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A B S T R A C T   

In present work, we study the electronic, optical and photocatalytic properties of strained MoSSe 
monolayer through first-principles study. A single layer Janus MoSSe possesses a semiconducting 
character with a direct band gap of 1.59/2.09 eV obtained by PBE/HSE06 method. The valence 
band maximum (VBM) of Janus MoSSe monolayer is mainly contributed by the S-p orbital, 
whereas the conduction band minimum (CBM) comes from the Mo-dx2 . Furthermore, Janus 
MoSSe monolayer has been proved to be energetically stable with no imaginary frequency in its 
phonon spectrum. Interesting, both the tensile and compressive strains can transform Janus 
MoSSe monolayer from direct to indirect band gap nature as well as tune its band gap. The 
compressive strain tends to an increase in the band gap, whereas the tensile strain leads to 
decrease in the band gap. Optical absorption of Janus MoSSe monolayer demonstrates that the 
tensile strain gives rise to an existence of blue shift, while compressive strain is responsible for the 
formation of a red shift. Photocatalytic properties show that Janus MoSSe monolayer with 4% or 
6% strained could be a catalyst for the H2O oxidation, making it suitable for water splitting 
applications.   

1. Introduction 

Besides graphene, two-dimensional (2D) transition metal dichalcogenides (TMDCs) have recently considered much interest due to 
their technological applications [1–6]. The promising properties of 2D TMDCs from their bulk creates additional important. For 
example, the indirect band gap nature in bulk MoS2 and WS2 can be converted into direct band gap semiconductors in their monolayer 
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forms. Moreover, many strategies, including doping [7], making alloys [8–13], strain engineering [14], and constructing hetero-
structures [15,16] have been also devoted to enhance the properties and applications of 2D materials. Among these, strain engineering 
is proved to be one of the most efficient strategies for improving the performance of electronic devices. Experimentally, strain effect 
could be generated by external loading or epitaxy on 2D compounds in order to tune the structural, electronic, and catalytic properties 
of materials [17,18]. Recently, a new 2D group known as Janus TMDCs has been devolved from selenization and sulfurization in MoS2 
and MoSe2 [19,20]. Electronic structures and Raman modes of Janus MoSSe monolayer obtained from density functional theory (DFT) 
show excellent agreement with experimental results [20]. Janus 2D materials are also useful for spintronic devices due to the large 
spin–orbit coupling (SOC) and Rashba spin splitting [21]. On the theoretical side, Xia et al. [22] predicted that Janus MXY (M =Mo, W; 
X, Y = S, Se, Te) have many advantages that merit for high-efficient photocatalysts. 

Up to now, the effects of both uniaxial and biaxial strains on the structural, electronic and vibrational properties as well as band 
offsets of 2D TMDCs have been investigated [23–26]. It is obvious that the properties of 2D TMDCs are very sensitive to the strain 
engineering, implying that they are promising candidates for the fields of optoelectronics and nanoelectronics. As for Janus TMDCs, 
their electronic, optical, and mechanical properties have also been studied theoretically [27–30]. 

Recently, quasiparticle band structures and optical properties of MX2 (M =Mo, W, X = S, Se, Te) monolayers have been explored by 
GW approximation in conjunction with the Bethe–Salpeter equation [31,26]. Especially, the roles played by strain engineering on 
these properties have also been addressed [25]. However to our knowledge, no investigation about the variation of band structure, 
effective mass, photocatalytic response and optical properties of Janus MoSSe monolayers under strain has been carried out up to this 
point of time [25]. Therefore, in this work using density functional theory (DFT), a comprehensive insight is gained into the effect of 
strain engineering on the electronic structure, effective masses, optical properties and photocatalytic performance of the Janus MoSSe. 
We also discuss the valence and conduction band edge potentials to find out their possible applications in photocatalytic. 

