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ABSTRACT
This paper presents two new theorems on Geoffrion’s properly efficient
solutions and seven examples illustrating their applications to linear frac-
tional vector optimization problems with unbounded constraint sets. Pro-
vided that all the components of the objective function are properly frac-
tional, the first theorem gives sufficient conditions for the efficient solution
set to coincide with the Geoffrion properly efficient solution set. Admitting
that the objective function can have some affine components, in the sec-
ond theorem we give sufficient conditions for an efficient solution to be a
Geoffrion’s properly efficient solution. The recession cone of the constraint
set, the derivatives of the scalar objective functions, but no tangent cone to
the constraint set at the efficient point, are used in the second theorem.
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1. Introduction

Linear fractional vector optimization problems (LFVOPs) were treated in a systematic way first by
Choo and Atkins [1,2]. As the authors observed in [2, p. 250–251],

Linear fractional functions are widely used as performance measures in many management situations, pro-
duction planning and scheduling, educational administration and the analysis of financial enterprises and
undertakings . . . Thus the multicriteria programming problems with linear fractional criterion functions
(MPLF) are important and have potentially wide applications.

Other explanations of the applications of linear fractional functions and LFVOPs were given by
Steuer [3, Chapter 9].

In linear fractional vector optimization, necessary and sufficient conditions for a feasible point to
be an efficient solution and/or a weakly efficient solution, interesting topological properties of the
solution sets, stability properties, and solution methods can be found, respectively, in [1–13],[14,
Section 5].

Considering a general vector optimization problem with a standard ordering cone (the nonnega-
tive orthant in an Euclidean space), Geoffrion [15] proposed the notion of properly efficient solution
to eliminate efficient solutions of a certain anomalous type. Geoffrion’s concept of proper efficiency has
been widely recognized in vector optimization. It was developed by Borwein [16] and Benson [17].
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Actually, Benson’s concept, which coincides with that of Geoffrion in the case of problems with the
standard ordering cones, is a true generalization Geoffrion’s concept. Later, Henig [18] and other
scholars proposed additional concepts of properly efficient solutions which are centered around that
one of Geoffrion and Benson.

It is well known that each efficient solution of a linear vector optimization problem is properly effi-
cient in the sense of Geoffrion (see [19, Corollary 3.1.1 and Theorem 3.1.4] and [20, Remark 2.4]). For
LFVOPs with bounded constraint sets, by using the necessary and sufficient conditions for efficiency
in those problems [1, Theorem 2.1 and Remark 2.1], Choo [21] proved that there is no difference
between the efficiency and Geoffrion’s proper efficiency.

Two natural questions arise: There is a difference between the efficient set and the Geoffrion (resp.,
Borwein) properly efficient set of an LFVOP with an unbounded constraint set, or not? How to find a
minimal (in a sense) set of sufficient conditions for an efficient solution of an LFVOPwith an unbounded
constraint set to be a Geoffrion’s (resp., Borwein’s) properly efficient point?

Very recently, one theorem giving verifiable sufficient conditions for an efficient solution belong
to Borwein’s properly efficient solution set has been established in [22]. The recession cone of the
constraint set, the derivatives of the scalar objective functions, and the tangent cone of the con-
straint set at the point in question have been used. An example showing that Borwein’s properly
efficient solution set can be strictly larger the Geoffrion properly efficient solution set can be found
in [22].

In our paper [20], by a direct approach via the recession cone of the constraint set and the deriva-
tives of the scalar objective functions at the point in question, we obtained sufficient conditions for an
efficient solution of an LFVOPwith an unbounded constraint set to be a Geoffrion’s properly efficient
solution. Some arguments of Choo [21] were used in that paper. Later, based on a result of Ben-
son [17], sufficient conditions for an efficient solution of an LFVOP with an unbounded constraint
set to be a Geoffrion’s properly efficient solution have been given in [23]. The conditions are based on
the recession cone of the constraint set, derivatives of the scalar objective functions, and the tangent
cone to the constraint set at the efficient point.

In this paper, by combining themethod used in [20] and the proof scheme of Choo [21], we obtain
two new theorems on Geoffrion’s properly efficient solutions and give seven examples to illustrate
their applications to LFVOPs with unbounded constraint sets. Assuming that all the components of
the objective function are properly fractional, in the first theoremwe give sufficient conditions for the
coincidence of theGeoffrion properly efficient solution setwith the efficient solution set. In the second
theorem, which provides sufficient conditions for an efficient solution to be a Geoffrion’s properly
efficient solution, it is admitted that the objective function can have some affine components. These
sufficient conditions are based on the recession cone of the constraint set, derivatives of the scalar
objective functions, but make no use of the tangent cone to the constraint set at the efficient point.
Both theorems are very different from the preceding results in [20,23]. In fact, the results and their
proofs shed a new light on the relationships between the Geoffrion properly efficient solution set and
the efficient solution set of an LFVOP with an unbounded constraint set.

