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Abstract—There are emerging issues about side channel at-
tacks (SCAs) on the cryptographic devices which are widely
used today for securing secret information. Recently, the neural
networks have been introduced as a new promising approach to
perform SCA for hardware security evaluation of cryptographic
algorithms. In this work, we present a non-profiled SCA using
convolutional neural networks (CNNs) on an 8-bit AVR micro-
controller device running the AES-128 cryptographic algorithm.
We aim to point out the practical issues that occurs in CNN based
SCA methods using the aligned power traces with a large number
of samples. Furthermore, a method to build a suitable dataset
for CNN training is introduced. Especially, practical experiment
results of the CNN based SCA methods and a comprehensive
investigation on the effect of noise are also presented. These
experiments are performed with the original power traces and
additive Gaussian noise. The results show that the CNN based
SCA with our constructed dataset provides reliable results for
non-profiled attacks. However, it is also shown that the Gaussian
noise added on power traces becomes a serious problem.

Index Terms—Non-profile side channel attack, AES, CNN

I. INTRODUCTION

Nowadays, to ensure the communication between two elec-

tronic devices, the use of cryptographic algorithms is so

popular. Although these mathematically secure algorithms

cannot be broken by the brute-force attacks, there have been

numerous accounts of breaking the confidential key by ex-

ploiting side-channel information such as power consumption,

electromagnetic radiation, or acoustic vibrations captured from

cryptographic devices. Side channel attack (SCA) is divided

into two approaches, which are called profiled and non-profiled

attacks. The most widely used profiled attack is the tem-

plate attack. Traditionally, template attacks are implemented

by generating templates for difference keys by utilizing a

multivariate Gaussian distribution approximation of the pre-

identified points of interest (POIs) [1], [2]. However, it is

challenging for attackers to perform this attack in practice.

Template attacks require the more complicated installation

than other attacks; therefore, the attackers must have access to

another copy of the protected device that they can fully control.

Then, they must perform a great deal of pre-processing to

create a template in practice, which may take a huge number of

power traces. The advantage is that template attacks need only

a small number of power traces from the victim to complete.

In terms of non-profiled attacks, the most used attack is the

correlation power analysis (CPA) proposed by Brier et al. [3].

It exploits the correlation between the power model and the

real power consumption in order to extract the secret key of

the cryptographic algorithm. Especially, CPA does not require

a copy of the target device, so it is easy to perform this attack

in practice.

Recently, the hardware security research community has fo-

cused the attention on the machine learning (ML) based SCAs.

However, so far, their works have only focused on applying

deep learning (DL) techniques to perform the profiled SCA.

As mentioned above, implementing a profiling attack requires

the access to a profiling device, which is strongly assumed

that it can not always be met in practice. Therefore, a profiled

attack may not be performed. However, non-profiled attacks

such as CPA can still frighten the target. Indeed, applying

ML to perform a non-profiled attack is a new approach for

cryptographic analysis. In this paper, we focus on the DL

based non-profiled attack and evaluate its efficiency on the

attack with a large number of power traces and samples.

Our work is related to some previous ones as follows.

Firstly, the data preparation is done by using correlation

coefficients to extract the most relevant features. It exploits

the correlation between the power model and real power

consumption. The combination of correlation coefficient and

convolutional neural network (CNN) for attacking was used

in [4], but their works are only for the profiling attack. Most

recently, in [5], the authors show that it is possible to exploit

the advantages of DL and neural networks in the non-profiled

scenario. They introduce metrics based on sensitivity analysis

that can leak both secret key value as well as points of

interest, such as leakages and masks locations in the traces.

The new attack approach using those metrics is called the

differential DL network (DDLA). The author presents the

efficiency of this technique on both synchronized and non-

synchronized power traces. However, in terms of synchronized

traces, the author only uses a small number of power traces

with only 500 samples containing the copy of S-box function

in memory. This means that the attackers must know clearly

about the Advanced Encryption Standard (AES) algorithm

and be able to point out which samples of power traces are

corresponding to S-box function of AES algorithm processed

on chip. Especially, a technique called Hamming Weight (HW)

labeling is mentioned in both [4] and [5]. However, the authors

in [4], [5] applied the HW on intermediate values resulting in

nine classes. In this paper, we assume that attackers do not

know much about AES algorithm. They must record a large
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number of samples on each power trace. In this case, we take

10,000 samples that contain the whole process of the fist round

and a part of the second round in the AES encryption. We also

use HW labeling for CNN, but only three classes are used

instead of nine classes. Furthermore, we aim to perform more

experiments with different levels of Gaussian noise added to

the power traces in order to illustrate the impact of noise on

CNN based non-profiled techniques.

The rest of this paper is organized as follows. In Section II,

data preparation is described in detail. Section III presents an

overview of CNN and introduces our proposed CNN model to

deal with the constructed dataset in the non-profiled scenario.

Then in the next section, we will give detailed results from

experiments implemented on power traces collected from the

ChipWhisperer-Lite board. Finally, we conclude the paper in

Section V.

