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A new mixed four-node quadrilateral element (MiQ4) is established in this paper to investigate functionally graded material
(FGM) plates with variable thickness. )e proposed element is developed based on the first-order shear deformation and mixed
finite element technique, so the new element does not need any selective or reduced numerical integration. Numerous basic tests
have been carried out to demonstrate the accuracy and convergence of the proposed element. Besides, the numerical examples
show that the present element is free of shear locking and is insensitive to the mesh distortion, especially for the case of very thin
plates. )e present element can be applied to analyze plates with arbitrary geometries; it leads to reducing the computation cost.
Several parameter studies are performed to show the roles of some parameters such as the power-law index, side-to-thickness
ratio, boundary conditions (BCs), and variation of the plate thickness on the static bending behavior of the FGM plates.

1. Introduction

In the last decade of the 20th century andmore than 20 years
of the 21st century, functionally graded materials (FGMs)
were extensively utilized in many fields of engineering as
well as industry because of their advantages [1–4]. FGMs are
usually produced by mixing two or more different ingre-
dients with the volume varying continuously in the spatial
direction. )e most common type of FGM is ceramic-metal
FGM, which is fabricated by ceramic and metal since the
ceramic is compatible for working in high-temperature
environments and the metal is suitable for working with the
mechanical load. )at is the reason why numerous re-
searchers focus on investigating the dynamic as well as static
behaviors of the FGM structures, for example, beams [5–10],
plates [11–18], shells [19–21], and other structures [22, 23].
Many plate theories have been established and/or applied to
investigate these structures, for example, classical plate
theory (CPT), first-order shear deformation (FSDT), higher-
order shear deformation theory (HSDT), and quasi-3D shear
deformation theory.)ai and Choi [24] considered the static

bending and free vibration of FGM plates using a simple
FSDT. A simple HSDT was developed and used to examine
FGM plates by )ai and Kim [25]. Zenkour [26] established
a new shear deformation theory called generalized shear
deformation theory (GSDT) to analyze the static bending of
FGM plates. )e influence of porosity on the bending of the
FG plate had been studied by Hadj et al. [27] via refined plate
theory. Although the FSDTs and HSDTs and their variations
are suitable to predict the behavior of thin to moderate
plates, it is necessary to develop quasi-3D theories to analyze
thick and very thick plates. )ese theories take into account
the normal transverse stress which is important in these
types of FGM structures. Neves et al. [28] established a
quasi-3D sinusoidal shear deformation theory to study the
bending and free vibration of FGMplates.)ai and Kim [29]
constructed a simple quasi-3D sinusoidal shear deformation
theory to scrutinize FGM plates. More details on the de-
velopment of the plate theory can read from these journals
and their relevant references.

Although the analytical method can give exact solutions
to many engineering problems, it is remarkable that it
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cannot be applied in complex problems such as analysis of
complicated structures, arbitrary geometric plates, and
variable thickness plates. )erefore, large numerical
methods have been developed to analyze these structures.
Besides, the use of the FGM structures with variable
thickness is becoming the new trend in advanced structures
to reduce their weight and improve the art of these con-
structions [30, 31], for example, the cover of the blades of the
wind turbines, the integral shroud blades, and the cover of
the spacecraft. )ese structures usually have complex geo-
metric and boundary conditions (BCs). In these cases, the
application of an analytical method to analyze the complex
geometric plate is very difficult. Some worthy numerical
methods can be considered herein, including differential
quadrature method (DQM), generalized differential quad-
rature method (GDQM), finite element method (FEM),
smoothed finite element method (SFEM), extended finite
element method (XFEM), meshless method (MM), and
isogeometric analysis (IGA). Among them, FEM is widely
employed in many complicated engineering problems be-
cause of its simplification, good accuracy, and high con-
vergence rate. It also noticed that the development of plate
elements based on the Mindlin-Reissner plate theory or the
FSDT has been studied for a long time and achieved a lot of
success. However, at the beginning of this development, the
most andmajor difficulty of these types of plate elements was
the shear-locking phenomenon in the case of thin to very
thin plates. Numerous techniques and schemes have been
introduced to address this challenge. Zienkiewicz et al. [32]
introduced the reduced integration technique and Hughes
et al. [33] presented selective reduced integration to analyze
thin to very thin plates and shells using classical four-node
quadrilateral plate element (Q4). Hinton and Huang [34]
developed many quadrilateral plate elements using substi-
tute shear strain fields. Bathe and Dvorkin [35] created some
plate elements by introducing the mixed interpolated ten-
sorial components (MITC) technique, which is widely used
for the analysis of thin plates and shells. A discrete shear
method was developed by Batoz and Lardeur [36] for both
quadrilateral and triangular plate elements. Zienkiewicz
et al. [37] developed the linked interpolation technique for
theMindlin-Reissner quadrilateral plate element; then it was
extended to the higher-order linked interpolation quadri-
lateral thick plate element by Ribaric et al. [38]. Soh et al.
[39, 40] developed an improved shear strain interpolation
technique based on Timoshenko’s beam formulae. Cas-
tellazzi and Krysl [41] constructed a new displacement-based
element by using the nodal integration method and assumed
strain technique. Hansbo et al. [42, 43] formulated two
locking-free quadrilateral elements based on continuous/
discontinuous rotations. )e mixed shear projected ap-
proach element (MiSP) was established by Ayad and his
colleagues [44, 45]. )e combination of the discrete shear
gap technique and alternative alpha FEM was used by
Nguyen-)anh et al. [46] to analyze isotropic plates. Liu
et al. [47, 48] developed the smoothed FEM, which integrates
the strain smoothing technique into the standard FEM to
construct many effective elements, such as cell-based SFEM
[49–51], edge-based SFEM [52], and node-based SFEM [53].

)e essential success of these elements is that they predict
more accurate results, higher convergence rates, and in-
sensitive to distorted mesh in comparison to conventional
FEM. )e generalized conforming elements were first de-
veloped by Long et al. [54–57] to analyze membrane, plate,
and shell structures. Cen et al. [58] initiated a new element
based on the quadrilateral area coordinate method for
Mindlin-Reissner plates. Cen et al. [59] developed a hybrid-
Trefftz stress element based on the hybrid displacement
function (HDF) to analyzeMindlin-Reissner plates. A family
of hybrid-Trefftz p-elements were established by Jirousek
et al. [60] to analyze thick plates. Katili [61] used the discrete
Kirchhoff-Mindlin method to establish a new plate element
DKMQ to analyze thin to moderate plates. Among them, the
classical Q4 element, MITC4 (four-node MITC element)
element, and DKMQ element have been widely used to
analyze composite and FGM plates, in which the classical Q4
element needs a reduced or selective integration and is very
sensitive to the mesh distortion. )e MITC4 is an efficient
element with thick and moderate plates, but less accuracy
with very thin plates. )e DKMQ element has been de-
veloped since 1993 and it is compatible to analyze thick to
thin and very thin plate, but the convergence rate is slower
than MITC4 [61].