The variety of the sufficient conditions for Geoffrion’s proper efficiency shows the difficulties in
distinguishing the Geoffrion properly efficient solution set and the efficient solution set of a linear
fractional vector optimization problemwith unbounded constraint set. In this connection, three open
questions were given in [20]. Other three open questions will be given at the end of this paper.

After giving some notations and definitions in Section 2, we establish themain results in Section 3.
Then, we consider several illustrative examples and propose three open questions in Section 4.

2. Notations and definitions

By N we denote the set of positive integers. The scalar product and the norm in R
n are denoted,

respectively, by 〈·, ·〉 and ‖ · ‖. Vectors in R
n are represented as rows of real numbers in the text, but

they are understood as columns of real numbers in matrix calculations. If A is a matrix, then AT
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stands for the transposed matrix. Thus, for any x, y ∈ R
n, one has 〈x, y〉 = xTy. Let R

m+ denote the
nonnegative orthant in R

m, whose topological interior is abbreviated to intRm+.
A nonzero vector v ∈ R

n is said to be [24, p. 61] a direction of recession of a nonempty convex
setM ⊂ R

n if x + tv ∈ M for every t ≥ 0 and every x ∈ M. The set composed by 0 ∈ R
n and all the

directions v ∈ R
n \ {0} satisfying the last condition, is called the recession cone ofM and denoted by

0+M. IfM is closed and convex, then 0+M = {v ∈ R
n : ∃x ∈ M s.t. x + tv ∈ M forallt > 0}.

The recession cone of a polyhedral convex set can be easily computed by using next lemma, which
can be proved by a direct verification.

Lemma 2.1: If M = {x ∈ R
n : Cx ≤ d}with C ∈ R

p×n and d ∈ R
p, andM is nonempty, then 0+M =

{v ∈ R
n : Cv ≤ 0}.

We will need the following lemma in our proofs.

Lemma 2.2 (See [20, Lemma 2.5]): Let M ⊂ R
n be closed and convex, x̄ ∈ M, and let {xp} be a

sequence in M \ {x̄} with limp→∞ ‖xp‖ = +∞. If limp→∞((xp − x̄)/‖xp − x̄‖) = v, then v ∈ 0+M.

Consider linear fractional functions fi : R
n → R, i = 1, . . . ,m, of the form

fi(x) = aTi x + αi

bTi x + βi
,

where ai ∈ R
n, bi ∈ R

n,αi ∈ R, and βi ∈ R. Let K be a polyhedral convex set, i.e. there exist p ∈ N, a
matrixC = (cij) ∈ R

p×n, and a vector d = (di) ∈ R
p such thatK = {x ∈ R

n : Cx ≤ d}. In the sequel,
we always assume that K is nonempty.

Our standing assumption is that bTi x + βi > 0 for all i ∈ I and x ∈ K, where I := {1, . . . ,m}. Put
f (x) = (f1(x), . . . , fm(x)) and let

� =
{
x ∈ R

n : bTi x + βi > 0, ∀i ∈ I
}
.

Clearly,� is open and convex,K ⊂ �, and f is continuously differentiable on�. The linear fractional
vector optimization problem given by f and K is formally written as

Minimize f (x) subject to x ∈ K. (VP)

Definition 2.3: Apoint x ∈ K is said to be an efficient solution (or aPareto solution) of (VP) if (f (K) −
f (x)) ∩ (−R

m+ \ {0}) = ∅. One calls x ∈ K a weakly efficient solution (or a weak Pareto solution) of
(VP) if (f (K) − f (x)) ∩ (−intRm+) = ∅.

The efficient solution set (resp., the weakly efficient solution set) of (VP) are denoted, respectively,
by E and Ew.

Theorem 2.4 (see [11] and [10, Theorem 8.1]): For any x ∈ K, one has x ∈ E (resp., x ∈ Ew) if and
only if there exists a multiplier ξ = (ξ1, . . . , ξm) ∈ intRm+ (resp., ξ = (ξ1, . . . , ξm) ∈ R

m+ \ {0}) such
that 〈 m∑

i=1
ξi

[(
bTi x + βi

)
ai −

(
aTi x + αi

)
bi

]
, y − x

〉
≥ 0, ∀y ∈ K. (1)

If bi = 0 and βi = 1 for all i ∈ I, then (VP) coincides with the classical multiobjective linear opti-
mization problem. By the above optimality conditions, for any x ∈ K, one has x ∈ E (resp., x ∈ Ew) if
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and only if there exists a multiplier ξ = (ξ1, . . . , ξm) ∈ intRm+ (resp., a multiplier ξ = (ξ1, . . . , ξm) ∈
R
m+ \ {0}) such that 〈 m∑

i=1
ξiai, y − x

〉
≥ 0, ∀y ∈ K. (2)

The following property will be used in our investigations.

