Exploit, Generic, Normal, whereas the classification model
does not well detect certain attach types such as Analysis,
Backdoor, DoS, and Worms. Tables IX and XII explicitly show
precision, recall, and F1 scores that can be computed from the
confusion matrix.

We believe that the performance difference among the attack
classes is greatly related to the imbalance problem of the
dataset since the classification model tends to be trained
such that the output mostly belongs to a majority group.
According to [33] to address the imbalance issue, we can apply
resampling the training dataset (e.g., upsampling the minority
instances or downsampling the majority ones) or modify the
classification model (e.g., the cost function, threshold value,
one-class learning).

We have applied the random upsampling on some minority
classes such that each attack type in the training set has more
than 10,000 samples. After training the classification model
with the newly created training dataset, the confusion matrix
on the test set of UNSW-NB15 is collected and presented
in Table XIII. There is a significant increase in classification
accuracy for the minority classes, e.g., accuracy for Analysis,
Backdoors, and DoS gains by around 25%, 57%, and 14%,
respectively, compared to the case without the resampling
method. However, the performance rather decreases in some
classes (i.e., Exploits and Fuzzers) due to a possible lack of
physically different samples for these classes. In summary, it
is important to have enough actual data samples to construct a
classification model with high classification performance. Thus,
when deploying NIDS in practice, we should frequently collect

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MAY 2021 13

TABLE X
DISTRIBUTION OF ATTACK TYPES IN THE TRAINING AND TEST SETS OF CICIDS 2017

Class name Training size Training distribution (%) Test size Test distribution (%)
Normal 1,134,810 80.31 567,415 80.31
Botnet 978 0.069 489 0.069
DDoS 64,012 4.53 32,007 4.53

DoS GoldenEye 5,146 0.36 2,574 0.36
DoS Hulk 115,062 8.14 57,531 8.14

DoS Slow HTTP 2,748 0.19 1,377 0.19
DoS Slow Loris 2,898 0.21 1,449 0.21

FTP 3,966 0.28 1,986 0.28
Heart bleed 4 0.00028 5 0.00071

Infilt 18 0.0013 9 0.0013
PortScan 79,398 5.62 39,701 5.62

SSH 2,948 0.21 1,475 0.21
Web Attack Brute Force 752 0.053 379 0.054
Web Attack Sql Inject 10 0.00071 6 0.00085

Web Attack XSS 326 0.023 163 0.023
Total 1,413,076 100 706,566 100

TABLE XI
CONFUSION MATRIX ON THE TEST SET OF CICIDS

Norm. Botn. DDoS DoSG. DoSH. DSH. DSL. FTP Hear. Infi. Port. SSH. WABF. WASI. WAX. Total Accuracy(%)
Norm. 563,423 7 30 13 1,890 329 26 20 0 1 1,675 1 0 0 0 567,415 99.3
Botn. 489 0 0 0 0 0 0 0 0 0 0 0 0 0 0 489 0
DDoS 1,047 0 29,510 0 1,450 0 0 0 0 0 1 0 0 0 0 32,007 92.2
DoSG. 297 0 0 2,269 3 3 2 0 0 0 0 0 0 0 0 2,574 88.15
DoSH. 15,362 0 0 0 42,141 0 0 0 0 0 0 0 0 0 0 57,531 73.25
DSH. 310 0 0 1 0 1,062 4 0 0 0 0 0 0 0 0 1,377 77.12
DSL. 432 0 0 1 0 175 836 5 0 0 0 0 0 0 0 1,449 57.69
FTP. 127 0 0 0 0 0 0 1,859 0 0 0 0 0 0 0 1,986 93.61
Hear. 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 5 20
Infi. 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0
Port. 240 0 0 0 9 0 0 0 0 0 39,452 0 0 0 0 39,701 99.37
SSH. 728 0 0 0 2 0 0 6 0 0 0 745 0 0 0 1,475 50.51