Although a lot of plate elements were developed and
applied successfully for the analysis of thin to moderate
plates, there are some significant challenges that remain
outstanding, such as the realizable results of the element
with the distorted mesh, avoiding shear locking especially
in very thin plates, and good precision for the stress of the
element. )is paper aims to establish a new mixed four-
node quadrilateral plate element based on the mixed finite
element formulation and the FSDT. )is is the main
contribution of the current work. )e displacement-based
four-node element will be first used as the initiating point;
then the formula of the mixed finite element will be applied
to construct the proposed plate element named MiQ4
(mixed four-node quadrilateral element). Several nu-
merical patch tests and verification studies will be con-
sidered to demonstrate the accuracy and efficiency of the
proposed element MiQ4. )e MiQ4 is a simple modifi-
cation of the classical element Q4 so that the present el-
ement is simple in its formulation. In addition, the present
element MiQ4 is free of shear locking without using re-
duced integration. Another advantage of the proposed
element is that it is insensitive to mesh distortions, so it can
be employed to analyze the FGM plates with complex
geometry. )en the proposed element will be employed to
research the bending behavior of the variable thickness
FGM plates. A comprehensive parameter study will be
carried out to demonstrate the effects of some parameters
on the bending behavior of the variable thickness FGM
plates.

2. Modeling of Variable Thickness FGM Plate

In this study, a variable thickness FGM plate with the di-
mension of a × b and thickness of h as shown in Figure 1 is
considered. )e properties of the material vary continuously
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in the thickness direction of the plates by a power-law
function as the following formula [1, 14]:

P(z) � Pm + Pc − Pm( 
2z + h

2h
 

p

, (1)

where Pc and Pm are, respectively, Young’s modulus E or
density ρ of ceramic and metal and p is the power-law index.
In this study, the thickness of the plates h depends on the
variable x only h � h(x), and the four following types of
thickness variation, which are uniform plate (U plate), linear
plate (L plate), parabolic plate (P plate), and sinusoidal plate
(S plate), are considered:

h � h(x) �

h0, Uniform (U plate),

h0 1 − ζ
x

a
 , Linear (L plate),

h0 1 − ζ
x

a
 

2
 , Parabolic (P plate),

h0 1 − ζ sin
πx

2a
  , Sinusoidal (S plate),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where ζ is the varied parameter and h0 is the thickness of the
plate at x � 0, y � 0. In this study, the varied parameter ζ
changes in the range of 0≤ ζ ≤ 0.5. It is noticed that the
midplane of the variable thickness plate is still planar; it
means that the plate is symmetric with respect to the Oxy

plane.

3. Governing Equations

)e displacement field of the plate based on FSDT is given as
follows:

u(x, y, z) � u(x, y) + zψx(x, y),

v(x, y, z) � v(x, y) + zψy(x, y),

w(x, y, z) � w(x, y),

⎧⎪⎪⎨

⎪⎪⎩
(3)

where u, v, w, ψx, ψy are five unknown displacement
functions at the middle surface of the plate.

)e strain field of the plates is obtained as the following
formulae:

εx � u,x + zψx,x,

εy � v,y + zψy,y,

cxy � v,x + u,y + z ψx,y + ψy,x ,

cxz � w,x + ψx,

cyz � w,y + ψy.

(4)

)e short form of equation (4) is

ε � ε0 + zε1, (5)

where

ε0 �

u,x

v,y

u,y + v,x

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

ε1 �

ψx,x

ψy,y

ψx,y + ψy,x

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

.

(6)

)e vector of the transverse shear strain can be rewritten
as

γ �
w,x + ψx

w,y + ψy

⎧⎨

⎩

⎫⎬

⎭. (7)

)e stress field of the plate is obtained as follows:

σ � Dε,

τ � Dsγ.
(8)

Here,

D �
E

1 − ]2

1 ] 0

] 1 0

0 0
(1 − ])

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ds �
kE

2(1 + ])

1 0

0 1
⎡⎢⎣ ⎤⎥⎦,

(9)

where E is Young’s modulus of the material and k is the
shear correction factor.

)e strain energy of the plate and the work done by
external force can be calculated as the following formulae:

Πst �
1
2



V

εT
.σ + γT

.τ dV,

Πext � 

S

qwdS.

(10)

Hamilton’s principle is used to obtain the governing
equation of motion of the plate

Metal

z

y

h (x)
x a

b
Ceramic

h0
x

Figure 1: Modeling of variable thickness FGM plates.
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δΠ � δΠst + δΠext � 0. (11)

)e variation of the strain energy is

δΠst �
1
2
δ

V

εTσ + δγTτ dV

� 

V

δε0 + zδε1 
T
D δε0 + zδε1  + δγTτdV.

(12)

Equation (12) can be rewritten in the following compact
form:

δΠst � 

V

δε0 δε1 
D zD

zD z
2D

 
ε0

ε1
⎡⎣ ⎤⎦ + δγTτ

⎧⎨

⎩

⎫⎬

⎭dV. (13)

By integrating equation (13) across the thickness, one
gets

δΠst � 

S

δΩTP + δγTQ dS, (14)

where P and Q are given by

P � 

(h(x)/2)

− (h(x)/2)

D zD

zD z
2D

 
ε0

ε1
⎡⎣ ⎤⎦dz, (15)

Q � 

(h(x)/2)

− (h(x)/2)

τdz � 

(h(x)/2)

− (h(x)/2)

Dsγdz, (16)

and

δΩ �
δε0

δε1
⎡⎣ ⎤⎦. (17)

Substituting equation (17) into equations (15) and (16),
one gets

P � HΩ,

Q � Hsγ,
(18)

where

H � 

(h(x)/2)

−(h(x)/2)

D zD

zD z
2D

 dz, (19)

Hs � 

(h(x)/2)

− (h(x)/2)

Dsdz. (20)

4. Finite Element Formulation

4.1. Displacement Finite Element Formulation. In this sub-
section, a brief review of a classical four-node quadrilateral
element based on displacements with five degrees of freedom
(DOFs) is considered as the starting point. )e nodal dis-
placement vector of the i-th node is

qi � ui vi wi ψxi ψyi 
T
, i � 1, 4. (21)

)e nodal displacement vector of the plate element, U, is
defined as

U � qT
1 qT

2 qT
3 qT

4 
T
. (22)

)en the displacement variables at any point of the
element are approximated as the following formulae:

u �  Niui,

v �  Nivi,

w �  Niwi,

ψx �  Niψxi,

ψy �  Niψyi,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

where Ni is the bilinear shape functions of the four-node
quadrilateral plate element. )e expressions of the shape
functions in the local coordinate are