Lemma 2.5 (see, e.g. [11] and [10, Lemma 8.1]): Let ϕ(x) = (aTx + α)/(bTx + β) be a linear frac-
tional function defined by a, b ∈ R

n and α,β ∈ R. Suppose that bTx + β �= 0 for every x ∈ K0, where
K0 ⊂ R

n is an arbitrary polyhedral convex set. Then, one has

ϕ(y) − ϕ(x) = bTx + β

bTy + β
〈∇ϕ(x), y − x〉, (3)

for any x, y ∈ K0, where ∇ϕ(x) denotes the Fréchet derivative of ϕ at x.

The connectedness of K0 and the condition bTx + β �= 0 for every x ∈ K0 imply that either
bTx + β > 0 for all x ∈ K0, or bTx + β < 0 for all x ∈ K0. Hence, for any x, y ∈ K0, one has
(bTx + β)/(bTy + β) > 0. Given vectors x, y ∈ K0 with x �= y, we consider two points from the line
segment [x, y]:

zt = x + t(y − x), zt′ = x + t′(y − x) (t ∈ [0, 1], t′ ∈ [0, t)).

By (3), we can assert that

(i) If 〈∇ϕ(x), y − x〉 > 0, then ϕ(zt′) < ϕ(zt) for every t′ ∈ [0, t).
(ii) If 〈∇ϕ(x), y − x〉 < 0, then ϕ(zt′) > ϕ(zt) for every t′ ∈ [0, t).
(iii) If 〈∇ϕ(x), y − x〉 = 0, then ϕ(zt′) = ϕ(zt) for every t′ ∈ [0, t).

This shows that ϕ is monotonic on every line segment or ray contained in K0.

Definition 2.6 (see [15, p. 618]): One says that x̄ ∈ E is aGeoffrion’s properly efficient solution of (VP)
if there exists a scalarM> 0 such that, for each i ∈ I, whenever x ∈ K and fi(x) < fi(x̄) one can find an
index j ∈ I such that fj(x) > fj(x̄) and Ai,j(x̄, x) ≤ M with Ai,j(x̄, x) := (fi(x̄) − fi(x))/(fj(x) − fj(x̄)).

The Geoffrion properly efficient solution set of (VP) is denoted by EGe. For any x̄ ∈ E, x̄ /∈ EGe if
and only if for every scalar M> 0 there exist x ∈ K and i ∈ I with fi(x) < fi(x̄) such that, for all j ∈ I
satisfying fj(x) > fj(x̄), one has Ai,j(x̄, x) > M. This observation has been made in [15, p. 619] for
general vector optimization problems.

3. Sufficient conditions for the Geoffrion proper efficiency

In this section, we will establish two new theorems on the Geoffrion proper efficiency for LFVOPs.
The first one is obtained by combining the approach of [20]with some arguments ofChoo [21]. By this
technique, we will also get the second result that deals with the case where some components of the
objective function are affine. Our results complement the result of Choo [21], as well as Theorems 3.1
and 3.3 in [20], and Theorem 3.1 in [23].

The following lemma clarifies some assumptions that will be used later on.

Lemma 3.1: For any i ∈ I and v ∈ 0+K, one has bTi v ≥ 0.
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Proof: If the assertion was false, then there would exist an index i ∈ I and a vector v ∈ (0+K) \ {0}
satisfying bTi v < 0. Fixing a point u ∈ K, one has u + tv ∈ K for all t> 0. So, for t> 0 large enough,
one has bTi (u + tv) + βi < 0. This contradicts the condition bTi x + βi > 0 for all x ∈ K. Our assertion
is proved. �

The assumption of the forthcoming theorem is a strengthened form of the property described
by Lemma 3.1. If K is unbounded, then the assumption implies that bk �= 0 for all k ∈ I, i.e. all the
denominators of the components fk(x), k ∈ I, of the objective function of (VP) are not real constants.

Theorem 3.2: If one has bTk v > 0 for any k ∈ I and v ∈ (0+K) \ {0}, then every efficient solution of
(VP) is a properly efficient solution in the sense of Geoffrion, i.e. E = EGe.

Proof: (This proof is based on some arguments of the proof of Theorem 3.1 in [20] and the proof of
the main result of [21].) Suppose on the contrary that bTi v > 0 for any i ∈ I and v ∈ (0+K) \ {0}, but
there is a point x̄ ∈ E which does not belong to EGe. Then, for every p ∈ N, there exist xp ∈ K and
i(p) ∈ I with fi(p)(xp) < fi(p)(x̄) such that, for all j ∈ I satisfying fj(xp) > fj(x̄), one hasAi(p),j(x̄, xp) >

p. Since the sequence {i(p)} has values in the finite set I, by working with a subsequence (if necessary),
we may assume that i(p) = i for all p, where i ∈ I is a fixed index. For each p, as x̄ ∈ E and fi(xp) <

fi(x̄), the set J(p) := {j ∈ I : fj(xp) > fj(x̄)} is nonempty. Since J(p) ⊂ I \ {i} for all p, by applying the
Dirichlet principle and considering a subsequence, we may assume that J(p) = J for all p, where J is
a nonempty subset of I \ {i}. Thus