WABF. 361 0 0 0 0 0 0 0 0 0 0 2 18 0 0 379 4.75
WASI. 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0
WAX. 162 0 0 1 0 0 0 0 0 0 0 0 0 0 0 163 0
Total 582,997 7 29,540 2,285 45,495 1,569 868 1,884 1 1 41,155 746 18 0 0 706,566 Average: 96.43%

TABLE XII
PRECISION, RECALL, AND F-1 PERFORMANCE ON THE TEST SET OF

CICIDS

Precision Recall F-1
Norm. 0.9664 0.993 0.9795
Botn. 0 0 N/A
DDoS 0.999 0.922 0.959
DoSG. 0.993 0.8815 0.934
DoSH. 0.9262 0.7325 0.8180
DSH. 0.6769 0.7712 0.721
DSL. 0.9631 0.5769 0.7216
FTP. 0.987 0.9361 0.9609
Hear. 1 0.20 0.3333
Infi. 0 0 N/A
Port. 0.9586 0.9937 0.9758
SSH. 0.9987 0.5051 0.671

WABF. 1 0.0475 0.091
WASI. 0 0 N/A
WAX. 0 0 N/A

samples especially for minority classes to update network
parameters and to enhance classification accuracy.

V. CONCLUSION

To construct a robust yet efficient network intrusion detection
system, we have proposed a neural network architecture that
consists of a stacked autoencoder with feature extraction
and neuron pruning, and a following classifier network. By
tightly coupling feature extraction and neuron pruning, a bare
autoencoder network has effectively been sparsified, leaving
only effective neurons and edge connections among them.
We have verified the effectiveness of our pruned autoencoder

network with feature extraction in a unsupervised manner on
two real-world network traffic datasets.

Once our condensed autoencoder network has shown a higher
reconstruction quality compared to several state-of-the-art
pruning approaches, we have extended the autoencoder network
to an intrusion detection system architecture by connecting the
pre-trained autoencoder network to a classifier network. We
have demonstrated that our algorithm for both two-label traffic
abnormality detection and multi-label attack type classification
outperforms the state-of-the-art algorithms, or shows the similar
performance compared with them, in terms of classification
quality, while significantly reducing the number of parameters
and the number of operations with a factor of up to 19. This
result implies that our lightweight NIDS architecture is well-fit
to edge devices with a small computation and memory usage.

For future work, it would be interesting to implement our
lightweight network intrusion detection architecture directly
on an FPGA-based dedicated switching hardware (e.g., using
the P4 framework), in order to support the data plane pro-
grammability for fast traffic inspection and response in the
packet switching level.

REFERENCES

[1] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho,
“A survey of network-based intrusion detection data sets,” CoRR, vol.
abs/1903.02460, 2019.

[2] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey
of intrusion detection systems: techniques, datasets and challenges,”
Cybersecurity, vol. 2, p. 20, 2019.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MAY 2021 14

TABLE XIII
CONFUSION MATRIX ON THE TEST SET OF UNSW-NB15 AFTER UPSAMPLING MINORITY CLASSES

Anal. Back. DoS Expl. Fuzz. Gene. Norm. Reco. Shell. Worm. Total Accuracy (%)
Anal. 170 368 76 51 2 0 9 1 0 0 677 25.11
Back. 129 359 63 6 6 0 1 9 9 1 583 61.57
DoS 862 1,569 748 557 57 12 66 62 105 51 4,089 18.29
Expl. 946 1,858 1,081 5,440 261 8 265 560 372 341 11,132 48.86
Fuzz. 328 877 164 107 1,710 0 1,898 231 724 23 6,062 28.20
Gene. 20 42 94 329 41 18,172 36 21 80 36 18,871 96.29
Norm. 1,877 33 103 169 3,335 2 30,330 432 674 45 37,000 81.97
Reco. 85 175 76 22 25 4 75 2,885 125 24 3,496 82.52
Shell. 0 0 0 3 10 0 12 52 300 1 378 79.36
Worm. 0 0 0 1 1 0 1 1 6 34 44 77.27
Total 4,417 5,281 2,405 6,685 5,448 18,198 32,693 4,254 2,395 556 82,332 Average: 73.05%

[3] R. Glebke, J. Krude, I. Kunze, J. Rüth, F. Senger, and K. Wehrle,
“Towards executing computer vision functionality on programmable
network devices,” in Proceedings of the 1st ACM CoNEXT Workshop
on Emerging In-Network Computing Paradigms. New York, NY, USA:
Association for Computing Machinery, 2019, p. 15–20.

