Journal of Computational and Applied Mathematics 380 (2020) 112989

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

L))

Check for
updates

Euler-Maruyama scheme for Caputo stochastic fractional
differential equations

T.S. Doan?, P.T. Huong ", P.E. Kloeden “*, A.M. Vu"

2 Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
bLe Quy Don Technical University, 236 Hoang Quoc Viet, Ha Noi, Viet Nam
¢ Department of Mathematics, Universitdt Tiibingen, D-72076 Tiibingen, Germany

ARTICLE INFO ABSTRACT
Article history: In this paper, we first construct a Euler-Maruyama type scheme for Caputo stochastic
Received 23 November 2019 fractional differential equations (for short Caputo SFDE) of order a € (%, 1) whose
Received in revised form 8 March 2020 coefficients satisfy a standard Lipschitz and a linear growth bound condition. The strong
MSC: convergence rate of this scheme is established. In particular, it is « — 3 when the
60H20 coefficients of the SFDE are independent of time. Finally, we establish results on the
60H35 convergence and stability of an exponential Euler-Maruyama scheme for bilinear scalar
65C30 Caputo SFDEs

© 2020 Elsevier B.V. All rights reserved.
Keywords:
Stochastic differential and integral
equations

Fractional calculus
Numerical method
Euler-Maruyama scheme

1. Introduction

In this paper, we study Caputo fractional differential equations in noisy environment of the form

) ?. (1)
t

This type of systems is a natural type of fractional systems whose coefficients are random and thus has been received

an increasing interest due to the fact that fractional systems appear in many models in mechanics, physics, electrical

engineering, control theory, etc. see [1,2].

As far as we are aware, the main achieved results for (1) are limited to problem of the existence of strong solution [3,4]
and mild solution [5]. A proof of coincidence of strong and mild solution of (1) under some natural assumptions on the
coefficients has recently been proved in [6].

Our first aim in this paper is to establish a Euler-Maruyama numerical method for (1). Secondly, we are interested in
the stability of numerical scheme for bilinear scalar Caputo SFDE. Note that in comparison to the bilinear scalar stochastic
differential equations, there is no explicit formula of solutions of bilinear scalar Caputo SFDE. Then, it is hard to obtain
a similar result as in [7, Section 4, Eq. (22)] about stability of Euler-Maruyama method for bilinear scalar Caputo SFDE.
Here, we develop an exponential Euler-Maruyama method for bilinear scalar Caputo SFDE that can be considered as a

D X(t) = bt, X(£)) + o (t, X(t)
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natural extension of the exponential Euler-Maruyama method of stochastic differential equations to this setting. Then,
we analysis the convergence and stability of this method.

The paper is organized as follows: In Section 2, we give a setting of the problem and state the main results of the paper
(Theorems 1 and 3). Sections 3 and 4 are devoted to prove the main results. In Section 5, we study several examples to
illustrate the numerical result. Precisely, a simple scalar system was studied to point out that the convergence rate in
Theorem 1 is optimal.

Notations. Let (W} ):c[0,o0) denote a standard scalar Brownian motion on an underlying complete filtered probability space
(2, F, F := {Ft}tefo.00) P). For each ¢ € [0, 00), let X; := 1.2(£2, F;, P) denote the space of all F;-measurable, mean square
integrable functions f = (fi, ..., f1)' : 2 — R? with

Wfllms = | > B,
1<i<d

where R? is endowed with the standard Euclidean norm. A process X : [0, oo) — L2(£2, F, P) is said to be F-adapted if
X(t) e X; forallt > 0.

For «, B € (0, 1), the Mittag-Leffler functions E, g, E, : R — R are defined by

[e9)

7k o Zk
Eq 5(2) = kX:O: F(T—i—ﬂf Ey(z) = kX:; m,

where I is the Gamma function, i.e. I'(x) := [;°s* e~ ds.
2. Preliminaries and the statement of the main results
2.1. Setting

Let T > 0 be arbitrary and consider a Caputo SFDE of order « € (%, 1) on the interval [0, T] of the following form
dwW;

) T

where b, o : [0, T] x R — R? are measurable and satisfy the following conditions:

DY, X(t) = b(t, X(t)) + o (t, X(¢) (2)

(H1) Global Lipschitz continuity in R? of the drift and diffusion: There exists L > 0 such that for all x, y € R%, t € [0, T],
Ib(t, x) — b(e, Y V llo(t, x) — o(t, Y)Il < LlIx =yl

(H2) Hélder continuity in [0, T] of the drift and diffusion: There exist L1, L, > 0 and g, y < [0, 1] such that for all x € R,
t,s €[0,T]

Ib(t, x) — b(s, x)| < Ly|t —s|?, llo(t,x) — o (s, )| < La|t —s|”.
(H3) Linear growth bound: There exists K > 0 such that for t € [0, T], x € R?
Ib(t, )11 v llo(t, )| < K(1 + [Ix]]).