Ai,j(x̄, xp) = fi(x̄) − fi(xp)
fj(xp) − fj(x̄)

> p ∀p ∈ N, ∀j ∈ J. (4)

Hence, for every j ∈ J, one has limp→∞ Ai,j(x̄, xp) = +∞.
Put vp = (xp − x̄)/‖xp − x̄‖. Without loss of generality, we may suppose that limp→∞ vp = v,

where v is a unit vector. According to Lemma 2.5,

fi(xp) − fi(x̄) = ‖xp − x̄‖ bTi x̄ + βi

bTi xp + βi

〈∇fi(x̄), vp
〉
. (5)

Similarly,

fj(xp) − fj(x̄) = ‖xp − x̄‖
bTj x̄ + βj

bTj xp + βj

〈∇fj(x̄), vp
〉
. (6)

Hence, for all j ∈ J, we have

Ai,j(x̄, xp) = −bTi x̄ + βi

bTj x̄ + βj
·
bTj x

p + βj

bTi xp + βi
·
〈∇fi(x̄), vp

〉
〈∇fj(x̄), vp

〉 .
Since bTk x̄ + βk > 0 for every k ∈ I, we have limp→∞ Ai,j(x̄, xp) = +∞ if and only if the quantity

Āi,j(x̄, xp) := −
bTj x

p + βj

bTi xp + βi
·
〈∇fi(x̄), vp

〉
〈∇fj(x̄), vp

〉
tends to +∞ as p → ∞ for every j ∈ J.
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First, suppose that {xp} is bounded. Then, for each j ∈ J, the assumption bTk x + βk > 0 for all k ∈ I
and x ∈ K implies that there exist positive constants γ 1

i,j and γ 2
i,j satisfying

γ 1
i,j ≤

bTj x
p + βj

bTi xp + βi
≤ γ 2

i,j (∀p ∈ N).

So, for every j ∈ J, one has limp→∞ Āi,j(x̄, xp) = +∞ if and only if

lim
p→∞

〈∇fj(x̄), vp
〉

〈∇fi(x̄), vp
〉 = 0. (7)

As fi(x̄) − fi(xp) > 0 for every p, expression (5) implies that 〈∇fi(x̄), vp〉 < 0.
Due to the construction of the index set J at the beginning of this proof, for every k /∈ J, one has

fk(xp) ≤ fk(x̄) for all p ∈ N. So, by Lemma 2.5,
〈∇fk(x̄), vp

〉 ≤ 0, k /∈ J. (8)

Since x̄ ∈ E, by Theorem 2.4 there exist ξk > 0, k ∈ I, such that
〈∑
k∈I

ξk

[(
bTk x̄ + βk

)
ak −

(
aTk x̄ + αk

)
bk

]
, y − x̄

〉
≥ 0, ∀y ∈ K.

For each p, substituting y = xp to the last inequality and dividing both sides of the obtained inequality
by ‖xp − x̄‖, we get

〈∑
k∈I

ξk

[(
bTk x̄ + βk

)
ak −

(
aTk x̄ + αk

)
bk

]
, vp

〉
≥ 0. (9)

Put λk = ξk(bTk x̄ + βk)
2 for every k ∈ I. One has λk > 0 for all k ∈ I. Since

∇fk(x̄) =
(
bTk x̄ + βk

)
ak − (

aTk x̄ + αk
)
bk

(bTk x̄ + βk)2
(∀k ∈ I),

from (9) we can deduce that ∑
k∈I

λk
〈∇fk(x̄), vp

〉 ≥ 0. (10)

As 〈∇fi(x̄), vp〉 < 0, this yields 0 ≥ (1/〈∇fi(x̄), vp〉)
∑

k∈I λk〈∇fk(x̄), vp〉. So we have

0 ≥ λi +
∑

k∈I\(J∪{i})
λk

〈∇fk(x̄), vp
〉

〈∇fi(x̄), vp
〉 +

∑
k∈J

λk

〈∇fk(x̄), vp
〉

〈∇fi(x̄), vp
〉 (11)

for all p ∈ N. On one hand, the second term of the sum in (11) is nonnegative by (8). On the other
hand, (7) guarantees that the third term of the sum in (11) goes to 0 as p tends to∞. Therefore, since
λi > 0, (11) cannot hold for sufficiently large indexes p. We have arrived at a contradiction.