Ni �
1
4

1 + ξiξ(  1 + ηiη( , i � 1, 4. (24)

Equation (17) can be rewritten in short form as the
following formula:

δΩ � BδU. (25)

Here,

B � B1 B2 B3 B4 , (26)

with

Bi
�

Ni,x 0 0 0 0

0 Ni,y 0 0 0

Ni,y Ni,x 0 0 0

0 0 0 Ni,x 0

0 0 0 0 Ni,y

0 0 0 Ni,y Ni,x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i � 1, 4. (27)

)e variation of the shear strain vector is obtained as
follows:

δγ �
δw,x + δψx

δw,y + δψy

⎧⎨

⎩

⎫⎬

⎭. (28)

Equation (28) can be written in short form as

δγ � BsδU, (29)

where

Bs � B1
s B2

s B3
s B4

s
 , (30)

with

Bi
s �

0 0 Ni,x Ni 0

0 0 Ni,y 0 Ni

⎡⎣ ⎤⎦, i � 1, 4. (31)
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By substituting equations (25) and (29) into the ex-
pression of the variation of the strain energy, we get

δΠst � 

S

δUTBTHBUdS + 

S

δUTBT
s HsBsUdS. (32)

)e variation of the work done by an external force is
calculated by

δΠext � − 

S

qδwdS � − δUT


S

NT
wqdS. (33)

Here, Nw is the matrix of the shape functions related to
the transverse displacement; its expression is as the following
formula:

Nw � Nw1 Nw2 Nw3 Nw4 , (34)

where

Nwi � 0 0 Ni 0 0 , i � 1, 4. (35)

Inserting equations (32) and (33) into equation (11) and
using the trivial manner of classical FEM, one gets

KU � f . (36)

Here, the stiffness matrix and the nodal force vector of
the plate element are computed by the following formulae:

K � Kb + Ks, (37)

where

Kb � 
S
BTHBdS � 

1

− 1

1

− 1
BTHB|J|dξdη,

Ks � 
S
BT

s HsBsdS � 
1

− 1

1

− 1
BT

s HsBs|J|dξdη,

f � 
S
NT

wqdS � 
1

− 1

1

− 1
NT

wq|J|dξdη.

(38)

)e Gauss integration is used to estimate the stiffness
matrix Kb, Ks as well as the nodal force vector f . For each
point of Gauss integration, the integration through the
thickness direction of equations (19) and (20) will be
evaluated via Newton-Cotes quadrature rules. It is noticed
that Kb and f are calculated by using full Gauss integration
(2 × 2), while the shear stiffness matrix Ks is estimated by
using reduced Gauss integration (1 × 1) to avoid the well-
known shear-locking phenomenon. In this study, the ac-
ronym Q4 is used to denote the classical four-node quad-
rilateral plate element based on the displacement formula
with reduced Gauss integration.

4.2. Mixed Finite Element Formulation. In this subsection,
we introduce a quadratic interpolation for ψx, ψy, and then
the expressions of ψx, ψy are obtained as follows:

ψx �  Niψxi + Nmψxm,

ψy �  Niψyi + Nmψym,

⎧⎪⎨

⎪⎩
(39)

where

Nm �
1
16

1 − ξ2  1 − η2 . (40)

Substituting equation (39) into equation (25), the ex-
pression of δε1 can be obtained as follows:

δε1 �

 Ni,xδψxi

 Ni,yδψyi

 Ni,yδψxi +  Ni,xδψyi

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+

Nm,xδψxm

Nm,yδψym

Nm,yδψxm + Nm,xδψym

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

(41)

or

δε1 �

 Ni,xδψxi

 Ni,yδψyi

 Ni,yδψxi +  Ni,xδψyi

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+

Nm,x 0

0 Nm,y

Nm,y Nm,x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

δψxm

δψym

⎧⎨

⎩

⎫⎬

⎭.

(42)

)e expression of the strain vector is obtained as follows:

δΩ � BδU + Bmδψm, (43)

where

Bm �

0
Nm,x 0

0 Nm,y

Nm,y Nm,x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

δψm �
δψxm

δψym

⎧⎨

⎩

⎫⎬

⎭.

(44)

)e shear strain δc is expressed as the following formula:

δγ �
 Ni,xδwi +  Niδψxi + Nmδψxm

 Ni,yδwi +  Niδψyi + Nmδψym

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (45)

or

δγ �
 Ni,xδwi +  Niδψxi

 Ni,yδwi +  Niδψyi

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+

Nm 0

0 Nm

 
δψxm

δψym

⎧⎨

⎩

⎫⎬

⎭.

(46)

We rewrite equation (46) in the matrix form as follows:

δγ � BsδU + Mmδψm, (47)

where
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Mm �
Nm 0

0 Nm

 ,

δψm �
δψxm

δψym

⎧⎨

⎩

⎫⎬

⎭.

(48)

We introduce a constant shear strain field c � H− 1
s Q0,

and following the procedure of the mixed FEM, the ex-
pression of the potential energy is evaluated as [62]

Π �
1
2


S
ΩTHΩ + γTHsc + c

THsγ − c
THsc dS + Πext + Πbc,

(49)

where Πbc is the energy of the constrain to consider the BC
effects.

)e variations of equation (49) are


S
δΩTHΩ + δγTHsc dS − δΠext � 0, (50)


S
δc

THs(γ − c)dS � 0.

(51)

Inserting equations (43) and (47) into equations (50) and
(51), one gets


S

BδU + Bmδψm( 
TH BU + Bmψm(  + BsδU + Mmδψm( 

THsc dS + δΠext � 0, (52)


S
δc

THs BsU + Mmψm(  − c( dS � 0.

(53)

Inserting c � H− 1
s Q0 into equations (52) and (53), one

gets


S

BδU + Bmδψm( 
TH BU + Bmψm(  + BsδU + Mmδψm( 

TQ0 dS + δΠext � 0. (54)


S
δTT

0 BsU + Mmψm(  − H− 1
s Q0 dS � 0,

(55)

or


S
δUTBTHBU + δUTBTHBmψm + δψT

mB
T
mHBU + δψT

mB
T
mHBmψm + δUTBT

s Q0 + δψT
mM

T
mQ0 dS − δUT


S
NT

wqdS � 0, (56)


S
δQT

0BsU + δQT
0Mmψm + δQT

0 − H− 1
s Q0 dS � 0.(57)

By combining equations (53) and (57), one gets

δUT δQT
0 δψT

m
 

Kuu KuT Kuψ

KT
uT KTT KTψ

KT
uψ KT

Tψ Kψψ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

U

Q0

ψm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ −

fu

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 0, (58)

where
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Kuu � 
S
BTHBdS � 

1

− 1

1

− 1
BTHB|J|dξdη, (59)

Kuψ � 
S
BTHBmdS � 

1

− 1

1

− 1
BTHBm|J|dξdη, (60)