For each n € X, a F-adapted process X is called a solution of (2) on the interval [0, T] with the initial condition X(0) =
if the following equality holds for t € [0, T]

1 £ b(s, X(s)) J 1 to(s, X(s))
(a)/ < “ T T Jy €5y

see [4, p. 209]. Thanks to [3, Theorem 1], for each initial value n € Xy system (2) has a unique solution on [0, T] denoted
by X(t, n).!

2.2. Euler-Maruyama type scheme for Caputo SFDEs

An important task in applications is to realize (2) on computers, that is, to construct a discretized approximation.
It is clear that the kernel of (3), the function (t — s)*~!, becomes infinity at point s = t. This brings us an obvious
difficulty to discretize (2). To avoid touching the singular point, we introduce the following discretized scheme which is
a Euler-Maruyama type scheme for Caputo SFDESs:

1 By [3, Theorem 1], for the existence and uniqueness solution we only require the assumptions (H1) and (H3).
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For each n € N*, where N* denotes the set of positive integer numbers, the approximated solution X(™(-, 5) is defined
by X((0, 1) := 5 and for t € (0, T]

1 © b(za(s), X™(Ta(s), 1))

I'a) /0 (t—s)t

1 /f o (ta(s), XM(1(s), 1))
0

XM, n)=n+ ds

+ dws, (4)

I'(a) (pn(t) — Ta(s))'

where 7,(s) = ¥ = ¢ and py(s) = ¥E0T = o™ for s € ("—T (k“)T].

n n’ n
Tk T(k+1)
n’ n

This equation can be solved step by step on each interval ( ] k=0,1,...,n— 1. Our first main result in this

paper is to give an estimate on the mean-square distance between the numerical solution X((¢t, 1) and the exact solution
X(t, n).

Theorem 1 (Strong Convergence of the Euler—-Maruyama Scheme for Caputo SFDE). Let k := min{ B.y,a — %} Then, there
exists a constant C depending only on T, L, Ly, Ly, &, B, v, K such that

C

sup [IX(E,m) = X(6, Ml =~ (5)

0<t<T

Remark 2. (i) When the coefficients are independent of time, then the convergence rate of Euler-Maruyama scheme for
(2)isa — 5.
(ii) When o = 1, i.e. Eq. (2) becomes a stochastic differential equation, the convergent rate of the scheme in Theorem 1
coincides with the well-known convergent rate of the classical Euler-Maruyama, see [8].

(iii) It is clear that there exist connections between the result in this paper to the existing result about Euler scheme for
general stochastic Volterra equations with singular kernels, see e.g. [9,10]. Since the kernels in our systems are explicit
then we obtain explicit and optimal rate of convergence of Euler scheme. This rate is better than the restriction of results
in [9,10] to fractional setting.

2.3. Exponential Euler—-Maruyama scheme for bilinear scalar Caputo SFDEs

We are interested in investigating the stability of numerical method on the test systems, bilinear scalar Caputo SFDE.
More precisely, we consider systems of the form

Cra _ th
Dg, X(t) = AX(t) 4+ uX(t) o (6)

Note that the problem in determining A, u for which system (6) is mean-square asymptotically stable is not trivial due to
the fact that there is no explicit form of solutions of (6). It has been recently proved in [11, Proposition 11] that system
(6) is mean-square asymptotically stable if and only if

A<0 and pu? / 202 (Ey o (15%))” ds < 1. (7)
0

The main ingredient in the proof of the preceding result is to use the variation of constants formula developed in [6,
Theorem 2.3], i.e. the integral form of (6) is given by

t
X(t) = Eo(At*)X(0) + M/ (t = 8) " "Eq o (At — 5)*)X(5) W (8)
0
For a fixed step-size h > 0, the exponential Euler—-Maruyama scheme for the above integral equation is given by

t
Xn(t) = Eo(2t*)X(0) + M/ (t = Th(8))" " Eqa (At — Th($))* Wn(Tn(s)) AW, 9)
0
where 1, : (0, 00) — [0, 00) is defined by
w(s)=kh fors e (kh,(k+ 1)h],k=0,1,2,.... (10)

We now state the result about convergence and stability of the above Euler-Maruyama scheme for bilinear scalar Caputo
SFDE.

Theorem 3 (Convergence and Stability of Exponential Euler-Maruyama Method for Bilinear Scalar Caputo SFDE). (i) For any
T > 0, there exists a constant C depending on T, A and u such that

~ 1
sup [IXx(t) — X(t)llms < Ch*"2.
te[0,T]
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(ii) Suppose that the condition (7) holds. For any step-size h > 0, there exists K > 0 such that the solution )?h of (9) satisfies
IXh()llms < KIX(O)llms ~ forallt >0

and furthermore for any § € (0,«a) we have lim;_, t5||5(\h(t)||mS = 0. Consequently, the numerical solution remains
asymptotically stable.

3. Proof of the strong convergence of the Euler-Maruyama method for Caputo SFDE

Before going to the proof of the main result, we need some preparatory lemmas. Firstly, we show in the following
lemma a bound on supg_, <1 IX"(£, 7)lms.