Now, consider the situationwhere {xp} is unbounded. By passing to a subsequence, wemay assume
that limp→∞ ‖xp‖ = +∞. Recall that vp = (xp − x̄)/‖xp − x̄‖ and limp→∞ vp = v. SinceK is closed
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and convex, by Lemma 2.2 we have v ∈ (0+K) \ {0}. Note that
bTj x

p + βj

‖xp − x̄‖ =
bTj (xp − x̄)

‖xp − x̄‖ + βj

‖xp − x̄‖ +
bTj x̄

‖xp − x̄‖ (∀j ∈ J)

and
bTi x

p + βi

‖xp − x̄‖ = bTi (xp − x̄)
‖xp − x̄‖ + βi

‖xp − x̄‖ + bTi x̄
‖xp − x̄‖ .

Therefore, for every j ∈ J,

Āi,j(x̄, xp) = −
bTj v

p + βj

‖xp − x̄‖ +
bTj x̄

‖xp − x̄‖
bTi vp + βi

‖xp − x̄‖ + bTi x̄
‖xp − x̄‖

·
〈∇fi(x̄), vp

〉
〈∇fj(x̄), vp

〉 . (12)

By the assumption of the theorem, bTk v �= 0 for all k ∈ I and v ∈ (0+K) \ {0}. As limp→∞ ‖xp‖ =
+∞, one has limp→∞ ‖xp − x̄‖ = +∞. Thus, from (12) it follows that limp→∞ Āi,j(x̄, xp) = +∞ if
and only if (7) holds. So, repeating the arguments already used in the case where {xp} is bounded, we
obtain a contradiction.

We have thus proved that E = EGe. �

Corollary 3.3 (See [21, p. 218]): If K is bounded, then E = EGe.

Proof: If K is bounded, then the set (0+K) \ {0} is empty. Hence, the assumption of Theorem 3.2 is
automatically satisfied. Therefore, thanks to that theorem, one has E = EGe. �

We now consider the case where K is unbounded and some objective functions of (VP) may be
linear (affine, to be more precise), i.e. we may have fi(x) = aTi x + αi for some i ∈ I. Let I1 := {i ∈ I :
bi �= 0}. Then, bi = 0 and βi = 1 for all i ∈ I0, where I0 := I \ I1. In this case, we have the following
result.

Theorem 3.4: Assume that x̄ ∈ E. If

For any z ∈ (0+K) \ {0}, bTi z > 0 for all i ∈ I1 (13)

and {
There is no (i, j) ∈ I0 × I1 and z ∈ (0+K) \ {0} such that
aTi z ≤ 0 and

〈∇fj(x̄), z
〉 ≥ 0,

(14)

then x̄ ∈ EGe.

Proof: Assume the fulfillment of the regularity assumptions (13) and (14). Arguing by contradiction,
suppose that there exists x̄ ∈ Ewith x̄ /∈ EGe. Then, as it has been shown in the proof of Theorem 3.2,
we would find a sequence {xp} ⊂ K \ {x̄}, an index i ∈ I, and a nonempty subset J ⊂ I, such that

(i) fi(xp) < fi(x̄) for each p;
(ii) J = {j ∈ I : fj(xp) > fj(x̄)} for each p;
(iii) For every j ∈ J, one has limp→∞ Ai,j(x̄, xp) = +∞, where Ai,j(x̄, xp) has been defined in (4).

Put vp = (xp − x̄)/‖xp − x̄‖. Without loss of generality, we may assume that limp→∞ vp = v with
‖v‖ = 1.
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For the efficient solution x̄ ∈ E, we construct the multipliers ξk > 0, the numbers λk > 0, k ∈ I, as
in the proof of Theorem 3.2. Then, equality (10) holds for every p ∈ N

If {xp} is bounded then, by the arguments given in the proof of Theorem 3.2, we can obtain a
contradiction without relying on the conditions (13) and (14). Now, consider the case where {xp} is
unbounded. Passing to a subsequence if necessary, we may assume that limp→∞ ‖xp‖ = +∞. Then,
by Lemma 2.2 we have v ∈ (0+K) \ {0}. There are two cases: i ∈ I0 or i ∈ I1. Note that limp→∞ ‖xp −
x̄‖ = +∞ and

lim
p→∞

bTi x̄ + βi

‖xp − x̄‖ = 0 (∀i ∈ I1). (15)

Case 1: One has i ∈ I0. Then,

fi(x̄) − fi(xp) = −〈ai, xp − x̄〉 = −‖xp − x̄‖
(
aTi v

p
)
.

This and the above property 1 imply that

aTi v
p < 0 (∀p ∈ N). (16)

For each j ∈ J, by property 3 one has limp→∞ Ai,j(x̄, xp) = +∞. If j ∈ J ∩ I0, then

fj(xp) − fj(x̄) = ‖xp − x̄‖
(
aTj v

p
)
. (17)

Hence, for every j ∈ I0 ∩ J,

Āi,j(x̄, xp) = − fi(xp) − fi(x̄)
fj(xp) − fj(x̄)

= −aTi v
p

aTj vp
.