[4] N. Moustafa, B. Turnbull, and K. R. Choo, “An ensemble intrusion
detection technique based on proposed statistical flow features for
protecting network traffic of internet of things,” IEEE Internet of Things
Journal, vol. 6, no. 3, pp. 4815–4830, June 2019.

[5] Y. Yang, K. Zheng, C. Wu, and Y. Yang, “Improving the classification
effectiveness of intrusion detection by using improved conditional
variational autoencoder and deep neural network,” Sensors, vol. 19,
no. 11, p. 2528, Jun 2019.

[6] V. L. Cao, M. Nicolau, and J. McDermott, “Learning neural representa-
tions for network anomaly detection,” IEEE Transactions on Cybernetics,
vol. 49, no. 8, pp. 3074–3087, Aug 2019.

[7] A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow, “Adversarial
autoencoders,” in International Conference on Learning Representations,
2016.

[8] Y. Yang, K. Zheng, C. Wu, and Y. Yang, “Improving the classification
effectiveness of intrusion detection by using improved conditional
variational autoencoder and deep neural network,” Sensors, vol. 19,
no. 11, p. 2528, Jun 2019.

[9] L. Vu, V. L. Cao, N. Q. Uy, D. N. Nguyen, D. T. Hoang, and
E. Dutkiewicz, “Learning latent distribution for distinguishing network
traffic in intrusion detection system,” ICC 2019 - 2019 IEEE International
Conference on Communications (ICC), pp. 1–6, 2019.

[10] S. Hosseini and M. Azizi, “The hybrid technique for ddos detection with
supervised learning algorithms,” Computer Networks, vol. 158, pp. 35 –
45, 2019.

[11] H. Mostafa and X. Wang, “Parameter efficient training of deep con-
volutional neural networks by dynamic sparse reparameterization,” in
Proceedings of the 36th International Conference on Machine Learning.
PMLR, 2019.

[12] Y. Xiao and X. Xiao, “An intrusion detection system based on a simplified
residual network,” Information, vol. 10, no. 11, p. 356, Nov 2019.

[13] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending
against backdooring attacks on deep neural networks,” CoRR, vol.
abs/1805.12185, 2018.

[14] X. Xiao, Z. Wang, and S. Rajasekaran, “Autoprune: Automatic network
pruning by regularizing auxiliary parameters,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019, pp.
13 681–13 691.

[15] Z. You, K. Yan, J. Ye, M. Ma, and P. Wang, “Gate decorator: Global filter
pruning method for accelerating deep convolutional neural networks,” in
NeurIPS, 2019.

[16] X. Gao, Y. Zhao, Łukasz Dudziak, R. Mullins, and C. zhong Xu,
“Dynamic channel pruning: Feature boosting and suppression,” in
International Conference on Learning Representations, 2019.

[17] B. Su and Y. Wu, “Learning low-dimensional temporal representations,”
in Proceedings of the 35th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, J. Dy and A. Krause,
Eds., vol. 80. Stockholmsmässan, Stockholm Sweden: PMLR, 10–15
Jul 2018.

[18] M. Ye and Y. Sun, “Variable selection via penalized neural network: a
drop-out-one loss approach,” in Proceedings of the 35th International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, J. Dy and A. Krause, Eds., vol. 80. Stockholmsmässan,
Stockholm Sweden: PMLR, 10–15 Jul 2018, pp. 5620–5629.

[19] M. T. Law, J. Snell, A. massoud Farahmand, R. Urtasun, and R. S. Zemel,
“Dimensionality reduction for representing the knowledge of probabilistic
models,” in International Conference on Learning Representations, 2019.