Lemma 4. Let

q:m+wm@m4< (11)

(6T + 6)K?T**~ 12 — 1)
I'(a)? ’
Then, for all n € N* we have
sup [X(E, )il < Ci.

0<t<T

Proof. From (4) and the inequality |x +y + z[|> < 3([|Ix]|1> + ly]I* + l|z||?) for all x, y, z € R%, we derive

/f b(ra(s). X ra(s). m) 2)
0

)

ds

(t _ 5)1701

dw;

(n) 2 2 3
E (IX™(t, )II?) < 3Eln|* + 2Ok
/f o (Ta(s), X™(a(s), 1))
0

3
R ( (oal) — a5
Using the Holder inequality, Ito’s isometry, we obtain
3t /[ E|[b(za(s), X" (a(s), m)II>
Ir'*(a) Jo (t —s)>2
3 /[ E|lo (ta(s), X" (zals), n))II?

I'(a) Jo (Pn(t) = Tals))?~2
This together with the fact that |p,(t) — tu(s)| > |t — s| and the linear growth condition (H3) implies that
3t ©2K2(1 4+ E|IX™(a(s), )II*)

I'(a) /o (t —sp—2
3 C2K2(1 4 EIX™(z(s), )II*)
) /o (C—sp
(6t +6)K* [ 1+ E[XM(zy(s), n)l?
I'(a) /0 (t —sy—2

XM, m)lIZs < 3lnllAs +

ds.

XM, mlIZs < 3lnllZs + ds

ds

= 3|l + ds.

Let m; := 1+ supg—s—, IX™(s, n)|I2,. Then,

[
(6T + 6)K2 /f m;
m; < (1+ 37 ds.
t = ( + ”n”ms) + F(O{)z 0 (t _ 5)272a
Applying the Gronwall’s inequality for fractional differential equations, see e.g. [1, Lemma 6.19], we arrive at
(6T + 6)K?
I'(a)?

me < (14 3[nll5)Ez—1 < 2720 — 1)) ,

which completes the proof. O

~2a—1

Finally, we establish an upper bound on [X™(t, ) — X™(E, n)||% in terms of |t — | 1

n2e—1°

and

Lemma 5. Let

8K%(1 4 C;) T?*1 _ 8K*(1+C1)(T +2)
T T Qa—1DXa) T T T Qa—1DI¥a)
where C; is given as in (11). Then, for all n € N* and t, € [0, T] we have

; (12)

2.

G ~2a—1

IXE 1) = XOE )iy < o + Gle =T
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Proof. Choose and fix t,t € [0, T] with ¢t > . By (4), we have

I (o) (Xt 1) = X(E, )

[ KoK [ ol X1

T (=9 t o (pn(t) — Tals))'—
t 1 1 )

+[(; e L CIOR LU CRORIE

t — 5)1—0( (f — S)l o

dW;

[ (e — o —egys )7 X))
o o) = 2l (onlD = s

Using the inequality ||x+y +z+wl? < 4(|x]*> + |ly|I? + llz||> + ||lw||?) for all x, y, z, w € RY and Ito’s isometry, we derive

that

() ~
— = 1X™(t, n) — XM )2

b (5), X(5a(s), 1 lo(z x('ﬂ(rn() R
= E( /? (t — )l ) /t t) — Ta(s))> -2 &
T 1 1 ’

_ (n)
e[| [ (== (?_S)l_a)b(rn(s),x (tals), 1)) ds

(on(t) — Ta(s))1— (on( t) To(s))1-
By Hélder inequality and the fact that |p,(t) — 7,(s)| > |t — s|, we have

o (Tals), XP(za(s), M)llms Nl (Ta(s), X (zals), n))nms
+/0( - ) ds.

2
Mnx(”)(t, n) — X0, n)||2

(n (n)
/ Ib(Ta(s), X™(Tn(s), ms ds +/ llo(za(s), X™(Tnls), ))“ms ds

t— 5)2 20 )2 20

1 (n) 2
47 f (s — rgys) W) X ts) I,

+/?(”a(Tn(s)sX(n)(fn(s)v77))||ms B ||0(Tn(5);x(n)(fn(5)v77))||ms)2 ds
0 (pn(t) — Ta(s))'— (pn(t) — Tal(s))'—* '

This together with the inequality

1 1 2 1 1
((t —§)l-e - (t — s)l—a) < (f — sp—2e - (t —spR—2a’
and’
1 _ 1 - 1 _ 1
(on(0) = Ta($))>72 (pn(t) — Ta($))?72* = (pulf) =272 (pu(t) — sP~2¢
implies that

Ir(a)
8K2(1 + Cy)

</f t—T+1 d5+/? T 7 i
-k (t_5)2—2a 0 (’t‘_s)z—z(x (t—5)2—2”‘

- )
~ — s

o \(on(t) =sy=2  (py(t) — )22
O—x22% " (on(t)—2)

2 10 gain this inequality, we define h(x) := ol 1
It together with t,(s) < s implies that h(z,(s)) < h(s).