So, Ai,j(x̄, xp) tends to +∞ as p → ∞ only if

lim
p→∞

aTj v
p

aTi vp
= 0. (18)

The situation j ∈ J ∩ I1 cannot occur, i.e. J ⊂ I0. Indeed, if there exists some j ∈ J ∩ I1, then the above
property 2 and (6) yield 〈∇fj(x̄), vp〉 > 0 for every p. So, we have 〈∇fj(x̄), v〉 ≥ 0. From (16), it follows
that aTi v ≤ 0. Thus, for the pair (i, j) ∈ I0 × I1 and the vector v ∈ (0+K) \ {0} under consideration,
it holds that aTi v ≤ 0 and 〈∇fj(x̄), v〉 ≥ 0. This contradicts (14).

Due to the construction of the index set J at the beginning of this proof (see property 2), for every
k ∈ I \ J, one has fk(xp) ≤ fk(x̄) for all p ∈ N. So, invoking Lemma 2.5 we can assert that〈∇fk(x̄), vp

〉 ≤ 0, (∀k ∈ I \ J, ∀p ∈ N). (19)

By (10), we have

λi

(
aTi v

p
)

+
∑

k∈I\(J∪{i})
λk

〈∇fk(x̄), vp
〉 + ∑

k∈J
λk

(
aTk v

p
)

≥ 0.

Dividing both sides of this inequality by aTi v
p and using (16) yield

λi +
∑

k∈I\(J∪{i})
λk

〈∇fk(x̄), vp
〉

aTi vp
+

∑
k∈J

λk
aTk v

p

aTi vp
≤ 0 (20)

for all p ∈ N. The second term of the sum in (20) is nonnegative by (19) and (16). Meanwhile, the
validity of (18) for all j ∈ j implies that the third term of the sum in (20) goes to 0 as p → ∞. Since
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λi > 0, this shows that the left-hand side of (20) is positive if p is taken large enough. We have thus
arrived at a contradiction.

Case 2: One has i ∈ I1. Let j ∈ J be given arbitrarily.
If j ∈ J ∩ I0, then it follows from (5) and (17) that

Ai,j(x̄, xp) = −

bTi x̄ + βi

bTi xp + βi
· 〈∇fi(x̄), vp

〉
aTj vp

= −
〈∇fi(x̄), vp

〉
aTj vp

·
bTi x̄ + βi

‖xp − x̄‖
bTi vp + βi

‖xp − x̄‖ + bTi x̄
‖xp − x̄‖

. (21)

Since i ∈ I1, by (13) we have limp→∞ bTi v
p = bTi v > 0. Combining this with (15), we can assert that

the last fraction in (21) tends to 0 as p → ∞. By (21), the property limp→∞ Ai,j(x̄, xp) = +∞ forces
limp→∞(−(〈∇fi(x̄), vp〉/aTj vp)) = +∞. It follows that

lim
p→∞

aTj v
p〈∇fi(x̄), vp

〉 = 0 (∀j ∈ J ∩ I0). (22)

If j ∈ J ∩ I1 then, by repeating the arguments in the proof of Theorem 3.2, we obtain the
equality (7). Thus we have

lim
p→∞

〈∇fj(x̄), vp
〉

〈∇fi(x̄), vp
〉 = 0 (∀j ∈ J ∩ I1). (23)

As before, one has 〈∇fk(x̄), vp〉 ≤ 0, for all p ∈ N and for all k ∈ I \ J. Since 〈∇fi(x̄), vp〉 < 0,
from (10) it follows that

0 ≥ λi +
∑

k∈I\(J∪{i})
λk

〈∇fk(x̄), vp
〉

〈∇fi(x̄), vp
〉

+
∑

k∈J∩I0
λk

aTk v
p〈∇fi(x̄), vp

〉 +
∑

k∈J∩I1
λk

〈∇fk(x̄), vp
〉

〈∇fi(x̄), vp
〉 (24)

for all p ∈ N. Observe that the second term of the sum in (24) is nonnegative. In addition, thanks
to (22) and (23), the third term of the sum in (24) tends to 0 as p goes to∞. Since λi > 0, we conclude
that (24) cannot hold for sufficiently large indexes p. Thus we have arrived at a contradiction.

The proof of the theorem is complete. �

Remark 3.5: Theorem 3.4 is a generalization of Theorem 3.2. Indeed, if I0 = ∅, then (14) is fulfilled
and I1 = I. Since (13) is exactly the assumption of Theorem 3.2, our claim is justified.

If all the components of the objective function f are affine, then (VP) is the classical linear vector
optimization problem (see, e.g. [25, Section 2 in Chapter 6] and [26]). Theorem 3.4 encompasses the
following well-known result, which has an interesting application to vector variational inequalities
with polyhedral constraint sets [27].