[20] Y. Bartal, N. Fandina, and O. Neiman, “Dimensionality reduction:
theoretical perspective on practical measures,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019, pp.
10 576–10 588.

[21] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural networks
with weights and activations constrained to +1 or -1,” CoRR, vol.
abs/1602.02830, 2016.

[22] T. Simons and D.-J. Lee, “A review of binarized neural networks,”
Electronics, vol. 8, no. 6, p. 661, Jun 2019.

[23] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, “Under-
standing and simplifying one-shot architecture search,” in Proceedings of
the 35th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.
Stockholmsmässan, Stockholm Sweden: PMLR, 10–15 Jul 2018, pp.
550–559.

[24] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient transfer learning,”
CoRR, vol. abs/1611.06440, 2016.

[25] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Advances in neural
information processing systems, 2015, pp. 1135–1143.

[26] R. Yu, A. Li, C. Chen, J. Lai, V. I. Morariu, X. Han, M. Gao, C. Lin, and
L. S. Davis, “NISP: pruning networks using neuron importance score
propagation,” CoRR, vol. abs/1711.05908, 2017.

[27] F. A. Khan, A. Gumaei, A. Derhab, and A. Hussain, “A novel two-stage
deep learning model for efficient network intrusion detection,” IEEE
Access, vol. 7, pp. 30 373–30 385, 2019.

[28] W. Daniel, Applied nonparametric statistics, ser. The Duxbury advanced
series in statistics and decision sciences. PWS-Kent Publ., 1990.

[29] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for
network intrusion detection systems (unsw-nb15 network data set),”
in 2015 military communications and information systems conference
(MilCIS). IEEE, 2015, pp. 1–6.

[30] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,”
in ICISSP, 2018.

[31] A. Gron, Hands-On Machine Learning with Scikit-Learn and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems, 1st ed.
O’Reilly Media, Inc., 2017.

[32] G. Afshin, K. Vladik, and K. Olga, “Why 70/30 or 80/20 relation between
training and testing sets: A pedagogical explanation,” University of Texas
at El Paso, El Paso, TX 79968, USA, Tech. Rep., January 2018.

[33] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Handling imbalanced
datasets: A review,” 2006.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MAY 2021 15

Thi-Nga Dao received a B.S. degree in Electrical
and Communication Engineering from the Le Quy
Don Technical University, Vietnam in 2013, an M.S.
degree in Computer Engineering from University
of Ulsan in 2016, and a Ph.D. degree in Computer
Engineering from University of Ulsan, South Korea
in 2019. From July 2019, she has been working as a
lecturer in Faculty of Radio-Electronic Engineering,
Le Quy Don Technical University, Hanoi, Vietnam.
Her research interests include machine learning-based
applications in network security, network intrusion

detection and prevention systems, human mobility prediction and mobile
crowdsensing.

HyungJune Lee received the B.S. degree in elec-
trical engineering from Seoul National University,
Seoul, South Korea, in 2001, and the M.S. and
Ph.D. degrees in electrical engineering from Stanford
University, Stanford, CA, USA, in 2006 and 2010,
respectively. He joined Broadcom as a Senior Staff
Scientist for working on research and development
of 60GHz 802.11ad SoC MAC. Also, he worked for
AT&T Labs as a Principal Member of Technical Staff
with the involvement of LTE overload estimation,
LTE-WiFi interworking, and heterogeneous networks.

He is currently an Associate Professor with the Computer Science and
Engineering Department, Ewha Womans University. His current research
interests include future wireless networks on the IoT, fog computing, VANET,
and machine learning-driven network system design.

	Introduction
	System Model
	Our Approach
	Motivation
	Algorithm
	Computation of the input feature's importance score
	Computing a Pruning Probability for an Input Feature
	Construction of a Pruned AE Network

	Lightweight Intrusion Detection Architecture

	Experiments
	Experimental Setting
	Pruning Effect on Feature Extraction
	Feature Extraction Performance
	Network Intrusion Detection Performance
	Two-label Classification
	Multi-label Classification

	Conclusion
	References
	Biographies
	Thi-Nga Dao
	HyungJune Lee