IX™(E, 7) — XO(E, 012

L= for x < pa(t) < pa(t). Then, H'(x) = (2—2a )((pa(€)—%)** > (pa(t)—x

)Za 3)

(13)

0.
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A direct computation yields that
Cr-T+1 g T T
———ds ~ — ds
[ == +fo = s)2 = (- sp

( _ )2a 1 2(1 1 (t_s)Zoz—l T
204 -1 200 — 1

—(r—?+1)

0
20—1
- (t+ 1)t — ) .
- 20— 1
Furthermore, we also have

/7 1 - 1 i
o \ (on(f) — s)2722  (py(t) — s)22

B _(pn(?) — )21 n (on(t) — )2 T\ [
o 20 — 1 20 — 1 0
< (ol =T = (pn(@® — TP
- 20 — 1

200—1

Since 0 < 2a — 1 < 1 and using the inequality |x + y|?*~" < |x|?**~" + |y|**~!, we obtain that

[ — oy ) @ = 20 O
o \(on(D) —s)>72¢  (py(t) —sP=2 )] =~ 2a — 1 '

By definition of p,, we also have p,(t) — pn(f) <t —T + 5 I Thus,

T200—1

t 1 1 s < (t )Za 1+ e
/0 (on(D) — 5272« (py(t) — 5224 5= 20 — 1

This together with (13) and (14) implies that

~ 8K%(1+Cy) 121
IXM(E, 7) = XOE, )2 < ———— (T +2)(t =T + :

Qa — NI (a) n2e—1
The proof is complete. O

We are now in a position to prove Theorem 1.

Proof of Theorem 1. Choose and fix n € X,. From (3) and (4) we have

X"(t, ) = X(t, n)

1 /t b(ta(s), X" (ta(s), n)) — b(s, X(s, 1))
I'(a) Jo (& —s)—

1 o (Ta(s), X(ta(s), m)) — o(s, X(s, 1))
F(Ol)/ (t—s)t
1 /t (0(Tn(5),x(")(fn(5), n) o (Ta(s), X"t (s), 77))) AW,
I'(a) (on(t) — Ta(s))1 (t =)t "
Using the inequality ||x +y + z||> < 3(|Ix|I?> + |IylI*> + |1z||?) for all x, y, z € RY, Hblder inequality and Ito’s isometry, we
derive that

ds

n w;

+

2
X, ) — (e, i
. / 10, X5), ) — b, X5, )
0 (t —s)2—2
o (za(s), XD (za(s), m)) — (5. X(s, M),
+/ ( 5)2 20 d

1-a (t _ S)lfa

+ / (IIa(rn(s),x (a(S). M)lms _ ||a(rn(s),xw(rn(s>,n))llms)zds. (15)
o\ (oal0) = 7als))
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Moreover, in light of (H1) and (H2) it is easily seen that

[Ib(zn(s), X (Ta(s), 1)) — b(s, X(s, 0%
< 212X (za(s), ) — X (s, M2 + 2L3|Ta(s) — s/,

and

llo(ta(s), XM (Tals), 0)) — o (s, X(s, m)IZs
< 212 IXM(za(s), ) — X(s, M2 + 2L3|Ta(s) — s

By (H3), Lemma 4 and the inequality

( 1 B 1 )2 - 1 B 1
(oa(t) = Tu(s))1—*  (t—s)7o ) T (t =522  (pn(t) — Tals))?~2
1 1

< - 9
= (t _ 5)2—201 (E +t— 5)2*2“

n

we have

ft <||U(Tn(5)’ X(n)(fn(s)s 1)) llms _ llo(Tals), X(”)(rn(s), n))”ms>2 ds
0 (pn(t) — Tu(s))1— (t—s)—
1

t 1
2K?(1 -
( +C1)/0<(t—s)2—2“ (ZnT-I-t—s)Z—z“)dS

2K2(1 + CRTY* 1 1
- Qe —1) ne-1’

This together with (15)-(17) implies that

IX(E, 7) — X(E, IiE

IA

6L2 t+1 / XM (Ta(s), 1) — X(s, n)llmsd
t_S)Z —2a
GL% " (s) — s|* 613 [ |Ta(s) —sI*
ds +
I'a) Jo (t—sp-2 I'Ya) Jo (t—s)?2

6K2(1+ C)QRTY* 1 1
Qe — )2 (a) n2e-1’

By definition of t,, we have |7,(s) —s| < % for s € [0, T]. Hence, a direct computation yields that
6Lt [ |Ta(s) — s|? 6L [" |tals) — s
I*(a) Jo (t—sp—2 I'*(a) Jo (t—sp—2

6L%T2a+2/3 1 GL%TZOH—ZV_] 1
= Qa— DI2(a)n?? ' 2a — 1) 2(a)n2r"
On the other hand, by virtue of Lemma 5 we have
XM (Ta(s), n) — X(s, 1A
21X (za(s), n) — X, 12 + 211X T(s, n) — X(s, n)lIE
2C2 o
=+ 2C3]a(s) — s 7" + 2[1X"(s, 1) — X(s. 1)l g