Corollary 3.6 (see, e.g. [19, Corollary 3.1.1 andTheorem3.1.4] and [20, Remark 2.4]): For a linear
vector optimization problem, one has E = EGe.
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Proof: Consider the situation where (VP) is a linear vector optimization problem. Then, all the func-
tions fi, i ∈ I are affine. Hence, I1 = ∅. So, both regularity conditions (13) and (14) are automatically
satisfied; and by Theorem 3.4 one has E = EGe. �

4. Illustrative examples

First, we apply Theorem 3.2 to three well-known examples. In comparison with the analysis given in
[20], where other sufficient conditions for the Geoffrion proper efficiency were used, the checking of
the equality E = EGe herein is much simpler and easier.

Example 4.1 (see [2, Example 2]): Consider problem (VP) with

K = {
x = (x1, x2) ∈ R

2 : x1 ≥ 2, 0 ≤ x2 ≤ 4
}
,

f1(x) = −x1
x1 + x2 − 1

, f2(x) = −x1
x1 − x2 + 3

.

The fact that E = Ew = {(x1, 0) : x1 ≥ 2} ∪ {(x1, 4) : x1 ≥ 2} can be verified by using Theorem 2.4.
Since 0+K = {v = (v1, 0) : v1 ≥ 0}, b1 = (1, 1), and b2 = (1,−1), we have bT1 v = bT2 v = v1 > 0 for
any v ∈ (0+K) \ {0}. Thus, by Theorem 3.2, the equality E = EGe holds.

Example 4.2 (see [6, p. 483]): Consider problem (VP) where n = m = 3,

K =
{

x ∈ R
3 : x1 + x2 − 2x3 ≤ 1, x1 − 2x2 + x3 ≤ 1,

−2x1 + x2 + x3 ≤ 1, x1 + x2 + x3 ≥ 1

}

and

fi(x) =
−xi + 1

2

x1 + x2 + x3 − 3
4

(i = 1, 2, 3).

In [6], the authors have proved that

E = Ew ={(x1, x2, x3) : x1 ≥ 1, x3 = x2 = x1 − 1}
∪ {(x1, x2, x3) : x2 ≥ 1, x3 = x1 = x2 − 1}
∪ {(x1, x2, x3) : x3 ≥ 1, x2 = x1 = x3 − 1}.

Using Lemma 2.1, one can show that 0+K = {v = (τ , τ , τ) ∈ R
3 : τ ≥ 0}. Since b1 = b2 = b3 =

(1, 1, 1), for any i ∈ I and v = (τ , τ , τ) ∈ (0+K) \ {0}, one has bTi v = 3τ > 0. Thus, by Theorem 3.2
we can assert that E = EGe.

The number of criteria in the following LFVOP can be any integerm ≥ 2.

Example 4.3 (see [6, p. 479–480]): Consider problem (VP) where n = m,m ≥ 2,

K =
{
x ∈ R

m : x1 ≥ 0, x2 ≥ 0, . . . , xm ≥ 0,
m∑
k=1

xk ≥ 1

}

and

fi(x) =
−xi + 1

2∑m
k=1 xk − 3

4

(i = 1, . . . ,m).



APPLICABLE ANALYSIS 3209

According to [6, p. 483], one has

E = Ew ={(x1, 0, . . . , 0) : x1 ≥ 1}
∪ {(0, x2, . . . , 0) : x2 ≥ 1}
. . .

∪ {(0, . . . , 0, xm) : xm ≥ 1}.
Since 0+K = R

m+ and bi = (1, 1, 1, . . . , 1) for i = 1, . . . ,m, one has bTi v > 0 for all i ∈ I and v ∈
(0+K) \ {0}. So, by Theorem 3.2 we get E = EGe.

As Theorem 3.4 is a generalization of Theorem 3.2 (see Remark 3.5), we can apply it to the above
three examples to show that E = EGe. The advantage of Theorem 3.4 is that it can treat problems with
mixed objective criteria: both affine and non-affine functions are allowed.

If at least one of the two regularity assumptions in Theorem 3.4 is violated, then we may not have
x̄ ∈ EGe. The forthcoming two examples will justify this claim.

Example 4.4 (see [20, Example 2.6]): Consider problem (VP) wherem = 3, n = 2, K = R
2+, and

f1(x) = −x2, f2(x) = x2
x1 + x2 + 1

for every x = (x1, x2). In [20], we have shown that E = {(x1, 0) : x1 ≥ 0} and EGe = ∅. Clearly,
0+K = K, I0 = {1}, I1 = {2}, a1 = (0,−1), and b2 = (1, 1). For every vector x̄ = (x̄1, 0) from E, one
has ∇f2(x̄) = (0, 1/(x̄1 + 1)). Condition (13) is fulfilled because bT2 v > 0 for any v ∈ (0+K) \ {0}.
Meanwhile, choosing

(i, j) = (1, 2) and z = (1, 0) ∈ (0+K) \ {0},
we have aTi z = 0 and 〈∇fj(x̄), z〉 = 0. So, condition (14) is not fulfilled. The reason for x̄ /∈ EGe is that
the two regularity assumptions in Theorem 3.4 do not hold simultaneously.