2. Computational methods 

In this work, the electronic properties of Janus MoSSe monolayer is computed by using the first-principles calculations based on 
density functional theory, which is implemented in plane-wave basic QUANTUM ESPRESSO package [32]. The Perdew-Burke-
–Ernserhof (PBE) functional in the generalized gradient approximation (GGA) [33] is used to describe the exchange correlation 
functional. The energy cutoff is set to 500 eV for plane wave expansion and the first Brillouin zone is represented by 12 × 12 × 1 
Monkhorst Pack k-point grid. The optimized atomic positions are procured when the threshold for energy and forces is less than 
10− 6 eV and 10− 4 eV/Å, respectively. In addition, 86 uniform k-points along the high-symmetry special k-paths are used to obtain the 
band structure. The hybrid functional Heyd–Scuseria–Ernzerhof (HSE06) [34] was also adopted to acquire more accurate band gap. 
The DFT-D2 method [35] is also taken into account for exacting the weak van der Waals interaction. All the entities are provided with a 
vacuum level of 24 Å along the z direction in order to avoid factitious interactions between the layers of atoms. Phonon dispersion 
spectrum is calculated by using harmonic interatomic force constants as determined by the density functional perturbation theory 
while holding with a 4 × 4 × 1 supercell. 

3. Results and discussion 

We first examine the atomic structure of Janus MoSSe monolayer, in which the Mo atom is sandwiched between S and Se atoms, as 
depicted in Fig. 1. The lattice constant after full relaxation is computed to be 3.25 Å. Our calculations of bond lengths give the values of 
2.43 Å for Mo–S and 2.52 Å for Mo–Se, while it is 3.32 Å for the nearest distance of S–Se. These results are in good agreement with 

Fig. 1. (a) Top view (b) side view and (c) phonon dispersion curves of Janus MoSSe monolayer after relaxation.  
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previous reports [36,37], confirming the reliability of our approach. Furthermore, in order to verify the structural stability of Janus 
MoSSe monolayer, we calculate its phonon dispersion curves, as shown in Fig. 1(c). We find that the phonon spectrum of Janus MoSSe 
monolayer contains no imaginary soft modes with negative frequency, indicating its structural stability. 

Fig. 2. Band structures of Janus MoSSe monolayer obtained by (a) PBE and (c) HSE06 calculations. (b) Partial density of states (PDOS) of Janus 
MoSSe monolayer at the equilibrium state. 

Fig. 3. Band structures of Janus MoSSe monolayer under different tensile strains of (a) 2%, (c) 4%, (c) 6% and compressive strains of (d) 2%, (e) 4% 
and (f) 6%, respectively. 

Fig. 4. Band gap variation of Janus MoSSe monolayer as a function of strains.  

T.-N. Do et al.                                                                                                                                                                                                          



Optik 224 (2020) 165503

4

The electronic band structures and partial density of states (PDOS) of Janus MoSSe monolayer are calculated and plotted in Fig. 2. 
At the ground state, this material possesses a direct band nature of semiconductor. Both the VBM and CBM are located right at K point. 
The band gap of Janus MoSSe monolayer calculated by PBE and HSE06 are 1.59 and 2.09 eV, respectively. These results are consistent 
with the previous theoretical report [37,38]. One can find that as compared to the experimental band gap of MoSSe monolayer of 
1.68 eV [19], the PBE calculation underestimates the band gap by 0.09 eV, whereas the HSE06 over estimates the band gap by 0.41 eV. 
Both the PBE and HSE06 calculations predict the same trend in the electronic band structures of Janus MoSSe monolayer. Therefore, 
we further calculate the electronic properties of Janus MoSSe monolayer using PBE calculation. The partial density of states (PDOS) of 
all atoms in Janus MoSSe monolayer are displayed in Fig. 2(b). Our calculations show that the VBM is mainly contributed by the S-p 
orbital, whereas the CBM comes from the Mo-dx2 . 

As is well known that the strain is the most common approach to tune the band gap value of materials. Thus, to modulate the band 
gap of simple TMDC monolayers a very small strain is required, which is in sharp contrast with that of grapheme [23]. Here, we apply 
both the compressive and tensile strains to Janus MoSSe monolayer in order of 2% by setting the calculated lattice parameter to a fixed 
smaller or larger values and relaxing the atomic positions. The effect of a compressive strain decreases the bond length and thus 
enhances coupling, giving rise to the increase in bonding–antibonding splitting. The opposite is true for the tensile strain. 