200—1
- 2C2 + 2T G
- n2a—

IA

+ 20X(s, ) = X(5, )l
where C, and C; are given as in (12). This together with (18) and (19) gives that

sup IX™(s, n) — X(s, nlIZ,

0<s<t
121%(T 4 1) /t SUPg << [IXT(r, ) — X(r, 0% ds
I'(a) 0 (t —s)-2
1

1 1
+ D, 2ﬂ+D2 27+ 3 21

(18)

(19)
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612720428 612720+2y -1

where Dy == Za-D2@)’ Dy = Qa—1)2(a) and

6K2(1 + C;)(2T)%~! syt BIA(T + 1) T2
26, + 2127 105) -~/ .
Q2a — 1) (a) +2G+ 2 I(a) 20 —1

Applying the Gronwall’s inequality for fractional differential equations, we arrive at

sup [IX™(t, n) — X(t, n)li%

0<t<T

D D, Ds 121%(T + DT> 'I'2a — 1)
< 20—1 .

n " p2v | pa-t r(a)y

3=

Hence, inequality (5) holds for

121%(T + DT> 'IM'2e — 1
C:=(D1+ Dz + D3)Ezq—1 ( ( ) ( )> .

I(a)
The proof is complete. O

The main result of this paper can be extended to more general Caputo SFDEs with vector-valued noise. Precisely, for
o€ ( 1) we consider the following system of Caputo SFDEs on [0, T]
aw;

dt’

Dg X(t) = b(t, X(1)) + Zoi(r,xm) (20)

i=1
where drift function b and the diffusion functions o;,i = 1,...N, are measurable and satisfy the same assumptions as

in (H1), (H2) and (H3) with the same constants 8, y. For the initial value condition X(0) = 5, the corresponding integral
form of (20) is

B 1 £ b(s, X(s)) o s,X(s)) wi
X“)_”r(a)/@ =5 ¢ Z/ s

The Euler-Maruyama scheme is now written as

1 b(za(s), X"(1a(5), 1))
XM(t, n) = / d
(Em=0+ 1 (t —s)l-a :
1 Zf oi(Ta(s Tn(sl) n)) dW'
F(Ol Pn(t — Ty(s)~
where t,(s) = ’%T = r,E”) and py(s) = (H—n] = pk") fors € (’T (k“ ]. By 51mply adapting the proof of Theorem 1, we

also have the following result about the convergence rate of ||X ( n) — X(t, nll2

Theorem 6. Let x := min{B, y, a — 1 }. Then, there exists a constant C such that
C
sup [IX"(t, ) = X(6, )7 < —= (21)
0<t<T n

4. Proof of the convergence and stability of exponential Euler-Maruyama method for bilinear scalar Caputo SFDE

Before going to the proof of Theorem 3, we need some preparatory lemmas. Lemmas 7 and 8 are useful in proving the
part (i) of Theorem 3 and there is no requirement on X, u. Meanwhile, Lemmas 9 and 10 are useful in proving the part
(i) of Theorem 3 and here we assume that A, p satisfy condition (7).

Firstly, we show in the following lemma a bound on supg_; <1 [ Xp(£)|ms.

Lemma 7. Let M; := maxXo<¢<r(Ex(At%))?, My := maxXg<<7(Eq.o(At%))?* and
Ca = MiEaq1 (1Mo "2 — 1T [X(0)|1 - (22)

Then, for all h > 0 we have

sup [ Xa(t)l|%s < Ca.
0<t<T
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Proof. By (9), we arrive at

N . * Ewa(ME = Th(s))") o ’
Xa(1)) = ((Ea(kt ))X(O)-i-l/«f th(fh( ))dWs) .
0 _
Taking the expectation of the both sides of the above equality and using the Ito’s isometry, we obtain that
IXn(Ollns = (Ea(2E“D? X017
2
+ 2 ft (Ea,a()\(t - Th(s))a))
R O

Note that 74(s) < s and using the monotonically decreasing of the function E, ,(-) on R_ (see e.g. [12]), we derive
IXn(O)ls < (Ea(ht")? X017
2
+M2 /t (Ea,a()\(t _S)a))
0

X (h(5))112,5 ds.

X (Th($))II2, ds

(t 5)27201
SUPg—; < [IXn(r)]|2
< My [IX(0)l[2s + p*Ms f Posrs s s,
(t —s)b—2«
Let m; := supg<s<; ||Xh(s)||ms. Then,
2 2 ‘ ms
me < My IX(O)llfs + "Mz | —————ds.
o (t—s)p—

Applying the Gronwall’s inequality for fractional differential equations, see e.g. [1, Lemma 6.19], we arrive at

sup [|IXh(s)[12s < MilIX(0)|2sEzar (*MaT (200 — 1)62*71)