Example 4.5 (see [20, Example 4.7]): Consider problem (VP) withm = 3, n = 2, K = R
2+, and

f1(x) = −x1 − x2, f2(x) = x2
x1 + x2 + 1

, f3(x) = x1 − x2

for every x = (x1, x2). In [20], we have shown that

E = {x = (x1, x2) : x1 ≥ 0, x2 ≥ 0, x2 < x1 + 1} ,
and any efficient solution x̄ of the form x̄ = (x̄1, 0), x̄1 ≥ 0, is improper in the sense of Geoffrion.
Improving the last fact, the authors of [23] have proved that EGe = ∅. Let us check the conditions
of Theorem 3.4. We have 0+K = R

2+, I0 = {1, 3}, I1 = {2}, b2 = (1, 1), and a1 = (−1,−1). So, con-
dition (13) is satisfied. In addition, taking a point x̄ = (x̄1, 0) ∈ E, one has ∇f2(x̄) = (0, 1/(x̄1 + 1))
and x̄1 ≥ 0. By selecting (i, j) = (1, 2) ∈ I0 × I1 and v = (1, 1) ∈ (0+K) \ {0}, one gets aTi v < 0 and
〈∇fj(x̄), v〉 = 1/(x̄1 + 1) > 0. This means that condition (14) is violated.

In the forthcoming two examples, Theorem 3.2 (resp., Theorem 3.4) can be applied, but Theo-
rems 3.1 and 3.3 in [20] cannot be used.

Example 4.6: Consider problem (VP) wherem = 2, n = 2, K = R
2+, and

f1(x) = x1 − x2
x1 + x2 + 1

, f2(x) = x2 − x1
x1 + x2 + 1

for every x = (x1, x2). Taking any x ∈ K and applying Theorem 2.4 with ξ2 = ξ1 = 1
2 , we can assert

that x ∈ E, because l
∑2

i=1 ξi[(bTi x + βi)ai − (aTi x + αi)bi] = 0. Since 0+K = R
2+ and bk = (1, 1) for



3210 N. T. T. HUONG ET AL.

all k ∈ I, Theorem 3.2 assures that E = EGe. Given any x̄ = (x̄1, x̄2) ∈ E, we claim that Theorem 3.1
in [20] cannot be used because the first regularity condition there is not satisfied. To justify the claim,
observe that

∇f1(x̄) = 1
q(x̄)

(2x̄2 + 1,−2x̄1 − 1) , ∇f2(x̄) = 1
q(x̄)

(−2x̄2 − 1, 2x̄1 + 1) ,

where q(x̄) := (x̄1 + x̄2 + 1)2. So, for v1 := (2x̄1 + 1)/(2x̄2 + 1) and v2 := 1, one sees that v =
(v1, v2) belongs to 0+K \ {0}, but 〈∇f1(x̄), v〉 = 0 and 〈∇f2(x̄), v〉 = 0. Thus the first regularity
condition of [20, Theorem 3.1] is not fulfilled.

Example 4.7: Consider problem (VP) where m = 3, n = 2, K = R
2+, f1(x) = x1 − x2, f2(x) = x2,

and f3(x) = −x1 for every x = (x1, x2). For any x ∈ K, applying Theorem 2.4 with ξ3 = ξ2 = ξ1 =
1
3 gives x ∈ E, because (1) collapses to (2) and

∑3
i=1 ξiai = 0. Since I1 = ∅, the assumptions of

Theorem 3.4 for any x̄ ∈ E. So, by that theorem, E = EGe. Choosing (i, j, k) = (3, 1, 2) ∈ I3 and
v = (1, 1), one has v ∈ (0+K) \ {0}, 〈∇fi(x̄), v〉 < 0, 〈∇fj(x̄), v〉 = 0 and 〈∇fk(x̄), v〉 > 0. Hence, the
third regularity condition of [20, Theorem 3.3] is not fulfilled. This shows that the latter cannot be
used for the problem in this example.

Three open questions on Geoffrion’s proper efficiency for LFVOPs have been stated in [20,
Section 5]. We end this section with the following new open questions:

(Q1) Does there exist a linear fractional vector optimization problem for which both inclusions in
the expression ∅ ⊂ EGe ⊂ E are strict (i.e. Geoffrion’s properly efficient solution set is nonempty,
but it does not coincide with the efficient solution set)?
(Q2) Does there exist a linear fractional vector optimization problem whose Geoffrion properly
efficient solution set is different from the efficient solution set, but disconnected?
(Q3) The Geoffrion properly efficient solution set is a semialgebraic set?

Concerning (Q3), we observe that semialgebraic sets and some results from semialgebraic geom-
etry were used in linear fractional vector optimization for the first time in [8]. Applications of the
concept of semialgebraic set to polynomial vector optimization problems can be found in the papers
by Huong et al. [28], Kim et al. [29], and Hieu [30].
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