Kψψ � 
S
BT

mHBmdS � 
1

− 1

1

− 1
BT

mHBm|J|dξdη. (61)

KuT � 
S
BT

s dS � 
1

− 1

1

− 1
BT

s |J|dξdη, (62)

KTψ � 
S
MmdS � 

1

− 1

1

− 1
Mm|J|dξdη, (63)

KTT � − 
S
H− 1

s dS � − 
1

− 1

1

− 1
H− 1

s |J|dξdη, (64)

fu � 
S
NT

wqdS � 
1

− 1

1

− 1
NT

wq|J|dξdη, (65)

where |J| is the determinant of the Jacobian matrix.
By eliminating ψm and Q0 from equation (58) at the

element level, one gets

KU � f , (66)

in which

K � K11 − K12K
− 1
22K21, (67)

f � fu, (68)

where

K11 � Kuu − KuψK
− 1
ψψK

T
uψ ,

K12 � KuT − KuψK
− 1
ψψK

T
Tψ ,

K21 � KT
uT − KTψK

− 1
ψψK

T
uψ ,

K22 � KTT − KTψK
− 1
ψψK

T
Tψ .

(69)

For convenience, the acronym MiQ4 is used to denote
the proposedmixed four-node quadrilateral plate element. It
is noticed that all integrations in equations (59)–(65) relate
to the element stiffness matrix, the nodal force vector, and
they are calculated using full Gauss integration, but the
shear-locking phenomenon does not appear as we will
appreciate and discuss in the next section. Besides, the
proposed plate element MiQ4 is insensitive to mesh dis-
tortion, so it can be employed to analyze the plates without
worry about the complicated geometries. Moreover, the

shape functions of MiQ4 are bilinear and the number of
DOFs of MiQ4 is equal to that of Q4, so the computation
cost is reduced.)ey are substantial benefits of the proposed
plate element in comparison with the classical four-node
quadrilateral element Q4 and other four-node quadrilateral
elements.

5. Numerical Results and Discussions

5.1. Convergence Study. In this subsection, the convergence
studies are considered for square isotropic plates subjected
to uniform load as shown in Figure 2. )e convergences of
the proposed element MiQ4 with full Gauss integration are
compared with those of classical Q4 with reduced Gauss
integration. )e nondimensional central deflections of ref-
erence (wref .100D/qa4) in this subsection are calculated
using the formulation given by Jirousek et al. [60]. )e
dimension and material properties of the plate are a � 10,

E � 10.92, and ] � 0.3 and the thickness-to-side ratio h/a of
the plates is 0.1, 0.01, and 0.001, respectively. )e plates are
divided by a regular rectangular mesh of N × N.

)e comparisons of nondimensional central deflection
(wc.100D/qa4) of the plates using MiQ4 and Q4 and ref-
erence results are presented in Tables 1–3, in which the error
of the numerical results is computed in comparison to the
solutions of Jirousek et al. [60]. )e errors of the numerical
results using MiQ4 and Q4 and reference results with dif-
ferent meshes and BCs are displayed in Figure 3. According
to Tables 1–3 and Figure 3, it can be seen that the proposed
element MiQ4 is an excellent convergence speed for the case
of fully simple supported (SSSS) plates and good conver-
gence speed for the case of fully clamped (CCCC) ones. In
comparison with Q4, although the MiQ4 element is using
full Gauss integration for all its integral formulae of stiffness
matrix and nodal force vector, the convergence rate of MiQ4
is better than the Q4 element, especially for coarse meshes
and very thin plates. Besides, the proposed element MiQ4
seems stiffer than the classical element Q4. In the case of
SSSS plates, the convergence of the MiQ4 element is better
than that of the Q4 element for thick to thin plates. In the
case of CCCC plates, the convergence of theMiQ4 element is
worse than that of the Q4 element; this is a disadvantage of
the proposed element. However, the element MiQ4 is much
insensitive with mesh distortion which will be demonstrated
in the following subsections.

Additionally, a benchmark test about the shear locking
free of the proposed plate element MiQ4 is presented. )e
geometrical and material properties of the plate are retained
while the thickness-to-side ratio changes from the thin case
(h/a � 10− 3) to the very thin case (h/a � 10− 30). )e nu-
merical results of the classical Q4 element with reduced
integration, the proposed element MiQ4 with full integra-
tion, HDF element HDF − P4 − 11β of Cen et al. [59], and
analytical solution [59] are given in Table 4. It is obvious that
the proposed element is free of shear locking even in very
thin plates, while the classical Q4 element cannot work
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Figure 2: Model of square isotropic plates.

Table 1: Nondimensional central deflection (wc.100D/qa4) of the square plate with h/a � 0.1.

Mesh
SSSS CCCC

Q4 Error (%) MiQ4 Error (%) Q4 Error (%) MiQ4 Error (%)
2× 2 0.354582 − 17.01 0.463333 8.44 0.035714 − 76.26 0.228609 51.94
4× 4 0.420696 − 1.54 0.434501 1.69 0.145856 − 3.06 0.171408 13.92
6× 6 0.424538 − 0.64 0.430072 0.65 0.148648 − 1.20 0.159182 5.80
8× 8 0.425739 − 0.36 0.428772 0.35 0.149469 − 0.66 0.155345 3.25
10×10 0.426292 − 0.23 0.428212 0.22 0.149828 − 0.42 0.153564 2.06
12×12 0.426592 − 0.16 0.427918 0.15 0.150021 − 0.29 0.152607 1.43
14×14 0.426773 − 0.12 0.427744 0.11 0.150137 − 0.21 0.152033 1.05
16×16 0.426890 − 0.09 0.427632 0.08 0.150212 − 0.16 0.151662 0.80
[60] 0.427284 0.150460

Table 2: Central deflection (wc.100D/qa4) of the square plate with h/a � 0.01.

Mesh
SSSS CCCC

Q4 Error (%) MiQ4 Error (%) Q4 Error (%) MiQ4 Error (%)
2× 2 0.319225 − 21.46 0.427976 5.30 0.000357 − 99.72 0.193253 53.38
4× 4 0.397125 − 2.29 0.410966 1.11 0.121379 − 3.67 0.146045 15.91
6× 6 0.402650 − 0.93 0.408192 0.43 0.124209 − 1.42 0.135131 7.25
8× 8 0.404346 − 0.52 0.407381 0.23 0.125326 − 0.53 0.131496 4.36
10×10 0.405109 − 0.33 0.407030 0.14 0.125850 − 0.12 0.129785 3.00
12×12 0.405518 − 0.23 0.406844 0.10 0.126134 0.11 0.128865 2.27
14×14 0.405763 − 0.17 0.406734 0.07 0.126305 0.24 0.128310 1.83
16×16 0.405921 − 0.13 0.406663 0.05 0.126417 0.33 0.127951 1.55
[60] 0.406446 0.12600

Table 3: Nondimensional central deflection (wc.100D/qa4) of the square plate with h/a � 0.001.