0<s<t

which completes the proof. O

Secondly, we establish an upper bound on the difference ||¥h(t) — Xh(’f)ll in terms of |t — |2“ !
Lemma 8. Let
2 2
Ms = ( max 8XE (A )) , My = ( max 8ana(Ax)>
xel0, xelo,
and
8u2M;Cy + 42 M4CyT? !
Cs 1= AMATIX(O)|3, + 2t T P T (23)
200 — 1

where C, is given as in (22). Then, for all h > 0 and t,t € [0, T] we have

IXu(t) — Xu(@DI2¢ < Cslt — 1%

Proof. Choose and fix t, € [0, T] with t > T. By (9), we have

Xn(t) — Xa(F)
t Eot ot()"(t - rh(s))a)"

= (Eo(At") — Eq(AL¥))X(0) + M/? th(fh(s))dws

EuaOt — t0(5)")  Eaa(A(t — T4(s))")

+"f< e e e ) S I
EaMt = (D)) EaalhF = t(s))\o

* /0< e i ey = L OIS

Using the inequality |[x+y +z + wl|> < 4(||x|I2 + |I¥lI? + z]|> + [lw]?) for all x, y, z, w € RY and Ito’s isometry, we derive
that

IXn(t) — Xn(E)12s
< AIE,(At*) — E, (AP IX(0)]12,

2
2 ! (E""“(}‘(f - Th(s))a)) T 2
i ﬁ (t — Th(s))2—2 [Xn(Th(s))lIns ds
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4y /T<Ea,a( G 10) 0 B G T0)3)
0

2
(t — Ta(s)1« (€ — th(s))1— ) PACTONENE

" (Eao(Mt — w(s)*)  Eq oOF = Th($)*)\2
+4u’ f ( = ) IXh(h(5))ms -
o\ -l (F— sy~ R ms
By Mean Value Theorem, Lemma 7 and the fact that (——L — 1 2 <1 1 _ wearrive at

(t=tp(sNI=«  (f—rp(s)1—@ (f—spP—2«  (t—sp—22?

IXn(t) — X(D)lI%
~. t 4M2M2C4
< 4Mst? — (O IX(0)1%, + / T =T
-

t 1 1
42MaCy | (= - )d
vt [ (g e ®

T _ o (7 )2
+4°Cy / Ma ((¢ = (5) (L ml) ) s
0 (t—s)

Since 0 < « < 1 it follows that |x + y|* < |x|* + |y|* for x, y > 0. Thus we obtain that

IXh(t) — Xu(D) 12

o 41> M,C. o
< AMs(t = P IXO) 7 + 1 (t =T
4M2M2C4 ~20—1 4H2M4C( )2a ! ~2
——(t —t)*“ —(t —t)*
200 — 1 ( ) + 20— 1 ( )
8u?MyCy + A MsCaT> ! ~
< (4MTX(O)12, + 2T RET Y e,

The proof is complete. O

To proof Theorem 3(ii), we recall the following result about an estimate of the Mittag-Leffler function.

Lemma 9. Suppose that A > 0. Then, there exists M(\, a) depending on A and « such that

M(x, M(%,
ey < M@)o ey o MOb@)
max{1, t*} max{1, t2¢}

forallt > 0.
Proof. See [2, Theorem 1.4] or [13, Theorem 2]. O
Next, we need the following preparatory lemma.

a2
Lemma 10. Suppose that > fooo (E“s‘;(%kzsa)) ds < 1. Let § € (0, «) be arbitrary. Then,

ds < 1.

lim sup ©

t—o00

2 /t (Ea,a()‘(t - S)a))z max{l, [25}
0

(t —s)2~2¢  max{1, s¥}

a2
Proof. Since u? [;* (E“S‘é(%;)) ds < 1, there exists € (0, 1) such that

22 (Baalrs)”

ds < 1.
PN 2—2a

Choose and fix such a 7 satisfying the preceding inequality. Then,

lim sup u?

t—o00

¢ (Ew ot —5)*))* max(1, £2°) i
/,,t (t —s)2~2@  max{1, s2%} S

Y
< limsup — w /[ (E“’“()‘(t =) ))
T e n28 nt (t_S)Z—Za

2 OOEO“,A“Z

% 220

(24)

(25)
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On the other hand, by virtue of Lemma 9 we have
1t (Ey o (Mt — $)))° max(1, £2 " max(1, t%
/(,(( )*))” max( }dssM(a,k)zf {1,¢%}
0 (t —s)?2«  max{1, s?%} o (t—s)*+

A direct estimation yields that

1m su ——_as 1m su ——- =0,
t~>oop o (t— S)2+2a - tﬂoop (t — nt)2+2a

which implies that
. /nf (Ea oAt = $))” max{1, t*)
lim sup

0 (t —s)?2~2¢  max{1, s?%}

This together with (25) completes the proof. O

t—00

Finally, we are now in a position to prove Theorem 3.

Proof of Theorem 3. (i) From (8) and (9) we have
Xi(t) — X(t)

! 1 1 oS
= u /0 (e — rgye )l = s Rolr) W,

‘/t(Ea,a()“(t —n(s))")  EaalA(t —s)%)
0

e e e LI

» / EuaWlE =) . 2a(s) — X(5)) dWs.
o (t—s)

Using the inequality [|[x +y + z||> < 3(|Ix||% + |l¥I? + |1z||?) for all x, y, z € R? and Ito’s isometry, we derive that
IXn(£) = X(6)lng

2 ! 1 1 2 a2 2
< 3u /0 (s~ e Ve = m PR 0

3u? L
+ H ( )2—20(

Eaa -
32 f P I R, (s - X(S)12 .