II. DATA PREPARATION

Power traces are vectors of voltage values recorded by the

digital sampling oscilloscopes. They often contain thousands

of samples. Consequently, the number of features is too large

for CNN technique, and it is one of two factors comprising

the time complexity for the algorithm. Therefore, we conduct

the feature selection taking the 50 most correlation coefficient

values. To select those features, we use Pearson correlation

coefficients. This method was used in [4] but the novelty of

our proposed approach is the use of only three HWs instead

of nine HWs values. More interestingly, this method leads to

approximately 30% reduce of number of power traces needed

for the attack.

hn,k = HW (S − box (Plaintextn ⊕ k)) (1)

We use N random plaintexts corresponding to N power

traces in which each power trace has L samples. Note that ti,j
is the value of jth sample in the trace number ith (1 ≤ j ≤ L,

1 ≤ i ≤ N ), di,B is the byte value of byte B (B ∈ [1; 16]) in

the plain-text number ith. In order to collect 50 features from

the power traces, a half of number of power traces is used and

denoted as N1(N1 = 1

2
N). In this case, S-box function of AES

algorithm as shown in (1) is chosen as target for calculate HW.

After that, (2) is applied to calculate the 50 highest samples

from all guess keys (Key = [0; 255]).

ρk,i =

N1
∑

n=1

(hn,k − h̄k)(tn,i − t̄i)

√

N1
∑

n=1

(hn,k − h̄k)
2

N1
∑

n=1

(tn,i − t̄i)2

(2)

where hk and ti are the average of the power consumption

model and real power consumption at instant i, respectively.

Consequently, we have 16 folders corresponding to 16 sub-

bytes of a secret key. Each folder contains 256 subfolders

which were created from 256 values of guess key. In a

subfolder, three folders named HW3, HW4, HW5 were used

as three labels for the CNN. Finally, for each label folder,

the power traces were partitioned, which have the same

Dataset1

Key_0

Key_255

HW3

HW4

HW5

Dataset16

5000 Power traces 

Power trace 1

Power trace N1

Power trace 1

Power trace N2

Power trace 1

Power trace N3

Fig. 1. The dataset construction: 5000 original power traces (10,000 sam-
ples/trace) are calculated and partitioned in three groups (HW3, HW4 and
HW5). Each group contains N1, N2, N3 power traces and each power trace
has 50 samples which are highest correlation values.

intermediate value (HW = 3, 4, 5) for each hypothesis key.

Fig. 1 illustrates the dataset in detail.

III. PROPOSED CNN MODEL FOR NON-PROFILED ATTACK

One of the most widely used neural networks is CNN which

is mainly used for image recognition [6]. However, they have

demonstrated to be a powerful classifiers for time series data

[7]. CNNs have a natural translation-invariance property and

suitable models for detailed features extraction and tackling

complicated data classification models. Therefore, CNNs are

particularly interesting for our work to perform attacking the

side-channel data. However, one disadvantage of the CNN

technique is that it is necessary to perform a CNN training

for each key hypothesis. In our scenario, we use 8-bit key

guesses, it means that 256 trainings are needed.

CNNs usually combine two types of layers called convo-

lutional layer and pooling layer. These layers are today often

completed with a so-called Batch Normalization Layer. In [8],

Ioffe Szegedy has introduced Batch normalization to reduce

the so-called internal covariate shift in the neural network.

The authors also show that it allow for the usage of higher

learning rate. In this work, we investigate the performance of

CNN with a large number of aligned power traces. However,

since the sample of one power trace is too big, we cannot

use them as input features for CNN. Therefore, we use the

correlation coefficient as a pre-processing technique to extract

the main features of these power traces. The datasets used in

CNN are usually divided into three distinct sets: training set,

as the name implies, to train the network, validation set to

validate the performance of the trained network on previously

unseen data which are kept separately, and a test set, which

is used to test the prediction or classification accuracy at the

end. Next, all the details for the proposed network architecture

will be shown.

Our neural network models were implemented on MATLAB

software for evaluation. The network is composed of three

convolutional layers and three pooling layers in the middle,

followed by the fully connected and classification layers. For

the first convolution layer, we use 16 filters with the size
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Fig. 2. The proposed CNN architecture.

of [1 3], stride of [1 2], and the output layer has the same

size as the input. The numbers of filters in the next two

convolutional layers are 24 and 32, respectively and have the

same size as the first one. Convolutional layers perform the

convolution operations to the input by sliding a set of filters

along the preceeding layer. The filter weights allow CNN to

learn translation-invariant features, and they are adjusted in

order to minimize the loss function. In terms of the SCA,

filters will be slid along the power traces. For pooling, we

use Max-pooling on the two first pooling layers and Average

pooling on the last pooling layer, using kernel size of [1 2]

and stride [1 2]. The pooling layers, such as max-pooling or

average pooling, are non-linear layers and used to reduce the

number of dimensions. Max-pooling provides the maximum

value of each area, and average-pooling produces the average

of each area. In our model, we use Rectified linear activation

function (RELU) for all convolutional layers. It is a piecewise

linear function so that the output will be equal to the input

if the input value is positive. Otherwise, it will provide the

zero output. For classification, we use Softmax function in the

output layer. The details our CNN architecture are described

in Fig. 2 and Table I.