Mesh
SSSS CCCC

Q4 Error (%) MiQ4 Error (%) Q4 Error (%) MiQ4 Error (%)
2× 2 0.318872 − 21.51 0.427622 5.26 0.000004 − 100.00 0.192899 53.09
4× 4 0.396889 − 2.30 0.410731 1.11 0.121123 − 3.87 0.145783 15.70
6× 6 0.402431 − 0.94 0.407974 0.43 0.123950 − 1.63 0.134883 7.05
8× 8 0.404132 − 0.52 0.407168 0.23 0.125068 − 0.74 0.131246 4.16
10×10 0.404897 − 0.33 0.406818 0.14 0.125593 − 0.32 0.129535 2.81
12×12 0.405307 − 0.23 0.406634 0.10 0.125879 − 0.10 0.128615 2.08
14×14 0.405553 − 0.17 0.406524 0.07 0.126051 0.04 0.128060 1.63
16×16 0.405711 − 0.13 0.406453 0.05 0.126163 0.13 0.127701 1.35
[60] 0.406237 0.12600
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correctly when the thickness-to-side ratio is smaller than
h/a � 10− 8.

5.2. Distorted Study

5.2.1. Morley’s Acute Skew Plate. Continuously, we consider
a skew plate (see Figure 4) subjected to a uniform load which
is carried out by Morley [63]. )e skew angle of the plate is
β � 30o and the BCs of the plate are soft simply supported
(w � 0) at all edges. )e geometry and material properties of
the plate are a � 100, E � 10.92, and ] � 0.3 and the side-to-
thickness ratio a/h is 100 and 1000.

)e comparisons of the nondimensional central de-
flection (w∗ � wc103D/qa4) of the acute skew plates using
the proposed element MiQ4, the numerical results using
DKMQ [61], and those of MITC4 [61] element are presented
in Tables 5 and 6 and Figure 5, in which the error of the
numerical results is calculated in comparison with the

solutions of Morley [63]. )e comparison shows that the
results of MiQ4 are in good agreement with the reference
solution of Morley [63]. According to Tables 5 and 6, it can
be seen that the convergence of the proposed element MiQ4
element for both thin and very thin plate is similar. )e
convergence of the proposed element MiQ4 is better than
that of DKMQ and equable with MITC4 for thin plates
(a/h � 100). For the case of very thin plates (a/h � 1000), the
convergence of the present element MiQ4 is better than that
of both DKMQ and MITC4 elements. Hence, the MiQ4
element can be applied to analyze both thin and very thin
plates.

5.2.2. Square Plates with Severe Mesh Distortion. To exhibit
the advantage of the MiQ4 element in comparison with the
classical Q4 elements, a fully simply supported square plate
is investigated with four types of distorted mesh. )e
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Figure 3: Comparison of central deflection (wc.100D/qa4) of the square plate: (a) h/a � 0.1, (b) h/a � 0.01, and (c) h/a � 0.001.
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Table 4: Nondimensional central deflection (wc.100D/qa4) of the square plate with different values of h/a.

BCs h/a 10–3 10–4 10–6 10–8 10–10 10–30

SSSS

Q4 0.405711 0.405709 0.405701 0.332142 0.1379.102 0.2206.10− 41

MiQ4 0.406453 0.406451 0.406451 0.406451 0.406451 0.406451
Cen et al. [59] 0.40624 0.40624 0.40624 0.40624 0.40624 0.40624
Analytical [59] 0.4062 0.4062 0.4062 0.4062 0.4062 0.4062

CCCC

Q4 0.126163 0.126161 0.126159 0.117594 0.440847 0.9374.10− 39

MiQ4 0.127701 0.127698 0.127698 0.127698 0.127698 0.127698
Cen et al. [59] 0.12653 0.12653 0.12653 0.12653 0.12653 0.12653
Analytical [59] 0.1265 0.1265 0.1265 0.1265 0.1265 0.1265
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Figure 4: )e model of Morley’s acute plate.
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Figure 5: Comparison of the central deflection of Morley’s acute plate subjected to uniform load: (a) a/h � 100 and (b) a/h � 1000.

Table 5: Central deflection of Morley’s acute plate subjected to uniform load with a/h � 100.

Mesh DKMQ [61] Error (%) MITC4 [61] Error (%) MiQ4 Error (%)
2× 2 0.7570 85.54 0.3590 − 12.01 0.3830 − 6.13
8× 8 0.5040 23.53 0.3570 − 12.50 0.4573 12.07
16×16 0.4410 8.09 0.3830 − 6.13 0.4355 6.74
32× 32 0.4230 3.68 0.4040 − 0.98 0.4286 5.04
Morley [63] 0.408
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dimension and material properties of the plate are a � 10,

E � 10.92, and ] � 0.3 and the thickness-to-side ratio h/a is
0.1, 0.01, and 0.001. Four types of distorted mesh are dis-
placed in Figure 6 for the case of 64 elements. )e nondi-
mensional central deflection of the plates using MiQ4 and
Q4 and the reference solutions [60] are presented in
Tables 7–10 and Figure 7, where the error is calculated in
comparison with the reference solutions [60] and those of
Cen [59]. In comparison with Q4, MiQ4 is survival for all
cases of distorted mesh, especially in the case of very thin
plates, while the classical element Q4 cannot work accu-
rately. )is is a significant benefit of MiQ4 elements because
the process of meshing always takes much time and com-
putation cost in finite element analysis. Besides, the pro-
posed elementMiQ4 is suitable for the analysis of plates with
arbitrary and complex geometries.

5.3. Validation Study

5.3.1. Bending of Isotropic Homogeneous Plates. In this
subsection, the static bending of an isotropic homogeneous
plate under uniform load is considered to prove the validity
of the new plate element MiQ4. )e geometrical and ma-
terial properties of the quadratic plate are a � b � 1, E � 1,

q � 1, and ] � 0.3, while the thickness of the plate is con-
sidered by three values of h � 0.01, h � 0.03, and h � 0.1.)e
comparison of the numerical results of the plates using the
proposed element MiQ4 with other published results is
presented in Table 11. It is obvious that the numerical results
of the plates using the proposed element agree very well with
those of CPT [26], the results of Nguyen et al. [18] using a
refined simple FSDT, the solutions of Zenkour [26] using
GSDT, and the 3D exact solutions [26]. In comparison with
3D solutions, the presented numerical results are minor
difference.