2
Eao(A(t = Th(s))*) — Ea,o(A(t — S)“)‘ 11X (Th(5)) I 5ns dS

1 1 2 < 1 _ 1
(t—tn(s)1~¥ (t=s)1=¢ ] = (t=s)272¢  (t—1y(s))2~ 2

‘ 1 1 2 ‘ 1 1
/o ((t—rn(s))w _(r—s)w) “ /o((t—s)Ha ~ )

h2a—1
Thus,

Moreover, using the inequality ( and t — 7,(s) < t +h — s, we obtain that

< .
~ 2a—1

2 ‘ 1 1 2 N2y 2
3u /0 ((t_s)l_a - (t_th(s))l_a) B o = Th(s) )R (a($)) 12 d
< 3/‘2M2C4h2a—1.

26
S (26)
By the Mean Value Theorem and Lemma 7, we arrive at
t 1 2 o
3u® / ((—sp2a Eq.a(A(t — Th($))*) — Ea (At — $)*)| [Xn(Ta(s)IIZs ds
o (t—
I(t — Th(s))* — (t — 5)*
< 3u*M4Cy ds
=K / (t 5)2 —2u
Is — Tu(s)|** 3uPMaCa T
< 3u’M,4C < h**. 27
= ou 44/ (t —s)p—2a = 2o — 1 (27)
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Moreover, in light of Lemma 8

IXn(Th(5)) = X2 < 21IXn(Th()) — Xn(5) 126 + 21IX(s) — X(5) 112
< 2Cs|ta(s) — 51271 4 2|1 Xn(s) — X(5)[12
< 2Gsh% 71 4 2| Xn(s) — X(5)I|2s

Thus,

ant -
f | tzia I R, rn(5)) = X(6)IE s

f 2C5h2“ ! £ 2 Xn(s) — X()I2
<3 ZM =7 d —ms d.
= U 2 </0 (t — s)z_za s+ /0 (t _ 5)2 —2u S)

2 200—1 t
JWMGT T e zM/Md
20 — 1 t—s)2

which together with (26) and (27) implies that

~ 3u2MyCs 3uPMaCaT>Th 3u’M,CsT2e 1
IXn(6) — X2, < (22t 4 2K ms
200 — 1 200 — 1 200 — 1

t
Xu(s) — X(s)|12
hZa 1 6 ZM/ ” ms ds.
+ t_S)Z 20

Applying the Gronwall’s inequality for fractional differential equations, see e.g. [1, Lemma 6.19], we arrive at

sup [[Xa(t) — X(£)[|2, < Ch**~",

0<t<T

ms

where

_<3u21v12c4 3ulM4CaT?®  3u2M,CsT2 !

Ezo 1(60° My (2a — 1)T* 1),
20 — 1 20 — 1 20 — 1 )21(“ 220 = DT

The proof is complete.
(ii) By (9) and using the Ito’s isometry, we arrive at

IXn(E)l12s = (Ea(At*)? [X(0)]I2s

 (EaalrE = (s))” o
+u? / ( ’(t( (rl(s;;;(ii ) Xn(T($))l15s ds.
0 - n

Note that 74(s) < s and using the monotonically decreasing of the function E, ,(-) on R_ (see e.g. [12]), we obtain that

IXn(E)]12s < (Ea(At*)? [X(0)]12
C(E, o (Mt —$)*))° ~
+u? f Mnxh(rh(s))nilsds-
0

(t _ S)Z—2ot

By virtue of Lemma 9, there exists M(«, A) > 0 such that for any X(0) # 0

~ 2 o~
Xi(Ollas _ M d) / (Eu(AE = 5)))” [Xi(eb()l (28)
IX(0)IZ,s — max({1, t2*} o (t—s)F IX(0)11Z,s
Now, let
M(a, A
K= (O(‘ ) > (29)
Eq,a(As¥
f 52 20 d
Thanks to (7), K > 0 and we are now proving sup;- 'I“);’l(g))“llzﬁ“ < K by contradiction, i.e. there exists T > 0 being the first
time for which Zu(O)ls - > K, ie.
X0l —
X Xn(t
=K, <K fortel0, T
IXn(T) s Xu(T)12, IXA()l5s f 0.7) (30)

IIX(O)IImS X012,
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Thus, replacing t = T in (28) yields that
2

T (Eot,ot()‘(T - S)a ))
(T _ 5)2—211

2
© (Ey o(AUu”