TABLE I
DEVELOPED CNN ARCHITECTURE.

Layer Weight shape Stride Activation

Convolutional(1) 1 x 3 x 16 - -

Batch Normalization(1) - - ReLu

MaxPooling(1) - [1 2] -

Convolutional(2) 1 x 3 x 24 - -

Batch Normalization(2) - - ReLu

MaxPooling(2) - [1 2] -

Convolutional(3) 1 x 3 x 24 - -

Batch Normalization(3) - - ReLu

Average-pooling (1) - [1 2] -

FC-output - - Softmax

IV. EXPERIMENTAL RESULTS

We have performed the experiments on CW1173 ChipWhis-

perer board [9]. This SCA platform includes a target board

with an 8-bit Atmel AVR Xmega128 microcontroller running

AES-128 algorithm. ChipWhisperer provides a capture setup

CW Lite capture using an onboard ADC. This setup allows

us to send program, plaintext, and the key to Xmega board

and record captured traces directly from a laptop. We have

collected 5000 power traces for experiments. Each power trace

contains 10,000 samples corresponding to Round 1 and apart

of Round 2 of the AES algorithm. In non-profiled attack

scenario, we keep the key fixed and 5000 plaintexts random,

which is opposite to the profiled attack. Only the first round

of AES is attacked in all of our results.

Then, we perform a CNN training using 80% of the dataset

as the training data, and the rest for testing. It can be seen

that, by taking the highest correlation values among all values

for i and k, we can take the features which are useful for

classifying HW labels in CNN model. For the correct key

value k, the series of intermediate HW values will be correctly

guessed, and therefore the labels used for CNN training will be

accurate. If the CNN is able to learn the targeted features from

the correct key, this should lead to a successful training and

good training metrics such as a decreasing loss and increasing

accuracy over the epochs. On the other hand, for all the

other key candidates, the series of intermediate values will be

incorrect, and this should lead to unsuccessful training. The

attacker can discriminate the correct key value from the other

candidates by selecting the key leading to the best training

metrics. The details of experimental results are described as

follows.

To demonstrate the efficiency of applying CNN for a non-

profiled attack, the validation accuracy of the training network

is used as a criterion. As presented above, the two main

metrics that can be used to monitor the CNN training process

are the loss and the accuracy of the training over epochs.

In this paper, we pointed out that the accuracy can be used

to discriminate the correct sub-byte key. As an illustration,

we present in Fig. 3a the validation accuracy obtained when

performing an attack with our dataset with ne = 30 epochs per

guess. In the graph the vertical axis represents the validation

accuracy of training network, the horizontal axis show the

number of training epochs. It is clear that our training using

the correct sub-byte key value leads to a higher validation

accuracy compared to the others. Furthermore, we can see that

the attack is possible to find the confidential key after first

ten epochs. From the accuracy of each sub-byte key guess,

it is easy to take the highest accuracy value corresponding

to the correct key guess. More interestingly, we can also use

confusion matrix to discriminate the distribution of three HW

labels, the incorrect candidates will be classified in HW4, but

the correct one is different, as show in Fig. 3b, c.

After obtaining these results, we decided to further investi-

gate the effect of noise in power traces on the accuracy of the

proposed CNN. Three different levels of Gaussian noise are

added to original power traces. Then, three different datasets

were created. The results of the training process are shown

in Fig. 4. It is clear that with the small level of noise, our

proposed CNN still shows good performance in detecting the

correct key after the first ten epochs, as shown in Fig. 4a.

However, when the deviation of noise increases, the validation
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Fig. 3. Results of validation accuracy and confusion matrix with clean power traces. a) Validation accuracy; b) Incorrect key guess; c) Correct key guess.

(a) (c)

Correct Key Guess
Incorrect Key Guess

(b)

Correct Key Guess
Incorrect Key Guess

Correct Key Guess
Incorrect Key Guess

Fig. 4. Results of validation accuracy with three different deviations of Gaussian noise added: a) 0.025, b) 0.05, c) 0.075.

accuracy decreases significantly, and after all epochs using

more than 3000 power traces, the correct key is hidden inside

the remaining key byte hypothesis.

V. CONCLUSION

In this paper, we have shown the practical issues that

occur in SCA using CNN for aligned power traces which

have a large number of samples. Then, a data preparation

method for CNN training was introduced. Our experiments

were performed with both the original power traces and the

power traces with the added Gaussian noise. The results show

that our data preparation technique is capable to extract the

good features for the non-profiled SCA based on CNNs. Since

the power traces are partitioned in only three groups, our

technique helps to reduce the number of power traces used for

attacks. Furthermore, our proposed CNN architecture provides

the reliable results for non-profiled attacks, but they also show

that the Gaussian noise added on power traces is a serious

problem. In the future work, we will investigate some pre-

processing methods to reduce the effect of noise in power

traces to increase the performance of neural networks for non-

profiled attacks.
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