5.3.2. Bending of Isotropic FGM Plates. Continuously, an
FGM square plate of Al/Al2O3 subjected to uniform load and
sinusoidal load is considered to exhibit the accuracy of the
proposed element MiQ4. Young’s modulus is Em � 70GPa
for Al and Ec � 380GPa for Al2O3, while Poisson’s ratios ]
are constant and equal 0.3, and the side-to-thickness ratio is
a/h � 10. )e material properties of the plate vary through
the thickness direction by the power-law function. )e
comparison of nondimensional displacement and stresses
using MiQ4 and those of Zenkour [26] is shown in Table 12.
)e comparison shows that the numerical results of the plate
using MiQ4 are identical to those of Zenkour [26] for both
uniform and sinusoidal loads. )e maximum error of the

deflection is 1.35%, while the maximum error of the stresses
is 1.83%. )erefore, it can conclude that the proposed ele-
ment is compatible to analyze the FGM structure. )e
nondimensional quantities are obtained as the following
formulae:

w �
10Ech

3

q0a
4 w

a

2
,
b

2
 ,

σx �
h

q0a
σx

a

2
,
b

2
,
h

2
 ,

σy �
h

q0a
σy

a

2
,
b

2
,
h

3
 ,

τxy �
h

q0a
τxy 0, 0, −

h

3
 .

(70)

5.4. Parameter Study. )e proposed plate element MiQ4 is
now applied to examine the static bending behavior of
variable thickness FGM plates subjected to uniform load.
)e ingredients of the FGM plates are Al as metal and Al2O3
as ceramic. Young’s modulus is Em � 70GPa for Al and Ec �

380GPa for Al2O3, while Poisson’s ratios ] are constant and
equal to 0.3, and the side-to-thickness ratio is a/h0 � 10. )e
material properties of the plate vary through the thickness
direction by the power-law function. )e nondimensional
quantities are computed as the following formulae:

w
∗
max �

10Ech
3
0

q0a
4 wmax,

σ∗x �
h0

q0a
σx

a

2
,
b

2
, z ,

τ∗xy �
h0

q0a
τxy(a, 0, z).

(71)

It is noticed that the proposed element, MiQ4, is of good
accuracy and convergence with coarse meshes, but the plates
are divided with a fine mesh because of its thickness vari-
ation. Accordingly, a regular fine mesh of N × N � 32 × 32
is handled in the rest of this study.

5.4.1. >e Influence of the Power-Law Index. Firstly, we study
the effects of the power-law index p on the deflection of the
variable thickness FGM plates. A square FGM plate with the

Table 6: Central deflection of Morley’s acute plate subjected to uniform load with a/h � 1000.

Mesh DKMQ [61] Error (%) MITC4 [61] Error (%) MiQ4 Error (%)
2× 2 0.7600 86.27 0.3580 − 12.25 0.3821 − 6.36
8× 8 0.5070 24.26 0.3430 − 15.93 0.4562 11.82
16×16 0.4430 8.58 0.3430 − 15.93 0.4339 6.35
32× 32 0.4250 4.17 0.3620 − 11.27 0.4258 4.37
Morley [63] 0.408
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Figure 6: Four types of distorted mesh of square plates.

Table 7: Central deflection (wc.100D/qa4) of the square SSSS plates with h/a � 0.1.

Mesh
Type A Type B Type C Type D

Q4 MiQ4 Q4 MiQ4 Q4 MiQ4 Q4 MiQ4
4× 4 0.391576 0.439143 0.378981 0.421275 0.400312 0.426277 0.355584 0.393655
8× 8 0.419534 0.429446 0.417878 0.425853 0.414445 0.423622 0.403264 0.414376
16×16 0.425205 0.427616 0.425021 0.426912 0.423067 0.425691 0.417927 0.422149
32× 32 0.426749 0.427352 0.426715 0.427183 0.426074 0.426782 0.427397 0.427632
[60] 0.427284

Table 8: Central deflection (wc.100D/qa4) of the square SSSS plates with h/a � 0.01.

Mesh
Type A Type B Type C Type D

Q4 MiQ4 Q4 MiQ4 Q4 MiQ4 Q4 MiQ4
4× 4 0.239679 0.409780 0.227367 0.393247 0.116995 0.400856 0.088091 0.363006
8× 8 0.380737 0.407129 0.385881 0.403634 0.186903 0.395633 0.197400 0.381356
16×16 0.403429 0.406497 0.403369 0.405834 0.264044 0.394633 0.287950 0.388361
32× 32 0.405812 0.406450 0.405804 0.406299 0.340033 0.396093 0.356015 0.395804
[60] 0.406446

Table 9: Central deflection (wc.100D/qa4) of the square plates with h/a � 0.001.

Mesh
Type A Type B Type C Type D

Q4 MiQ4 Q4 MiQ4 Q4 MiQ4 Q4 MiQ4
4× 4 0.114621 0.409454 0.142155 0.392942 0.034504 0.400589 0.026915 0.362634
8× 8 0.323262 0.406892 0.363450 0.403385 0.094029 0.395205 0.101194 0.380718
16×16 0.391383 0.406280 0.398910 0.405607 0.141653 0.393440 0.177568 0.386775
32× 32 0.404963 0.406239 0.405168 0.406084 0.172764 0.392416 0.216136 0.391490
[60] 0.406237

Table 10: Central deflection (wc.100D/qa4) of the square SSSS plates with h/a � 10− 6.

Mesh
Type A Type B Type C Type D

Q4 MiQ4 Q4 MiQ4 Q4 MiQ4 Q4 MiQ4
4× 4 0.118006 0.409451 0.110797 0.392939 0.024006 0.400587 0.020252 0.362630
8× 8 0.318335 0.406889 0.370621 0.403382 0.058159 0.395200 0.113783 0.380712
16×16 0.000000 0.406278 0.723266 0.405605 0.132256 0.393427 0.121722 0.386758
32× 32 0.382467 0.406237 0.000000 0.406082 0.328034 0.392366 0.000000 0.391430
[59] 0.40624
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Figure 7: Continued.
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Figure 7: Comparison of central deflection of the square SSSS plates: (a) h/a � 0.1, (b) h/a � 0.01, (c) h/a � 0.001, (d) h/a � 10− 6.