The band gap and band structures of Janus MoSSe monolayer under tensile and compressive strains are illustrated in Figs. 3 and 4 . 
One can find from Fig. 3(a)-(c) that the tensile strain leads to the decrease in the band gap of Janus MoSSe monolayer. With increasing 
the tensile strain from 2% to 4% and to 6%, the band gap of MoSSe monolayer decreases from 1.32 to 1.02 eV and to 0.76 eV, 
respectively. More interestingly, we find that under the tensile strain of 2%, the VBM shifts from K point to Γ point, whereas the CBM 
maintains at K point, resulting in the transition from direct to indirect band gap. By increasing the tensile strain up to 6%, the Janus 
MoSSe monolayer becomes an indirect band gap semiconductor. In fact, the decrease in the band gap of Janus MoSSe monolayer under 
tensile strain is due to the shift of the Fermi level towards the CBM. 

The calculated band structures of Janus MoSSe monolayer under compressive strain are depicted in Fig. 3(d)–(f). We find that the 
band gap of Janus MoSSe monolayer firstly increases to 1.64 eV with increasing the compressive strain to − 2%. Then the band gap 
decreases to 1.55 and 1.47 eV with further increasing the compressive strain to − 4% and − 6%, respectively. A similar trend of strain 
effect on the band gap was also observed in other Janus monolayers [39]. Under the compressive strain, the VBM remains at K point, 
however, the CBM shifts from K point to the Γ–K path, resulting in the direct–indirect band gap transition. Therefore, we can conclude 
that the strain engineering can be used to tune the band gap and transition from direct to indirect in Janus MoSSe monolayer. This 
finding demonstrates that the Janus MoSSe monolayer could be used as a promising candidate for wide range applications. 

Fig. 5. Imaginary part of dielectric function of Janus MoSSe under (a) tensile strain, (b) unstrained (c) compressive strain.  
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The imaginary part of the dielectric function ε2(ω) of unstrained and strained Janus MoSSe monolayer is shown in Fig. 5. Our results 
signify that the lowest energy transitions are dominated by excitons. The first higher peak for unstrained MoSSe is at 3.9 eV while for 
tensile (compressive) strain this peak locates at 3.39 (4.10), and 3.25 (4.3) eV and 3.16 (4.6) eV, respectively, for 2%, 4% and 6%. 
Moreover, by applying the tensile strain, the blue shift is observed while the compressive strain gives rise to the red shift. The red or 
blue shift is a quantum phenomenon, which describes the situation when an incident light contacts with the material, it either gains or 
loses some quanta by interacting with the vibrational modes of the material. When higher energy absorption takes place due to exciton, 
it leads a shift towards smaller wavelength (high energy) blue shift, and when energy is lost, a red shift is observed. These values 
indicate strong modifications in the positions of excitons in strained systems with respect to the parent monolayer systems. The blue/ 
red shift further strengthen when the tensile/compressive strain is applied, which is consistent with the previous report [14]. This 
suggests that moderate strain holds promise for controlling the exciton–phonon interaction or coupling on the nanoscale. 

Valence and conduction band edge potentials are used to investigate the photocatalytic properties of Janus MoSSe under strain by 
means of the Mulliken electronegativity EVBM = χ − Eelec + 0.5 × Eg and ECBM = EVBM − Eg. In this equation, χ denotes the geometric 
mean of the Mulliken electronegativity of the corresponding atoms, and Eg is the calculated band gap of Janus MoSSe monolayer by 
PBE method. For VB and CB we fix the Fermi level to − 4.44 eV. We find that all the system fails for reduction and oxidation potential 
levels, while tensile strain of 4% and 6% shows good agent for reduction (Fig. 6). 

4. Conclusions 

In conclusion, the structural, electronic, optical and photocatalytic properties of Janus MoSSe monolayer under tensile and 
compressive strains have been investigated using density functional theory. Phonon spectra exhibit no imaginary frequency, con-
firming that MoSSe monolayer is thermally and dynamically stable. The Janus MoSSe monolayer possesses a semiconducting nature 
with a direct band gap of 1.59/2.09 eV obtained by PBE/HSE06 method. The strain engineering can tune the band gap and transition 
from direct to indirect. The blue and red shifts are observed by applying the tensile and compressive strains, respectively. Photo-
catalytic properties show that Janus MoSSe monolayer with 4% or 6% strained could be a catalyst for the H2O oxidation, making it 
promising candidate for water splitting applications. 
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