M(a,k)ﬂﬂkf wdu,

0 us—e

K < M(a,x)+p,21</
0

which contradicts to the definition of K as in (29). Let § € (0, «) be arbitrary and then to conclude the proof we need to
show that lim;_, o £° ||Xh( )lms = 0. In fact, choose and fix an arbitrary § € (§, @) it is sufficient to show that

i ptmnxh(r)n
oo KO

tzs} HXh(fn)Hms

Suppose the contrary. Then, there exists an increasing sequence (t,)ney tending to oo such that y;, := max({1, KOs

satisfies

IXn(£) 1126
O

and lim,_, o ¥n = oo. Replacing t = t,, in (28) yields that
~ N2 S
Xl M(@.2) s f (B 0(tn = $))) " IXn(Ta()) 1126
IX(0)lIz,s — max{1,t3* 0 (tn — sy~ IX(0)1zs
which together with (31) implies that

Va = max {max(1, 2} 22 ms . ¢ o g tn]} forneN (31)

)

_ 5 _
0 < M(a, ») max{1, t% o /f" (Ea.a(M(ta — $)*))” max{1, t2
0

max{1, t2¢} (tn —$)272¢  max{1, s2}

Thus,

: X /‘tn (Ea,a()»(tn - s)ot))2 max{1, t? i) < M(a, ) max{1, t?
& a 0 (tn — S22 max{1, s?)} max{1, 2 ‘
Since 3 < « it follows that

, M(a, 1) max{1, t2}
lim sup =
s 00 max{1, t?*

However, by virtue of Lemma 10 and lim,_, o, y;, = 00

n Eo( o Aty —s)* 2 1 t2’6\
lim Sup vn (1 _ MZ/ ( (t( ( n ) )) maX{ > n_ ds | = 00,
0

o0 n—SP72%  max{1, s%)

which leads to a contradiction. The proof is complete. O
5. Examples

In this section, we study a simple Caputo SFDE with additive noise. For this kind of system, we have explicit formulas
for the solution and the numerical solution by using the Euler-Maruyama scheme. Then, we arrive at that the convergence
rate of the scheme is o — % i.e. the rate in Theorem 1 is optimal. Note that for the stochastic differential equation with
additive noise the convergence rate of the Euler-Maruyama scheme is usually equal to 1 (see [8] and [14]). Then the
convergence rate which we find in the following example indicates a new aspect in numerical computation of stochastic
fractional systems.

Example 11. Consider a simple scalar Caputo SFDE on interval [0, 1] of the form
dw,
Cno t
Dg X(t)=1 ——.
(t)= i

Then, the exact solution for X(0) = 0 is given by

X(1) = ! 1 ! dw,
()_F(a)/o (1—s)t—e =




14 T.S. Doan, P.T. Huong, P.E. Kloeden et al. / Journal of Computational and Applied Mathematics 380 (2020) 112989

Table 1
Rates of convergence for a simple scalar SFDE.
a=0.75 a=0.6 a=09
Ven log, @ Ven log, g Ven log, @
n=128 0.1744 0.2499 1.0094 0.0999 0.0249 0.3998
n = 256 0.1467 0.2499 0.9418 0.1000 0.0188 0.3999
n=>512 0.1233 0.2499 0.8787 0.1000 0.0143 0.3999
n = 1024 0.1037 0.2499 0.8199 0.1000 0.0108 0.3999
n = 2048 0.0872 0.2500 0.7650 0.1000 0.0082 0.3999
n = 4096 0.0733 0.2500 0.7137 0.1000 0.0062 0.3999
a—1/2 0.25 0.1 0.4
-3
9 X 10 ,

—+—n=1024

a
o
T

ms

-

Estimated

IX™et) - Xl

o
o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

Fig. 1. Estimated errors for Eq. (32).

Meanwhile, by (4) the numerical solution X is given by
1 ! 1
xM(1) = / dw.
L) Jo (1—1y(s)'
Then, by Ito’s isometry we arrive at

il (e i)
”X(l) X (1)||ms_ I—vz(a) o (-l_s)]—a (]—Tn(s))l_a dS.

Let us denote e, = ||X(1) — X(")(1)||fns. The rate of convergence of our scheme for this equation will then be estimated by
log, Ve for some large values of n. Table 1 reveals that those rates are « — 1/2 for various values of «, i.e. \/e, ~ n=3

€2n

as n — oQ.

In order to get a further insight into the performance of the proposed method, we investigate a nonlinear scalar Caputo
SFDE whose drift term and diffusion term satisfy the conditions (H1), (H2) and (H3).

Example 12. Consider the following autonomous Caputo SFDE with o = %

D%, X(t) = cos(X(t)) + sin(X(t))%. (32)

The computation process is as follows. We first generate 1000 Brownian motions, for each motion, we use our scheme
to compute the approximate solutions with n, 2n, 4n discretized points for n = 1024. The errors of X and X*" are
estimated by ||X(™(t) — X“4M(t)||ms and [|XZV(t) — XA4(t)||ms, respectively. These errors in turn are computed by taking
the average of 1000 computed solution errors. The outcome of this process is presented in Fig. 1.

Conclusion
In this paper, we have established the convergence of the Euler-Maruyama type scheme for Caputo stochastic fractional

differential equations. The convergence rate of this scheme is given explicitly. Next, we investigated the convergence and
stability of an exponential Euler-Maruyama scheme for bilinear scalar Caputo SFDEs.
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