Table 11: )e central deflection of isotropic homogeneous plates under uniform load.

h Classical [26] RS-FSDT [18] SSDT [26] 3D [26] Present Different with 3D (%)
0.01 44360.9 44385.41 44383.84 44384.7 44388.77 − 0.009
0.03 1643.00 1651.169 1650.646 1650.94 1650.85 − 0.005
0.1 44.3609 46.81271 46.65481 46.7443 46.6678 − 0.164
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Table 12: Nondimensional deflection and stresses of the square SSSS FGM plates.

p Method
Uniform load Sinusoidal load

w σx σy τxy w σx σy τxy

Ceramic
Zenkour [26] 0.4665 2.8932 1.9103 1.2850 0.2960 1.9955 1.3121 0.7065

Present 0.4667 2.8696 1.9131 1.2871 0.2960 1.9697 1.3131 0.7071
Error (%) 0.04 − 0.82 0.15 0.16 − 0.00 − 1.29 0.08 0.08

1
Zenkour [26] 0.9287 4.4745 2.1692 1.1143 0.5889 3.0870 1.4894 0.6110

Present 0.9289 4.4351 2.1738 1.1120 0.5887 3.0442 1.4921 0.6107
Error (%) 0.02 − 0.88 0.21 − 0.21 − 0.03 − 1.39 0.18 − 0.05

2
Zenkour [26] 1.1940 5.2296 2.0338 0.9907 0.7573 3.6094 1.3954 0.5441

Present 1.1910 5.1786 2.0414 0.9911 0.7548 3.5546 1.4012 0.5443
Error (%) − 0.25 − 0.97 0.37 0.04 − 0.32 − 1.52 0.41 0.04

3
Zenkour [26] 1.3200 5.6108 1.8593 1.0047 0.8377 3.8742 1.2748 0.5525

Present 1.3124 5.5504 1.8693 1.0071 0.8320 3.8098 1.2831 0.5531
Error (%) − 0.57 − 1.08 0.54 0.24 − 0.68 − 1.66 0.65 0.11

4
Zenkour [26] 1.3890 5.8915 1.7197 1.0298 0.8819 4.0693 1.1783 0.5667

Present 1.3771 5.8240 1.7314 1.0336 0.8732 3.9975 1.1884 0.5676
Error (%) − 0.86 − 1.15 0.68 0.37 − 0.99 − 1.76 0.86 0.17

5
Zenkour [26] 1.4356 6.1504 1.6104 1.0451 0.9118 4.2488 1.1029 0.5755

Present 1.4206 6.0778 1.6230 1.0498 0.9010 4.1717 1.1140 0.5766
Error (%) − 1.04 − 1.18 0.78 0.45 − 1.18 − 1.81 1.00 0.18

6
Zenkour [26] 1.4727 6.4043 1.5214 1.0536 0.9356 4.4244 1.0417 0.5803

Present 1.4557 6.3281 1.5343 1.0589 0.9234 4.3436 1.0531 0.5816
Error (%) − 1.16 − 1.19 0.85 0.51 − 1.30 − 1.83 1.10 0.22

7
Zenkour [26] 1.5049 6.6547 1.4467 1.0589 0.9562 4.5971 0.9903 0.5834

Present 1.4869 6.5761 1.4595 1.0646 0.9433 4.5138 1.0018 0.5847
Error (%) − 1.20 − 1.18 0.88 0.54 − 1.35 − 1.81 1.16 0.22

8
Zenkour [26] 1.5343 6.8999 1.3829 1.0628 0.9750 4.7661 0.9466 0.5856

Present 1.5159 6.8197 1.3953 1.0687 0.9619 4.6810 0.9577 0.5870
Error (%) − 1.20 − 1.16 0.90 0.56 − 1.35 − 1.79 1.18 0.23

9
Zenkour [26] 1.5617 7.1383 1.3283 1.0662 0.9925 4.9303 0.9092 0.5875

Present 1.5435 7.0570 1.3404 1.0723 0.9794 4.8438 0.9200 0.5889
Error (%) − 1.17 − 1.14 0.91 0.57 − 1.32 − 1.75 1.19 0.24

10
Zenkour [26] 1.5876 7.3689 1.2820 1.0694 1.0089 5.0890 0.8775 0.5894

Present 1.5698 7.2867 1.2935 1.0757 0.9962 5.0015 0.8879 0.5908
Error (%) − 1.12 − 1.12 0.90 0.59 − 1.26 − 1.72 1.18 0.24

Metal
Zenkour [26] 2.5327 2.8932 1.9103 1.2850 1.6070 1.9955 1.3121 0.7065

Present 2.5334 2.8696 1.9131 1.2871 1.6066 1.9697 1.3131 0.7071
Error (%) 0.03 − 0.82 0.15 0.16 − 0.02 − 1.29 0.08 0.08

Table 13: )e maximum nondimensional deflection of the FGM plates as a function of p.

BCs )ickness variations
p

Ceramic 0.5 1 5 10 Metal

CCCC

U plate 0.1646 0.2496 0.3221 0.5023 0.5627 0.8935
L plate 0.4010 0.6124 0.7927 1.2211 1.3567 2.1762
P plate 0.2894 0.4409 0.5700 0.8815 0.9822 1.5707
S plate 0.5501 0.8416 1.0901 1.6742 1.8563 2.9854

SCSC

U plate 0.2414 0.3672 0.4744 0.7363 0.8222 1.3104
L plate 0.5912 0.9044 1.1716 1.7997 1.9955 3.2085
P plate 0.4432 0.6769 0.8761 1.3490 1.4987 2.4054
S plate 0.7792 1.1933 1.5466 2.3707 2.6252 4.2286

SSSS

U plate 0.4667 0.7160 0.9289 1.4206 1.5698 2.5334
L plate 1.1636 1.7895 2.3240 3.5398 3.9007 6.3151
P plate 0.8203 1.2604 1.6361 2.4953 2.7526 4.4518
S plate 1.6256 2.5012 3.2487 4.9430 5.4438 8.8222

CFCF

U plate 0.3631 0.5529 0.7147 1.1068 1.2340 1.9708
L plate 1.6408 2.5181 3.2667 4.9911 5.5131 8.9048
P plate 1.2060 1.8494 2.3983 3.6692 4.0570 6.5452
S plate 2.2183 3.4062 4.4195 6.7455 7.4466 12.0390
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Table 14: )e maximum nondimensional deflection of the FGM plates as a function of a/h0.

BCs )ickness variations
a/h0

5 10 20 30 40 50

CCCC

U plate 0.5745 0.4134 0.3707 0.3625 0.3596 0.3582
L plate 1.2445 1.0165 0.9565 0.9451 0.9410 0.9392
P plate 0.9339 0.7311 0.6775 0.6674 0.6638 0.6621
S plate 1.6532 1.3976 1.3304 1.3176 1.3131 1.3110

SCSC

U plate 0.8054 0.6087 0.5564 0.5465 0.5430 0.5414
L plate 1.7806 1.5023 1.4296 1.4159 1.4110 1.4088
P plate 1.3691 1.1233 1.0589 1.0467 1.0424 1.0404
S plate 2.2957 1.9826 1.9009 1.8855 1.8801 1.8776

SSSS

U plate 1.3424 1.1910 1.1531 1.1461 1.1437 1.1425
L plate 3.1909 2.9790 2.9259 2.9160 2.9126 2.9110
P plate 2.2864 2.0972 2.0498 2.0410 2.0379 2.0365
S plate 4.4033 4.1635 4.1031 4.0919 4.0880 4.0862

CFCF

U plate 1.1883 0.9169 0.8451 0.8307 0.8253 0.8227
L plate 4.6506 4.1874 4.0595 4.0331 4.0232 4.0184
P plate 3.4750 3.0744 2.9666 2.9449 2.9370 2.9331
S plate 6.2105 5.6642 5.5084 5.4751 5.4624 5.4562

Thickness 
variations 3D views xz views yz views

U plate

L plate

P plate

S plate

Figure 8: Deflected shapes of the CCCC FGM plates depend on the thickness variations.
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side-to-thickness ratio of a/h0 � 10 and the varied parameter
ζ � 0.5 is considered. )e maximum nondimensional de-
flections of the plate for four cases of the BCs including fully
clamped plates (CCCC), two opposite sides are simply sup-
ported and two other sides are clamped plates (SCSC), fully
simple supported plates (SSSS), and two opposite sides are
clamped and two other sides are free plates (CFCF) with
different values of the power-law index are presented in Ta-
ble 13. According to Table 13, it can be seen clearly that the
increasing power-law index leads to increasing the maximum
deflection of the plates for all cases of BCs and four types of
thickness variation. It is due to the fact that when the power-
law index increases, the plate becomes a metal-rich plate. In a
comparison of the deflection between four cases of thickness
variation of the plates, it can be concluded that the maximum
deflection of the S plate is greatest, while the maximum de-
flection of the U plate is smallest.

5.4.2. >e Eeffects of the Side-to->ickness Ratio.
Secondly, the effects of the side-to-thickness ratio a/h0 on
the deflection of the variable thickness FGM plates are

investigated in this subsection. In this investigation, a square
FGM plate with p � 2 and ζ � 0.5 is considered. )e
maximum nondimensional deflections of the plate for four
cases of the BCs and thickness variations with different
values of the side-to-thickness ratio are shown in Table 14. It
seems that the change of the side-to-thickness ratio has
strong effects on the deflection of the plate. When the side-
to-thickness ratio increases, the maximum nondimensional
deflection of the plate decreases. In addition, the BCs affect
strongly the deflection of the plates. )e maximum de-
flection of the CCCC plate is smallest, while the maximum
deflection of the CFCF plate is greatest.

5.4.3. >e Influence of the >ickness Variation and BCs.
Continuously, the effects of the thickness variation and BCs
on the deflection and stresses of the variable thickness FGM
plate are studied in this subsection. A square FGM plate with
the power-law index of p � 1, the varying parameter of
ζ � 0.5, and the side-to-thickness ratio of a/h0 � 10 is ex-
amined. )e dependents of the deflected shapes on the BCs
and the type of thickness variation are exhibited in

U plate

L plate

P plate

S plate

Thickness 
variations 3D views xz views yz views

Figure 9: Deflected shapes of the SCSC FGM plates depend on the thickness variations.
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Figures 8–11 . )e change of the BCs leads to the change of
the deflected shape of the plates. Besides, the strong effects of
the thickness variation on the deflection of the plates are that
the maximum deflection of the varied plate will shift to the
thin side of the plate except for U plates.)e deflected shapes
are symmetrical in the case of U plates, while they are
asymmetrical in other cases. In the case of CFCF plates, the
maximum deflection appears at the midpoint of the thin
edge of the plates.

Additionally, we investigate the dependence of the
stresses of the variable thickness FGM plate on the type of
thickness variation. )e nondimensional normal stress σ∗x
and in-plane shear stress τ∗xy of the plate for four cases of
thickness variation are demonstrated in Figure 12 for the
case of square SSSS FGM plate and p � 1, ζ � 0.5. )e
stresses are strongly affected by the variation of the thick-
ness. )e maximum tensile normal stress and in-plane shear
stress occur at the ceramic-rich surface of the plates.

Furthermore, the maximum stresses of the S plates are
greatest in comparison to the other cases, so it can lead to the
stress concentration in the variable thickness structures. )e
stress distribution also depends on the law of thickness
variation. )e stresses at the middle FGM plate does not
equal zero as in isotropic homogeneous; it moves toward the
ceramic-rich surface of the FGM plates; especially, in the
case of P plates, the normal stress equals zero at two points of
the vertical fiber; it differs with other cases.

Finally, the effects of the varied parameter ζ on the
maximum deflection of the plates are studied. A square FGM
plate with p � 1 and a/h0 � 10 is considered. )e varied
parameter varies in the range of 0÷0.5. It can see from
Figure 13 that when the varied parameter increases, the
maximum deflection of the plates increases rapidly for all
cases of thickness variation except for U plate. )e speed of
the increase depends on the type of the thickness variation in
the order of P plate, L plate, and S plate. It also seems that the

U plate

L plate

P plate

S plate

Thickness 
variations 3D views xz views yz views

Figure 10: Deflected shapes of the SSSS FGM plates depend on the thickness variations.
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U plate
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P plate

S plate

Thickness 
variations 3D views xz views yz views

Figure 11: Deflected shapes of the CFCF FGM plates depend on the thickness variations.
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Figure 12: )e distribution of normal and in-plane shear stresses through the thickness of the FGM plates.

Mathematical Problems in Engineering 19



deflections of the CFCF plates are greatest while the CCCC
plates are smallest. Additionally, the increasing rate of de-
flection of the CFCF plate is fastest.

6. Conclusion

In this work, a new mixed four-node quadrilateral plate
element named MiQ4 with only five DOFs per node has
been developed based on the FSDT and the mixed finite
element formulation. Several examples were given to
demonstrate the accuracy, high convergence rate, and effi-
ciency of the proposed element. )en the proposed element
MiQ4 is applied to research the static bending behavior of
the FGM plates with variable thickness. Based on the results

of the presented work, some remarkable conclusions can be
clarified as follows:

)e proposed element MiQ4 utilizes the bilinear shape
function which is simple and similar to that of the well-
known classical Q4 element and allows us to calculate
easily the numerical integration.
)e new plate element is of good accuracy, high
convergence rate, and reliability, especially for thin and
very thin plates, in competition with other available
elements.
)e new element is insensitive to the mesh distortion,
so it can be used to examine arbitrary and complex
geometrical plates; as a consequence, the computation
cost of the meshing process is reduced.
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Figure 13: )e influence of the thickness variation on the nondimensional maximum deflections of the FGM plates with different BCs:
(a) CCCC plate, (b) SCSC plate, (c) SSSS plate, and (d) CFCF plate.
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)e proposed element is free of shear locking without
employing selective or reduced integrations.
Some numerical examples with different power-law
index, side-to-thickness ratio, BCs, and thickness
variation on the bending behavior of FGM plates are
investigated.

)e results of this study suggest some future works such
as investigating the complex geometrical plates, studying the
free vibration and dynamic response of the FGM plates
subjected to complex loading in the thermal environment,
and improving the convergent rate of the presented element.
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